Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS
Abstract
:Simple Summary
Abstract
1. Introduction
2. Subjects and Methods
2.1. Recruitment of Family Members
2.2. Specimen Collection and Processing
2.3. Pathology and Immunohistochemistry of Formalin-Fixed Paraffin-Embedded (FFPE) Tissues
2.4. In-House Testing of the MMR Genes for Genetic Mutations and Methylation
2.5. Co-Segregation Analyses of MSH2 and MSH6 Variants with Disease Status
2.6. Risk for Cancer Onset by Carrier Status for Variants MSH2 c.2006G>T, MSH6 c.3936_4001+8dup (Intronic), or Both
2.7. RNA Analyses to Detect and Measure Aberrant Splicing
2.8. Chr2p21-p16 Haplotype Analyses
3. Results
3.1. Clinical Presentation and Cancer Family History
3.2. Molecular Analyses of Archived Adenocarcinoma
3.3. Extended Pedigree Analysis for Carriage of the MSH2 c.2006G>T and MSH6 c.3936_4001+8dup (Intronic) Variants and Co-Segregation with Major LS Cancers
3.4. Risk for First Occurrence of Neoplasia in Carriers of the MSH2 and MSH6 Variants
3.5. IHC Analyses of Adenomas in Carriers of MSH6 c.3936_4001+8dup (Intronic) Alone
3.6. Functional Analyses of the MSH2 in RNA of Carriers Show MSH2 c.2006G>T Has Differential Effects on Aberrant Splicing in Different Tissue Samples
3.7. Functional Analyses of MSH6 in RNA of Carriers Show MSH6 c.3936_4001+8dup (Intronic) Causes Out-of-Frame Splicing Errors
3.8. Extended Screening for Germline Mutations in Cancer-Affected Members Who Did Not Carry Either MSH2 or MSH6 Variant
3.9. Genetic Counseling and Cancer Gene Panel Testing Provides Diagnostic Genetic Test Results and Identifies Additional Cancer-Risk Genes in the Extended Pedigree
3.10. An Instance of Non-Transmission of Either MSH2 or MSH6 Variant to Offspring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lynch, H.T.; Snyder, C.L.; Shaw, T.G.; Heinen, C.D.; Hitchins, M.P. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer 2015, 15, 181–194. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.A.; et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 5783–5788. [Google Scholar] [CrossRef] [Green Version]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J.; et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3’ exons of TACSTD1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Baris, H.N.; Barnes-Kedar, I.; Toledano, H.; Halpern, M.; Hershkovitz, D.; Lossos, A.; Lerer, I.; Peretz, T.; Kariv, R.; Cohen, S.; et al. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity. Pediatr. Blood Cancer 2016, 63, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.F.; Tomlinson, I.; Castells, A. Clinical management of hereditary colorectal cancer syndromes. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppala, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, E.; Hill, J.; Evans, D.G. Cancer risk in Lynch Syndrome. Fam. Cancer 2013, 12, 229–240. [Google Scholar] [CrossRef]
- Baglietto, L.; Lindor, N.M.; Dowty, J.G.; White, D.M.; Wagner, A.; Gomez Garcia, E.B.; Vriends, A.H.; Dutch Lynch Syndrome Study, G.; Cartwright, N.R.; Barnetson, R.A.; et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J. Natl. Cancer Inst. 2010, 102, 193–201. [Google Scholar] [CrossRef]
- Ten Broeke, S.W.; Brohet, R.M.; Tops, C.M.; van der Klift, H.M.; Velthuizen, M.E.; Bernstein, I.; Capella Munar, G.; Gomez Garcia, E.; Hoogerbrugge, N.; Letteboer, T.G.; et al. Lynch syndrome caused by germline PMS2 mutations: Delineating the cancer risk. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 319–325. [Google Scholar] [CrossRef]
- Senter, L.; Clendenning, M.; Sotamaa, K.; Hampel, H.; Green, J.; Potter, J.D.; Lindblom, A.; Lagerstedt, K.; Thibodeau, S.N.; Lindor, N.M.; et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008, 135, 419–428. [Google Scholar] [CrossRef]
- Engel, C.; Loeffler, M.; Steinke, V.; Rahner, N.; Holinski-Feder, E.; Dietmaier, W.; Schackert, H.K.; Goergens, H.; von Knebel Doeberitz, M.; Goecke, T.O.; et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 4409–4415. [Google Scholar] [CrossRef] [PubMed]
- van der Klift, H.M.; Jansen, A.M.; van der Steenstraten, N.; Bik, E.C.; Tops, C.M.; Devilee, P.; Wijnen, J.T. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol. Genet. Genom. Med. 2015, 3, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Tricarico, R.; Kasela, M.; Mareni, C.; Thompson, B.A.; Drouet, A.; Staderini, L.; Gorelli, G.; Crucianelli, F.; Ingrosso, V.; Kantelinen, J.; et al. Assessment of the InSiGHT Interpretation Criteria for the Clinical Classification of 24 MLH1 and MSH2 Gene Variants. Hum. Mutat. 2017, 38, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraldsdottir, S.; Rafnar, T.; Frankel, W.L.; Einarsdottir, S.; Sigurdsson, A.; Hampel, H.; Snaebjornsson, P.; Masson, G.; Weng, D.; Arngrimsson, R.; et al. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2. Nat. Commun. 2017, 8, 14755. [Google Scholar] [CrossRef] [Green Version]
- Hegde, M.; Blazo, M.; Chong, B.; Prior, T.; Richards, C. Assay validation for identification of hereditary nonpolyposis colon cancer-causing mutations in mismatch repair genes MLH1, MSH2, and MSH6. J. Mol. Diagn. JMD 2005, 7, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Belman, S.; Parsons, M.T.; Spurdle, A.B.; Goldgar, D.E.; Feng, B.J. Considerations in assessing germline variant pathogenicity using cosegregation analysis. Genet. Med. 2020, 22, 2052–2059. [Google Scholar] [CrossRef]
- Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 1966, 50, 163–170. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.; Greer, S.U.; Xia, L.C.; Lee, H.; Zhou, J.; Boles, T.C.; Ji, H.P. Targeted short read sequencing and assembly of re-arrangements and candidate gene loci provide megabase diplotypes. Nucleic Acids Res. 2019, 47, e115. [Google Scholar] [CrossRef] [Green Version]
- Greer, S.U.; Ji, H.P. Structural variant analysis for linked-read sequencing data with gemtools. Bioinformatics 2019, 35, 4397–4399. [Google Scholar] [CrossRef]
- Vasen, H.F.; Watson, P.; Mecklin, J.P.; Lynch, H.T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Tavtigian, S.V.; Greenblatt, M.S.; Harrison, S.M.; Nussbaum, R.L.; Prabhu, S.A.; Boucher, K.M.; Biesecker, L.G.; ClinGen Sequence Variant Interpretation Working Group. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 2018, 20, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Ahadova, A.; Gallon, R.; Gebert, J.; Ballhausen, A.; Endris, V.; Kirchner, M.; Stenzinger, A.; Burn, J.; von Knebel Doeberitz, M.; Bläker, H.; et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 2018, 143, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Pan, D.; Zhang, H.; Ye, Q.; Xu, P.; Pan, J. Single-center study of Lynch syndrome screening in colorectal polyps. Hered. Cancer Clin. Pract. 2019, 17, 9. [Google Scholar] [CrossRef]
- Walsh, M.D.; Buchanan, D.D.; Pearson, S.A.; Clendenning, M.; Jenkins, M.A.; Win, A.K.; Walters, R.J.; Spring, K.J.; Nagler, B.; Pavluk, E.; et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: A case series from the Australasian site of the colon cancer family registry. Mod. Pathol. 2012, 25, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Olatubosun, A.; Vihinen, M. Classification of mismatch repair gene missense variants with PON-MMR. Hum. Mutat. 2012, 33, 642–650. [Google Scholar] [CrossRef]
- Calmann, M.A.; Nowosielska, A.; Marinus, M.G. The MutS C terminus is essential for mismatch repair activity in vivo. J. Bacteriol. 2005, 187, 6577–6579. [Google Scholar] [CrossRef] [Green Version]
- InSiGHT Variant Interpretation Committee: Mismatch Repair Gene Variant Classification Criteria. Version 2.3 March. 2018. Available online: https://www.insight-group.org/content/uploads/2018/04/2018-03_InSiGHT_VIC_v2.3.pdf (accessed on 17 December 2022).
- Guan, X.; Niu, J.; Liu, Z.; Wang, L.E.; Amos, C.I.; Lee, J.E.; Gershenwald, J.E.; Grimm, E.A.; Wei, Q. Variants in melanocortin 1 receptor gene contribute to risk of melanoma--a direct sequencing analysis in a Texas population. Pigment. Cell Melanoma Res. 2013, 26, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Aya-Bonilla, C.; Green, M.R.; Camilleri, E.; Benton, M.; Keane, C.; Marlton, P.; Lea, R.; Gandhi, M.K.; Griffiths, L.R. High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin’s lymphoma. Genes Chromosomes Cancer 2013, 52, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Laczmanska, I.; Sasiadek, M.M. Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk. J. Appl. Genet. 2019, 60, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Seemanova, E.; Jarolim, P.; Seeman, P.; Varon, R.; Digweed, M.; Swift, M.; Sperling, K. Cancer risk of heterozygotes with the NBN founder mutation. J. Natl. Cancer Inst. 2007, 99, 1875–1880. [Google Scholar] [CrossRef]
- Rusak, B.; Kluzniak, W.; Wokolorczykv, D.; Stempa, K.; Kashyap, A.; Gronwald, J.; Huzarski, T.; Debniak, T.; Jakubowska, A.; Masojc, B.; et al. Inherited NBN Mutations and Prostate Cancer Risk and Survival. Cancer Res. Treat. 2019, 51, 1180–1187. [Google Scholar] [CrossRef] [Green Version]
- Rusak, B.; Kluzniak, W.; Wokolorczyk, D.; Stempa, K.; Kashyap, A.; Rudnicka, H.; Gronwald, J.; Huzarski, T.; Debniak, T.; Jakubowska, A.; et al. Allelic modification of breast cancer risk in women with an NBN mutation. Breast Cancer Res. Treat. 2019, 178, 427–431. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Z.; He, R.; Qi, J.; Zhang, Z.; Cui, B. Complete Paternal Uniparental Disomy of Chromosome 2 in an Asian Female Identified by Short Tandem Repeats and Whole Genome Sequencing. Cytogenet. Genome Res. 2019, 157, 197–202. [Google Scholar] [CrossRef]
- Ou, X.; Liu, C.; Chen, S.; Yu, J.; Zhang, Y.; Liu, S.; Sun, H. Complete paternal uniparental isodisomy for Chromosome 2 revealed in a parentage testing case. Transfusion 2013, 53, 1266–1269. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, J.; Li, C.; Ren, H.; Chen, W.; Liu, Z.; Cheng, F.; Zhao, J.; Chen, T.; Chen, C.; et al. Non-pathological complete paternal uniparental isodisomy of chromosome 2 revealed in a maternity testing case. Int. J. Leg. Med. 2019, 133, 993–997. [Google Scholar] [CrossRef]
- Pinto, C.; Pinheiro, M.; Peixoto, A.; Santos, C.; Veiga, I.; Rocha, P.; Pinto, P.; Lopes, P.; Baptista, M.; Henrique, R.; et al. Co-occurrence of nonsense mutations in MSH6 and MSH2 in Lynch syndrome families evidencing that not all truncating mutations are equal. J. Hum. Genet. 2016, 61, 151–156. [Google Scholar] [CrossRef]
- Kariola, R.; Otway, R.; Lonnqvist, K.E.; Raevaara, T.E.; Macrae, F.; Vos, Y.J.; Kohonen-Corish, M.; Hofstra, R.M.; Nystrom-Lahti, M. Two mismatch repair gene mutations found in a colon cancer patient--which one is pathogenic? Hum. Genet. 2003, 112, 105–109. [Google Scholar] [CrossRef]
- Wu, Y.; Berends, M.J.; Mensink, R.G.; Kempinga, C.; Sijmons, R.H.; van Der Zee, A.G.; Hollema, H.; Kleibeuker, J.H.; Buys, C.H.; Hofstra, R.M. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am. J. Hum. Genet. 1999, 65, 1291–1298. [Google Scholar] [CrossRef] [Green Version]
- Samowitz, W.S.; Curtin, K.; Lin, H.H.; Robertson, M.A.; Schaffer, D.; Nichols, M.; Gruenthal, K.; Leppert, M.F.; Slattery, M.L. The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterology 2001, 121, 830–838. [Google Scholar] [CrossRef]
- Whitney, A.R.; Diehn, M.; Popper, S.J.; Alizadeh, A.A.; Boldrick, J.C.; Relman, D.A.; Brown, P.O. Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. USA 2003, 100, 1896–1901. [Google Scholar] [CrossRef]
- Venselaar, H.; Te Beek, T.A.; Kuipers, R.K.; Hekkelman, M.L.; Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef] [Green Version]
- Meijer, T.W.; Hoogerbrugge, N.; Nagengast, F.M.; Ligtenberg, M.J.; van Krieken, J.H. In Lynch syndrome adenomas, loss of mismatch repair proteins is related to an enhanced lymphocytic response. Histopathology 2009, 55, 414–422. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Goel, A.; Hornick, J.L.; Sen, A.; Turgeon, D.K.; Ruffin, M.T.T.; Marcon, N.E.; Baron, J.A.; Bresalier, R.S.; Syngal, S.; et al. Microsatellite instability and DNA mismatch repair protein deficiency in Lynch syndrome colorectal polyps. Cancer Prev. Res. 2012, 5, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V.; et al. Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.A.; Spurdle, A.B.; Plazzer, J.P.; Greenblatt, M.S.; Akagi, K.; Al-Mulla, F.; Bapat, B.; Bernstein, I.; Capella, G.; den Dunnen, J.T.; et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 2014, 46, 107–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogelaar, I.P.; Greer, S.; Wang, F.; Shin, G.; Lau, B.; Hu, Y.; Haraldsdottir, S.; Alvarez, R.; Hazelett, D.; Nguyen, P.; et al. Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS. Cancers 2023, 15, 228. https://doi.org/10.3390/cancers15010228
Vogelaar IP, Greer S, Wang F, Shin G, Lau B, Hu Y, Haraldsdottir S, Alvarez R, Hazelett D, Nguyen P, et al. Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS. Cancers. 2023; 15(1):228. https://doi.org/10.3390/cancers15010228
Chicago/Turabian StyleVogelaar, Ingrid P., Stephanie Greer, Fan Wang, GiWon Shin, Billy Lau, Yajing Hu, Sigurdis Haraldsdottir, Rocio Alvarez, Dennis Hazelett, Peter Nguyen, and et al. 2023. "Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS" Cancers 15, no. 1: 228. https://doi.org/10.3390/cancers15010228
APA StyleVogelaar, I. P., Greer, S., Wang, F., Shin, G., Lau, B., Hu, Y., Haraldsdottir, S., Alvarez, R., Hazelett, D., Nguyen, P., Aguirre, F. P., Guindi, M., Hendifar, A., Balcom, J., Leininger, A., Fairbank, B., Ji, H., & Hitchins, M. P. (2023). Large Cancer Pedigree Involving Multiple Cancer Genes including Likely Digenic MSH2 and MSH6 Lynch Syndrome (LS) and an Instance of Recombinational Rescue from LS. Cancers, 15(1), 228. https://doi.org/10.3390/cancers15010228