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Simple Summary: Until recently the outcome for women with advanced endometrial carcinoma
has been poor. New immune therapies have resulted in much better outcomes for some, but not all,
women with advanced disease. Determining which women are likely to respond is important, both
to identify potential responders and prevent overtreatment of women who are not likely to respond.
In this study we looked to see if there were any other markers that could be used to better predict
those tumors that would be more likely to respond to the immune therapy known as durvalumab
versus those tumors more likely to be resistant. Using statistical methods to evaluate each of the
components examined we determined the cut-off point with the best performance. We found that the
presence of tumor associated inflammatory cells had the strongest association with response. We also
found that an algorithm derived from our best performing cut-off points identified women not likely
to respond to treatment. While the presence of inflammatory cells was not significant when mismatch
repair status was considered, our novel algorithm was. This is a small study and the findings do
require validation in a larger group of women.

Abstract: Women with advanced endometrial carcinoma (EC) with mismatch repair (MMR) deficiency
have improved outcomes when treated with immune checkpoint inhibitors; however, additional
biomarkers are needed to identify women most likely to respond. Scores for programmed death
ligand 1 (PD-L1), immunohistochemical staining of tumor (TC+), immune cells (IC+) and presence
of tumor-associated immune cells (ICP) on MMR deficient (n = 34) and proficient (n = 33) EC
from women treated with durvalumab in the PHAEDRA trial (ANZGOG1601/CTC0144) (trial
registration number ACTRN12617000106336, prospectively registered 19 January 2017) are reported
and correlated with outcome. Receiver operating characteristic (ROC) analyses and area under the
ROC curve were used to determine optimal cutpoints. Performance was compared with median
cutpoints and two algorithms; a novel algorithm derived from optimal cutpoints (TC+ ≥ 1 or ICP ≥ 10
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or IC+ ≥ 35) and the Ventana urothelial carcinoma (UC) algorithm (either TC+ ≥ 25, ICP > 1 and
IC+ ≥ 25 or ICP = 1 and IC+ = 100). The cutpoint ICP ≥ 10 had highest sensitivity (53%) and specificity
(82%), being prognostic for progression-free survival (PFS) (p = 0.01), while the optimal cutpoints
algorithm was associated with overall survival (p = 0.02); these results were not significant after
adjusting for MMR status. The optimal cutpoints algorithm identified non-responders (p = 0.02) with
high sensitivity (88%) and negative predictive value (92%), remaining significant after adjustment for
MMR. Although MMR status had the strongest association with response, further work to determine
the significance of ICP ≥ 10 and the novel optimal cutpoint algorithm is needed.

Keywords: programmed death ligand 1; immune checkpoint inhibitors; endometrial carcinoma;
immunohistochemistry; receiver operating characteristic analyses

1. Introduction

Advanced and recurrent endometrial carcinoma (AEC) has a high mortality rate, with
little improvement in therapeutic options over the past several decades. Recently treatment
with novel immune checkpoint inhibitors (ICI) has resulted in improved outcomes, par-
ticularly for carcinomas with mismatch repair deficiency (dMMR) [1–4]. Currently four
molecular subtypes of EC are recognized that are complementary to the traditional FIGO
system for histotyping and grading [5]. These are: (1) polymerase-epsilon (POLE) ultra-
mutated, (2) microsatellite instability (MSI), (3) copy number high with p53 mutational
status (p53) and (4) copy number low, microsatellite stable with a non-specific molecular
profile (NSMP) [6]. ICIs are theoretically more likely to invoke good clinical response in
malignancies with high tumor mutational rates [7]; of the EC molecular subtypes both
POLE and MSI-H carcinomas are known to have high mutation rates. Mismatch repair
deficient (dMMR) EC can be identified using immunohistochemistry (IHC), which is cheap,
widely available in the Australian setting, and generally associated with MSI-H. Identifying
other subgroups with high mutational rates is more complex, with molecular tests for
POLE status and high tumor mutation burden (hTMB) more expensive and limited to
specialized laboratories.

Biomarkers to further optimize patient selection for ICIs by identifying the women
most likely to respond, that is, prognostic biomarkers, remains an unmet need. Programmed
death ligand 1 (PD-L1) IHC is attractive because of its relatively widespread availability and
clinical experience in other malignancies, such as non-small cell lung carcinoma (NSCLC).
Unlike malignancies such as NSCLC, where reporting guidelines and treatment cut-offs are
established, currently there is no validated scoring algorithm for assessment of PD-L1 status
in EC [3,4,8,9]. In addition, studies examining the relationship between EC PD-L1 status
and ICI clinical response are limited, with inconsistent results reported to date [3,4,10].
Lastly, the use of cutpoints enables potentially complex relationships over outcomes to be
simplified and minimizes the impact of inter-observer reliability.

PHAEDRA is an Australia New Zealand Gynaecological Oncology Group (ANZGOG)-
led, non-comparative, single-arm phase 2 trial that assessed the activity of durvalumab, an
anti-PD-L1 monoclonal antibody, in both dMMR and proficient MMR (pMMR) cohorts of
women with AEC. The objective tumor response rate (OTRR) in the dMMR cohort was 47%
(17/36; 95% CI 32–63) and 3% in the pMMR cohort (1/35, 95% CI: 1–15) [1]. The analyses
reported here explores interobserver reliability of tumor expression of PD-L1 and identifies
optimal cutpoints for tumor expression of PD-L1 and whether it is a prognostic biomarker
for clinical outcomes of women participating in the PHAEDRA study.

2. Materials and Methods
2.1. Study Population

PHAEDRA included two AEC cohorts (dMMR and pMMR) based on site-determined
MMR status using IHC. This has been previously reported [1]. All women received
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intravenous durvalumab 1500 mg 4-weekly until disease progression, prohibitive toxicity,
or withdrawal from the study. Tumor tissue less than 18 months old or repeat biopsy
prior to study enrollment was required. Central review of MMR stains at Mater Pathology,
Brisbane, Australia, was undertaken retrospectively following enrollment; where original
slides were unavailable these were repeated [1].

2.2. PD-L1 Immunohistochemistry

Formalin-fixed paraffin embedded tissue blocks or unstained tissue sections on charged
slides (Trajan Scientific and Medical, Melbourne, Australia) were stained for PD-L1 protein
expression using IHC at a central laboratory (Mater Pathology). All specimens were stained
within 4 weeks of sectioning; staining of whole slides was performed by the VENTANA
PD-L1 (SP263) Assay (Ventana 741-4905, Roche Diagnostics, Mannheim, Germany) and
visualized using a Benchmark Ultra IHC/ISC system (Roche Diagnostics, Indianapolis, IN,
USA), per the manufacturer’s instructions, and using appropriate positive controls. The
full PD-L1 staining protocol is included with the supplementary information. Matching
haematoxylin and eosin (H&E) sections were also obtained.

2.3. PD-L1 Scoring

Scoring of PD-L1 stained whole tissue sections was performed by two specialist
anatomical pathologists with training and experience reporting PD-L1 stains (Drs Smith
and Snell), and reported according to clinical guidelines. Scoring was performed indepen-
dently following an initial training set of ten cases, with the scores determined by each
pathologist for the three components then averaged. Specimens with less than 100 viable
TC were excluded.

The Ventana PD-L1 assay interpretation guidelines for UC [11] was chosen as this
method scores tumor and IC separately, and the scoring system is also validated for use
with the SP263 clone, including treatment with durvalumab [9,12]. Components scored
were: (1) the percentage of TC with partial or complete membranous staining for PD-L1
(TC+); (2) tumor-associated IC, determined as a percentage of the tumor area including
all IC within the tumor reactive stroma, between tumor islands, and within the tumor
proper (ICP); and (3) IC with any staining for PD-L1, granular or cytoplasmic, expressed as
a percentage of IC present (IC+). Each of the components (TC+, ICP and IC+) were scored
in deciles and quartiles; ICP was also scored at 1 and 5. If ICP was <1 an IC+ score of 100
was required to be considered PD-L1 positive. Examples of PD-L1 staining and the scores
as determined by each pathologist are given in Figure S1.

2.4. Statistical Analyses

Inter-observer reliability for scoring of PD-L1 stained whole tissue sections was per-
formed using Bland–Altman techniques for each of the individual components (TC+, ICP
and IC+). Receiver operating characteristic (ROC) analyses were performed for each
individual component to predict the OTRR, defined as either a partial response or a com-
plete response according to iRECIST 1.1 [13]. The area under the ROC curve (AUC),
sensitivity and specificity were calculated to provide a summary measure of predictive
performance. Optimal cutpoints were selected using the point closest to the top left of each
plot. The urothelial carcinoma (UC) algorithm, previously validated for clone SP263 (either
TC+ ≥ 25%, ICP > 1 and IC+ ≥ 25% or ICP = 1 and IC+ = 100) [11] was compared to an
algorithm derived from the combination of the optimal cutpoints (OC; TC+ ≥ 1, ICP ≥ 10
or IC+ 35). The prognostic value of the proposed optimal cutpoint for PD-L1 staining in
EC was assessed with progression-free survival (PFS) according to iRECIST and overall
survival (OS) using Kaplan–Meier curves, and adjusted analyses using Cox proportional
hazards regression. OTRR was assessed using logistic regression.
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3. Results
3.1. Baseline Characteristics

The study population included 71 women with AEC, 36 with dMMR, and 35 pMMR [1].
Sixty-seven women had sufficient tumor for PD-L1 testing (33 pMMR, 34 dMMR) and were
eligible for this analysis. Tissue for PD-L1 evaluation included both uterine primary (n=27)
and metastatic sites (n=40). The median age was 67 years (IQR: 60–72); the majority of
tumor histology was endometrioid (76%, 51/67) or serous (16%, 11/67) subtypes (Table S1).

3.2. Immune Cell and PD-L1 Results

Figure 1 explores inter-observer reliability for TC+, ICP and IC+, demonstrating
increasing variability for each as the values increase. Generally, one observer appeared to
score higher than the other observer for ICP and IC+ measurements.
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Figure 1. Bland–Altman plots for the three components scored. (a) TC+, (b) ICP and (c) IC+.

To predict OTRR, AUC were 0.667 (95% CI: 0.512–0.821), 0.726 (95% CI: 0.577–0.874)
and 0.644 (95% CI: 0.492–0.797) for TC+, ICP and IC+, respectively (Figure 2). Plots
of the distributions of these components by responders and non-responders is given in
Figure S2. Optimal cutpoints were determined as TC+ ≥ 1, ICP ≥ 10 and IC+ ≥ 35.
Predictive performance of optimal cutpoints was compared to the median cutpoints and
two algorithms: 1) an optimal cutpoint (OC) algorithm (TC+ ≥ 1 or ICP ≥ 10 or IC+ ≥ 3)
and 2) the Ventana UC algorithm (either TC+ ≥ 25, ICP > 1 and IC+ ≥ 25 or ICP = 1 and
IC+ = 100) [11], (Table 1).
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Table 1. Associations between OTRR and the three components and the algorithms.

PD-L1 Score
Responses

Below Cutpoint *
(n/N (%))

Responses
above Cutpoint *

(n/N (%))

Positive
Predictive Value

(95% CI)

Negative
Predictive Value

(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Optimal cutpoints

# TC+ ≥ 1 8/40
(20%)

9/27
(33%)

33%
(17%, 54%)

80%
(64%, 91%)

53%
(28%, 77%)

64%
(49%, 77%)

# ICP ≥ 10 8/49
(16%)

9/18
(50%)

50%
(26%, 74%)

84%
(70%, 93%)

53%
(28%, 77%)

82%
(69%, 91%)

# IC+ ≥ 35 12/51
(24%)

5/16
(31%)

31%
(11%, 59%)

76%
(63%, 87%)

29%
(10%, 56%)

78%
(64%, 88%)

Median cutpoints

# TC+ ≥ 1 8/40
(20%)

9/27
(33%)

33%
(17%, 54%)

80%
(64%, 91%)

53%
(28%, 77%)

64%
(49%, 77%)

# ICP ≥ 5 4/26
(15%)

13/41
(32%)

32%
(18%, 48%)

85%
(65%, 96%)

76%
(50%, 93%)

44%
(30%, 59%)

# IC+ ≥ 20 5/32
(16%)

12/35
(34%)

34%
(19%, 52%)

84%
(67%, 95%)

71%
(44%, 90%)

54%
(39%, 68%)

Other proposed cutpoints

UC algorithm † 6/40
(15%)

11/27
(41%)

41%
(22%, 61%)

85%
(70%, 94%)

65%
(38%, 86%)

68%
(53%, 80%)

OC algorithm ‡ 2/26
(8%)

15/41
(37%)

37%
(22%, 53%)

92%
(75%, 99%)

88%
(64%, 99%)

48%
(34%, 63%)

TC+: tumor cells with positive staining, ICP: percentage of tumor area occupied by immune cells, IC+: percentage
of tumor-associated immune cells with positive staining. *: Within all patients above or below the cutpoint.
† Urothelial cancer (UC) algorithm: TC+ ≥ 25% OR ICP > 1 & IC+ ≥ 25 OR ICP = 1 & IC+ = 100. ‡ Optimal
cutpoint (OC) algorithm: TC+ ≥ 1 OR ICP ≥ 10 OR IC+ ≥ 35.

The observed OTRR were 33% vs. 20% in participants with TC+ ≥ 1 vs. < 1; 50%
vs. 16% for ICP ≥ 10 vs. ICP < 10, and 31% vs. 24% for IC+ ≥ 35, vs. IC+ < 35 (Table 1).
ICP ≥ 10 was the cutpoint with the highest sensitivity (53%) and specificity (82%), and
in univariate analyses ICP alone was prognostic for OTRR (p = 0.007). However, when
adjusted for MMR status, ICP ≥ 10 was not prognostic for OTRR (p = 0.12, Table S2). The
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OC algorithm identified non-responders (p = 0.02) with high sensitivity (88%) and negative
predictive value (92%), but low specificity (48%) and positive predictive value (37%). This
remained prognostic for OTRR after adjustment for MMR status (p = 0.035).

ICP ≥ 10 was found to be prognostic for PFS (logrank p = 0.01), while TC+ (p = 0.25),
IC+ (p = 0.48) and the UC algorithm (p = 0.08) were not (Figure 3). In a model adjusting
for MMR status and ICP ≥ 10, pMMR was associated with poorer PFS (HR for pMMR
2.99, 95% CI: 1.61–5.57, p < 0.001), and ICP ≥ 10 was no longer associated with PFS (HR for
ICP ≥ 10 0.59, 95% CI 0.28–1.23, p = 0.16). None of the individual PD-L1 cutpoints were
prognostic for OS (TC+ p = 0.18, ICP p = 0.07 or IC+ p = 0.23, Figure 4). Comparisons of
univariate and adjusted models for PFS and OS are given in Table S3. The UC algorithm
was associated with OS (logrank p = 0.02), but not after adjustment for MMR status (HR for
UC algorithm: 0.53, 95% CI: 0.25–1.12, p = 0.10). While the UC algorithm was not prognostic
for OS (p = 0.063, Figure 4E), it was for PFS (p = 0.013, Figure 3E); however, it did not remain
prognostic after adjustment for MMR status (p = 0.35).
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4. Discussion

Here, we present the exploratory analyses of the prognostic ability of PD-L1 expression
with OTRR, PFS and OS in women treated with durvalumab for AEC. Compared to TC+
and IC+ optimal scores, ICP ≥ 10 had the highest sensitivity and specificity and was
prognostic for OTRR and PFS, but not OS. These associations were no longer evident after
adjusting for MMR status. However, the novel OC algorithm developed here detected
patients that are unlikely to respond to treatment (TC+ < 1 and ICP < 10 and IC+ < 35),
even after adjustment for MMR status.

Reported PD-L1 expression in unselected EC ranges from 1% to 44% [8,14], with higher
rates in dMMR tumors (26% to 48%) [7,8]. Variations in antibody clone, assessment method
and cutpoint makes comparisons between studies difficult [3,10,12,15]. The prognostic
significance of PD-L1 expression is complex, with some studies reporting longer PFS and OS
associated with high PD-L1 expression [7,16], but poorer survival associated with immune
cell PD-L1 expression [16,17]. No association with survival was found in other studies [14].
However, a recent meta-analysis including retrospective studies comprising 1615 patients
found no association between PD-L1 status and survival; high PD-L1 correlating only
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with poor differentiation and high tumor stage [18]. Furthermore, to date there has been
no conclusive demonstration of associations between PD-L1 status and outcomes of ICI
treatment for EC [9–11]. This contrasts with other malignancies, where high PD-L1 is
predictive of treatment response and may be a prerequisite for treatment [11].

Cancers with dMMR typically have an MSI high phenotype, resulting in high muta-
tional frequency and higher production of novel frameshift peptide antigens. The abun-
dance and “foreign” nature of these neo-antigens likely explains the strong CD3+ and CD8+
T-cell responses, which are associated with higher response rates to ICIs. Longer PFS was
observed in a range of solid malignancies with both high levels of T-cell inflammatory gene
expression profiles and hTMB in response to pembrolizumab [10]. In contrast, neither TMB
nor tumor infiltrating lymphocytes correlated with response in a study of avelumab in
EC [3]. While MMR status remained the strongest prognostic variable for outcomes similar
to previous studies [3,19], our findings suggest that the OC algorithm may identify those
women less likely to respond.

Recent work by Willvonseder et al. [20], who examined the immune microenvironment
in the context of molecularly characterized EC, found a subset of high grade (FIGO grade
3) NSMP (pMMR/POLE wildtype) ECs also had T-cell inflamed stroma. This potentially
represents an additional immunogenic subgroup [20], which may be associated with hTMB
and response to ICIs, the significance of which requires further study.

It is important to recognize the limitations of this study. These were post hoc analyses,
and samples included both primary tumors and biopsies from metastases, with insufficient
numbers within each of these subsets for further analysis. Additionally, we are yet to
assess other molecular correlates that may affect PD-L1 expression, such as mechanism of
dMMR. Finally, as a single-arm study it is not possible to determine if any association of
efficacy is predictive.

A strength of our study is the use of whole tissue sections rather than tissue microarray
cores; in our experience both PD-L1 staining and distribution of inflammatory cells are
heterogeneous, a finding also noted by others [9,14,20].

5. Conclusions

In this exploratory analysis of PD-L1 expression and association with outcome in AEC
treated with durvalumab, ICP alone was prognostic for OTRR and PFS, while TC+ and
IC+ were not. After the inclusion of MMR status, ICP alone was no longer prognostic. A
novel algorithm including ICP, TC+ and IC+ was able to identify non-responders, even
after adjustment for MMR status. Further work is needed to validate these findings in a
larger cohort.
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