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Simple Summary: There is an unmet need for novel anticancer therapeutics that work differently to
current standard-of-care therapies. BOLD-100 is a unique clinical-stage anticancer compound that
is based on the rare metal, ruthenium. Understanding the bioactivity of BOLD-100 can accelerate
its development towards approval and into clinical practice. The aim of this study was to use a
large panel of cancer cell lines to formulate a sensitivity profile of BOLD-100 across various cancer
types. BOLD-100 demonstrated increased activity in cell lines from esophageal cancer, blood cancers,
and bladder cancer. These indications are in addition to the gastrointestinal cancers currently in
clinical development, thus opening new opportunities. Using the sensitivity profile for downstream
bioinformatics and pathway analysis revealed associations between cancer cell lines’ sensitivity
to BOLD-100 and ribosomal gene expression, including several genes coding for large- and small-
ribosomal subunits. These findings provide evidence that ribosomal processes may be a critical
component of BOLD-100’s mechanism.

Abstract: BOLD-100 (sodium trans-[tetrachlorobis(1H indazole)ruthenate(III)]) is a ruthenium-based
anticancer compound currently in clinical development. The identification of cancer types that show
increased sensitivity towards BOLD-100 can lead to improved developmental strategies. Sensitivity
profiling can also identify mechanisms of action that are pertinent for the bioactivity of complex
therapeutics. Sensitivity to BOLD-100 was measured in a 319-cancer-cell line panel spanning 24 tissues.
BOLD-100’s sensitivity profile showed variation across the tissue lineages, including increased
response in esophageal, bladder, and hematologic cancers. Multiple cancers, including esophageal,
bile duct and colon cancer, had higher relative response to BOLD-100 than to cisplatin. Response
to BOLD-100 showed only moderate correlation to anticancer compounds in the Genomics of Drug
Sensitivity in Cancer (GDSC) database, as well as no clear theme in bioactivity of correlated hits,
suggesting that BOLD-100 may have a differentiated therapeutic profile. The genomic modalities of
cancer cell lines were modeled against the BOLD-100 sensitivity profile, which revealed that genes
related to ribosomal processes were associated with sensitivity to BOLD-100. Machine learning
modeling of the sensitivity profile to BOLD-100 and gene expression data provided moderative
predictive value. These findings provide further mechanistic understanding around BOLD-100 and
support its development for additional cancer types.

Keywords: BOLD-100; cell screening; ruthenium; cancer therapeutics; ribosomes

1. Introduction

Metal-based compounds have the potential to be highly efficacious anticancer ther-
apies with novel mechanisms of action [1,2]. The properties of metal-based compounds,
including the ability for ligand substitutions, a vast chemical structural space, complex
geometries, multiple oxidation states, and potential metal-ligand interactions, provide
extensive avenues for drug design and discovery [1–4]. The platinum-based therapeutic
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cisplatin, and its derivatives oxaliplatin and carboplatin, are mainstay chemotherapies
extensively utilized in advanced cancer patient care [5,6]. However, intrinsic and acquired
resistance to cisplatin and low response rates in advanced settings has triggered the search
for novel metal-based alternatives with differentiated mechanisms and improved thera-
peutic outcomes [7]. The development of metal-based therapeutics has proceeded in a
range of metals including gold, copper, iridium, and ruthenium [8–11]. Despite this, very
few metal-based anticancer drugs have completed clinical development [12,13]. Therefore,
advanced development strategies for metal-based compounds are needed to fulfill the
therapeutic potential of this class of molecules.

Preclinical screening of novel therapeutics against panels of cancer cell lines remains a
pertinent protocol in drug development [14]. Since the pioneering work of the NCI60 cell line
panel, which sought to link drug sensitivity and cancer genotypes, large cancer cell line panels
and subsequent pharmacogenomic analysis have become crucial in identifying development
strategies and providing novel insights into mechanisms of action (MOA) [15,16]. The depth
of knowledge and data around cancer cell lines have accelerated the advancements in
accurate drug prediction tasks in oncology [17,18], with several consortia including the
Genomics of Drug Sensitivity in Cancer (GDSC) project and the Cancer Therapeutics
Response Portal (CTRP) providing screening data for over one thousand cancer cell lines in
response to hundreds of chemical compounds [19,20]. Furthermore, the abundance of cell
line molecular data available in public databases such as the Cancer Cell Line Encyclopedia
(CCLE) allows for pharmacogenomic analyses to uncover molecular determinants of drug
sensitivity [21]. Genomic modalities, including gene expression, protein expression, copy
number variation, and somatic mutations, have been used in drug prediction tasks and can
be utilized to understand potential drug targets and MOAs. Gene expression in particular is
one of the most predictive modalities of drug response [22–26] and can provide insights into
the drug MOA [27,28]. This facilitates the translation of in vitro findings in the laboratory to
the clinic, which remains a rate-limiting step in novel metal-based drug development [29].

The ruthenium complex BOLD-100 is a clinical-stage anticancer compound that is
composed of sodium trans-[tetrachlorobis(1H indazole) ruthenate(III)] with cesium as an
intermediate salt form. Predecessor molecules include IT-139, NKP-1339, and KP1339.
BOLD-100 has successfully completed a Phase 1 monotherapy trial and is currently in a
Phase 1b/2 clinical trial in combination with chemotherapy in advanced gastrointestinal
cancers (NCT04421820) [30]. Beyond gastrointestinal cancers, BOLD-100 has shown efficacy
in a range of preclinical models, including breast, lung, and liver cancer [31–33]. Mecha-
nistically, BOLD-100 has a complex, multifaceted MOA which includes the modulation
of the endoplasmic reticulum (ER) chaperone 78 kDa glucose regulated protein (GRP78)
in conjunction with ER stress, as well as the induction of reactive oxygen species (ROS)
and a subsequent DNA damage response (DDR) [31,32,34–37]. Additionally, potential
interactions between BOLD-100 and ribosomal proteins have been recognized, as well
as the effect of BOLD-100 on altered cellular metabolism [38–41]. Collectively, both the
optimal development strategy and the definitive MOA for BOLD-100 remains elusive.

The depth of knowledge and data yielded by in vitro cell line screening assays presents
an opportunity to assess the efficacy of BOLD-100 across a large panel of cancer types. In
this study, a cell viability screen across 319 cancer cell lines spanning 24 tissues of origin
using BOLD-100 monotherapy was utilized to determine cancer types with increased
sensitivity. In order to build the knowledge base of BOLD-100’s potential bioactivity, the
sensitivity profile of BOLD-100 across the cancer cell lines was compared to anticancer
compounds in the GDSC database. Utilizing the depth of cancer cell line genomic data
from CCLE, a statistical modeling analysis was performed to identify candidate genes
which associated with BOLD-100 susceptibility, identifying the importance of ribosomal
gene expression for BOLD-100 response. Finally, a machine learning model was trained
using the sensitivity profile of BOLD-100 and cell line genomic data in order to assess the
ability to predict BOLD-100 sensitivity in cancer cell lines. This incorporation of cell line
screening, pharmacogenomics, drug response modeling, and multivariate machine learning
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has formulated a more cohesive understanding of BOLD-100’s therapeutic potential and
provides opportunities for future research for clinical applications.

2. Materials and Methods
2.1. Cancer Cell Screen

The effect of BOLD-100 (Bold Therapeutics Inc.; Vancouver, BC, Canada) and cisplatin
(Qilu Pharmaceuticals; Jinan, China) on the growth inhibition in 319 cancer cell lines (Table
S1) across 24 tissues of origin was evaluated (Crown Bioscience Inc.; Beijing, China). All
cell lines were acquired and tested by Crown Bioscience Inc. Cell lines were seeded in
96-well plates and were subject to BOLD-100 or cisplatin treatment for 72 h in a Cell
Titer-Glo Luminescent Cell Viability Assay (Promega; Madison, WI, USA). Initial viability
measurements were obtained prior to drug treatment. For BOLD-100, a top concentration
of 250–500 µM and two-fold serial dilutions in dimethyl sulfoxide (DMSO) were used to
achieve nine dose levels. For cisplatin, a top concentration of 100 µM and 3.16-fold serial
dilutions were used to achieve nine dose levels. Culture media was used as a means of
vehicle control. Each treatment at each dose level per cell line was tested in triplicate. Cell
culture media was based on recommended media for optimal growth of each cell line,
with Dulbecco’s Modified Eagle Medium (DMEM) or Roswell Park Memorial Institute
(RPMI1640) medium as the primary media used, supplemented with fetal bovine serum
(FBS) (ExCell Bio; Shanghai, China). Envision Multi Label Reader 2104-0010A (Perkin
Elmer; Waltham, MA, USA) was used for plate readout.

2.2. Calculation of BOLD-100 and Cisplatin Sensitivity Profile in Cancer Cell Lines

R package PharmacoGx (version 3.0.2) was used to fit a four-parameter log-logistic
curve on the cell line viability data and compute the half maximal inhibitory concentration
(IC50) [42]. The normalized measure of drug efficacy (GRmax) was calculated using the
online web tool GRCalculator (http://www.grcalculator.org/grcalculator/; accessed on
31 May 2021) [43]. Within-tissue median values for BOLD-100 and cisplatin IC50 and
GRmax were calculated in order to compare the two drugs’ sensitivity profiles. The within-
tissue distributions of IC50 and GRmax were visualized in boxplots, where the length of
the boxes represent the interquartile range (IQR) (i.e., the range between 25th (Q1) and
75th (Q3) percentiles) and the bottom and top whiskers represent Q1 − 1.5xIQR and Q3
+ 1.5xIQR, respectively, which denote the threshold for outliers. ANOVA was used to
test whether BOLD-100 and cisplatin sensitivity profiles showed significant variability
across the tissues of origin. Cell lines in the following tissues of origin were further
classified into cancer subtypes according to data available in Cell Model Passports (https:
//cellmodelpassports.sanger.ac.uk/; accessed on 30 September 2021): blood, bone, brain,
kidney, head and neck, thyroid, esophagus, lung, ovary, prostate, soft tissue, cervix, and
uterus [44]. The following tissues were classified into subtypes according to the literature:
bladder [45,46], breast [47], colon [48], and liver [49]. The BOLD-100 IC50 measurements
for the following cell lines could not be obtained due to the values being out of the range of
the concentrations tested: HT-1376 (bladder), SK-N-AS (brain and nerves), BT-483 (breast),
HeLa, MS751 (cervix), and 22RV1 (prostate). Therefore, these cell lines were excluded in
the analysis of BOLD-100 sensitivity. All statistics and data visualizations were performed
using the R programming language (version 4.0.5). The centrality and dispersion of the
drug sensitivity values were reported using the median and the IQR and comparison
of IC50 distributions were carried out using non-parametric tests such as the Wilcoxon
signed-rank test and the Kruskal-Wallis ANOVA.

2.3. Comparison of BOLD-100 and Cisplatin Sensitivity Profiles versus GDSC Database

Drug sensitivity profiles of anticancer compounds across cancer cell lines were ob-
tained from the GDSC database (https://www.cancerrxgene.org/; accessed on 10 May
2021). Data from two separate drug screen cohorts termed GDSC1 and GDSC2 were col-
lected. In cases where a drug entry appeared in both datasets, data from the GDSC2 cohort

http://www.grcalculator.org/grcalculator/
https://cellmodelpassports.sanger.ac.uk/
https://cellmodelpassports.sanger.ac.uk/
https://www.cancerrxgene.org/
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was used, as per the database documentation [20,50]. This produced a dataset containing
449 drugs screened against 988 cancer cell lines. The initial dataset was then trimmed ac-
cording to the following criteria: (1) cell lines not tested in the current BOLD-100/cisplatin
cell panel were removed and (2) cell lines whose drug sensitivity data was missing in
more than 50% of drugs tested were excluded. The result was a dataset of 412 drugs
across 260 cancer cell lines. BOLD-100 and cisplatin IC50 data were log transformed and
separated based on whether cell lines originated from solid or liquid tumors. Spearman
rank correlation analysis was performed between BOLD-100 IC50 profile and the individual
sensitivity profiles within the GDSC dataset in order to compare the BOLD-100 response
signature to the 412 other drugs (Table S2). The Benjamini-Hochberg false discovery rate
(FDR) correction was performed for multiple testing corrections. The statistical significance
level α was set at 0.01. This analysis was repeated with the cisplatin IC50 profile. The
associated pathway annotations for each drug were obtained from the GDSC database
(accessed on 10 May 2021).

2.4. Identification of BOLD-100 Response Associated Genes

The sensitivity profile of BOLD-100 and cisplatin was tested for possible confounding
variables in the experimental design. Variables included age, gender, doubling time,
mutation rate, microsatellite instability (MSI) status, growth property (adherent, semi-
adherent. Suspension), and cell culture media. The age, gender, doubling time, and
mutation rate data for the cell lines were obtained from the CCLE database (https://
sites.broadinstitute.org/ccle; accessed on 13 July 2021). The growth property and MSI
status data were obtained from the study by Iorio et al. [50]. Using ordinary least squares
(OLS) regression, the following were treated as numeric variables: age, mutation rate, and
doubling time, while the following were encoded as categorical variables: gender, MSI
status, growth property, and culture media. Cell lines were analyzed separately based on
whether they were derived from liquid cancers or from solid cancers (Table S3).

For the modeling analysis, genomic data was obtained from the CCLE database
(accessed on 31 May 2021), which included gene expression, mutations, metabolomics,
and reverse-phase protein array data [27]. For the mutation data, 470 cancer genes were
selected as per the list identified by Iorio et al. [50]. Each set of genomic data was modeled
against BOLD-100 IC50 using a multiple regression model. The multiple regression model
incorporated the following as the predictor variables for a given cell line: a given genomic
feature X1, a categorical variable X2 representing the tissue of origin, and a categorical
variable X3 representing the culture media used. The natural-log of the BOLD-100 IC50 was
encoded as the continuous response variable Y. For gene expression, metabolomics, and
protein expression data, the genomic features (X1) were treated as continuous variables. For
mutation data, X1 were binarized based on the absence or the presence of a given mutation
prior to regression. A generalized additive model method was used to fit the regression
model using the R package gam (version 1.20.2). The Benjamini-Hochberg FDR correction
was performed on the regression p-values (Table S4).

2.5. Functional Enrichment Analysis of BOLD-100 Related Genes

Significant gene expression associations (Benjamini-Hochberg FDR < 0.1) were used
as input for functional enrichment analysis using the R package clusterProfiler (version
3.10.1) [51]. The Gene Ontology (GO) database was used for the pathway over-representation
analysis, including the biological process (BP), molecular function (MF), and cellular compo-
nent (CC) sub-ontologies (Table S5). A minimum pathway term size of 10 and a maximum
size of 500 was used, with FDR cut-off of 0.05. Over-represented GO terms were summa-
rized using the web tool REVIGO (http://revigo.irb.hr/; accessed on 31 May 2021) and the
R package treemap (version 2.4.3) [52].

https://sites.broadinstitute.org/ccle
https://sites.broadinstitute.org/ccle
http://revigo.irb.hr/


Cancers 2023, 15, 28 5 of 20

2.6. Development of Predictive Learning Model Using Gene Expression

To investigate whether cancer cell lines’ gene expression showed predictive ability
in estimating BOLD-100 sensitivity, a nonlinear machine learning model was trained to
predict BOLD-100 IC50. For this, a random forest regression model was used with the
BOLD-100 IC50 obtained from the cell screen as the continuous target variable using the R
package caret (version 6.0.92) [53]. For feature selection, the top 300 genes from the gene
expression multiple regression model (sorted by FDR) were selected as predictors. An 80:20
training-testing split was used on the data. Hyperparameter tuning during model training
was performed using a five-fold cross-validation on the training data prior to evaluation
on the test data; this was performed to prevent overfitting and potential data information
leak [54]. The fitted regression model was evaluated on the test data using R2 and root-
mean-squared-error (RMSE). Using the Gini impurity method, genes with high influence
on the model performance were identified. The model training and evaluation process was
repeated using 500 and 600 features instead in order to investigate any potential biases of
feature selection on model fitting and performance.

3. Results
3.1. BOLD-100 Response Shows Variability across Cancer Cell Lines’ Tissue of Origin

To identify cancer types with greater susceptibility to BOLD-100, sensitivity pro-
files were obtained from 319 cancer cell lines and assessed based on tissues of origin.
Non-cancerous cell lines were not assessed in this study. The distribution of BOLD-100
IC50 showed significant variability across the different tissues (ANOVA, p = 6.8 × 10−6)
(Figure 1A), with values ranging from 25.1 µM to 664 µM and a median value of 149 µM
(IQR = 98.4 µM), which is in line with previous reported values for this compound [31,37].
Esophagus, bladder, pancreas, and soft tissue cancer cell lines, as well as those from blood
cancers showed lower IC50 with respect to the pan-cancer median. In contrast, lung, kidney,
and breast cancer cell lines showed relatively higher median IC50. Cell lines derived from
liquid cancers (i.e., leukemia, lymphoma, and multiple myeloma) showed a significantly
lower median IC50 (120 µM, IQR = 52.4 µM) compared to cell lines derived from solid
cancers (162 µM, IQR = 103 µM; Wilcoxon, p = 5.3 × 10−7).

Tissue-based classification does not encompass the complete complex nature of can-
cer [55]. Therefore, subclassifications within each tissue were tested for BOLD-100 sensitiv-
ity. Of the tissue types profiled in the cell panel, cell lines from bladder (n = 8; ANOVA,
p = 0.02) and breast (n = 29; ANOVA, p = 0.012) showed a statistically significant variation
in response to BOLD-100 across the defined subtypes (Figure 1B,C). In bladder cancer,
the luminal subtype cell lines had the strongest response to BOLD-100, while HER2+ cell
lines were the most responsive in breast cancer. These results suggest that certain subtypes
within cancer tissues have a greater potential to benefit from BOLD-100 treatment.

Cancer cell line viability data in response to cisplatin was obtained and analyzed in
parallel to BOLD-100. The distribution of cisplatin IC50 showed a statistically significant
variability across the tissues of origin (ANOVA, p = 3.1 × 10−6) (Figure S1A). The range of
IC50 was 0.177 µM to 105 µM, with a median of 5.89 µM (IQR = 9.21 µM), which was within
the expected range for cisplatin [20,50]. Similarly to BOLD-100, liquid cancers showed
relatively lower median IC50 in response to cisplatin (1.82 µM, IQR = 3.48 µM) compared
to solid cancers (7.73 µM, IQR = 10.3 µM; Wilcoxon, p = 2.7 × 10−15). In within-tissue
subtypes, the response to cisplatin showed a statistically significant variation within breast
cancers (n = 30; ANOVA p = 0.0026) (Figure S1B), but, differing from BOLD-100, did not
show a significant variability within the bladder cancer subtypes (n = 9) (Figure S1C).
Cisplatin response did not show any significant within-tissue variability in other tissue
types profiled (α < 0.05).
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Figure 1. Sensitivity profile in BOLD-100 across a cancer cell line panel. 319 cancer cell lines were
treated with BOLD-100 or cisplatin and the IC50 was calculated. (A) The IC50 distribution of BOLD-
100 was grouped by tissue lineages and ranked by median IC50. X-axis label indicates the tissue
lineage (number of cell lines). (B) The IC50 distribution of BOLD-100 across the subtypes of bladder
cancer (n = 9), classified into basal, mixed, or luminal subtypes. The IC50 for one cell line (HT-1376)
with a subtype classification of ‘mixed’ could not be computed as it was above the concentration range
tested. (C) The IC50 distribution of BOLD-100 across the subtypes of breast cancer (n = 30), classified
into luminal A (LA), luminal B (LB), HER2+ (H), triple negative A (TNA), and triple negative B
(TNB). The IC50 for one cell line (BT-483) with a subtype classification of LA could not be computed
as it was above the concentration range tested. (D) Comparison of the within-tissue IC50 median for
BOLD-100 and cisplatin treatment. The red bisecting lines represent the pan-cancer median IC50 for
each treatment across the cell panel (149 µM for BOLD-100 and 5.89 µM for cisplatin). The blue line
represents the linear line of best fit between the two distributions. The gray shaded area represents the
95% confidence interval for the linear line of fit. Spearman correlation coefficient ρ and corresponding
p-value is shown. For the box plots, the length of each box represents the range between the 25th
and the 75th percentile whereas the whiskers represent the threshold for outlier values (A–C). For
boxplots of cancer subtypes, the x-axis label indicates the subtypes (number of cell lines) (B,C).

Within-tissue median IC50 values were used to directly compare the sensitivity profiles
of BOLD-100 and cisplatin (Figure 1D). A moderately positive correlation was observed
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(ρ = 0.61, p = 0.002), suggesting that the majority of tissues shared similar susceptibility to
BOLD-100 and cisplatin. However, esophagus, bile duct, liver, breast, and colon cancer
cell lines showed a relatively greater degree of susceptibility to BOLD-100 compared to
cisplatin. In breast cancer, the luminal A (LA) subtype showed the highest median IC50
in response to cisplatin (Figure S1C), while it showed the second lowest in response to
BOLD-100. Therefore, even though the cell line panel showed largely concordant trends in
relative responses to the two drug treatments, select cases which break this trend warrant
further investigation and indicate potential leads for clinical development.

3.2. BOLD-100 Exhibits Differential Cytotoxic Effects across Cancer Indications

Cytotoxicity involves the rapid killing of dividing cells, while cytostatic drugs impede
cell growth via disruption of cell signaling and replication [56]. This distinction between
the two types of therapy is not clear as many compounds display both effects in varying
proportions [57]. However, the efficacy gain of cytotoxic therapy in cancer has been shown
in both primary and metastatic tumors [58]. As both cytotoxicity and cytostaticity depend
on the growth rate of dividing cells, representative metrics can be calculated to infer
the degree of drug efficacy [43,59]. Evaluating both the potency (i.e., the IC50) and the
efficacy (i.e., measure of cytotoxicity) thus provides additional dimensions in assessing the
differential drug effect across disease types. Therefore, to infer the efficacy of BOLD-100,
the growth rate metric GRmax was calculated using the cell screen viability data. GRmax is
defined as the primary growth metric for drug efficacy and is bound by values −1 and +1,
where positive values indicate partial growth inhibition, negative values indicate cytotoxic
effects, and a value of 0 indicates a completely cytostatic effect [43,59]. Similarly to the IC50
values, the distribution of GRmax values in cell lines treated with BOLD-100 also showed
statistically significant variability across the different tissues (ANOVA, p = 7.5 × 10−13)
(Figure 2A). The majority of cell lines in the cell panel showed a degree of cytotoxicity in
response to BOLD-100. Cells from blood cancers, as well as liver, bladder, and skin cancers
tended to show higher degrees of cytotoxicity. Mesothelioma and stomach cancers were
the only tissues that had positive median GRmax values, indicating BOLD-100 showed
primarily cytostatic effects in these cell lines.

A comparison of the GRmax values between BOLD-100 and cisplatin showed that cell
lines derived from liquid cancers tended to show the greatest degree of cytotoxicity in
both treatments, which suggests that liquid cancers may be more predisposed to showing
cytotoxic effects, or there may be assay biases related to cell growth conditions and drug
exposure (Figure 2B). Cell lines derived from the liver, colon, soft tissues, bladder, and
esophagus showed a larger extent of cytotoxicity in response to BOLD-100 than to cisplatin
(Figure 2B). In contrast, tissues such as the breast, uterus, brain, and thyroid showed higher
median GRmax values in response to cisplatin than to BOLD-100. This asymmetric behavior
suggests the efficacy of the two treatments were not consistent with each other and such
inconsistencies may favor the clinical use of BOLD-100 in select disease types. Furthermore,
the overall distribution of GRmax across the entire cell panel in the two treatments showed
a statistically significant difference (Wilcoxon, p = 0.045) with cisplatin showing a higher
degree of cytotoxic activity (median GRmax = −0.609, IQR = 0.582) compared to BOLD-100
(median GRmax = −0.554, IQR = 0.677) (Figure 2C). Both distributions were skewed towards
negative values with the BOLD-100 GRmax distribution exhibiting a longer tail at positive
values. Despite the majority of cell lines showing a varying degree of cytotoxic activity in
response to BOLD-100, the range of efficacy is broader compared to the cisplatin profile,
suggesting that BOLD-100 has differential effects in certain cell lines.
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BOLD-100 grouped by tissue lineages. The red horizontal line represents the threshold for cytotoxicity
(i.e., GRmax = 0). The length of each box represents the range between the 25th and the 75th percentile
whereas the whiskers represent the threshold for outlier values. The x-axis labels indicate the tissues
of origin (number of cell lines). (B) The comparison of within-tissue median GRmax in response to
BOLD-100 or cisplatin treatment. The bisecting diagonal line represents the decision boundary for
which treatment exerts a more cytotoxic response. (C) The comparison of overall GRmax distribution
across the entire cell panel in response to BOLD-100 or cisplatin. The vertical red line indicates the
threshold for cytotoxicity (i.e., GRmax = 0).

3.3. BOLD-100 Response Shows Variability across Cell Culture Media

Variables related to the experimental design are known to affect sensitivity screening
and can lead to misleading results and irreproducible findings [22,59–61]. Therefore,
specific variables were tested for an association with the sensitivity to BOLD-100, including
age, gender, microsatellite instability (MSI) status, doubling time, mutation rate, growth
property (i.e., adherent, semi-adherent, or suspension), and culture media. OLS identified a
significant association between BOLD-100 IC50 and culture media in both solid and liquid
cancer derived cell lines (α < 0.05). In both stratifications, cells grown in RPMI + FBS media
showed greater susceptibility to BOLD-100 based on the median IC50 (median of 139 µM in
solid cancers and 112 µM in liquid cancers) compared to cells grown in DMEM+FBS media
(median of 178 µM in solid cancers and 138 µM in liquid cancers). In contrast, comparing
the IC50 of cisplatin across the two culture conditions showed no significant differences,
which suggests this bias is related to BOLD-100 sensitivity. No other associations with
BOLD-100 or cisplatin response were found across the confounding variables (Table S3).
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3.4. BOLD-100 Response Profile Shows Weak Correlation to Other Known Drugs

A comparative analysis of drug sensitivity profiles allows for the identification of
underlying similarities in the drugs’ MOA and has previously been used to infer the
bioactivity of novel compounds [62–64]. To compare the sensitivity profile of BOLD-100
with other anticancer compounds, a correlation analysis was performed using the GDSC’s
large-scale drug screening data. A total of 260 cancer cell lines with complete datasets were
available for BOLD-100 cell screen and the GDSC dataset and were further stratified into
solid or liquid cancers due to the previously observed increased response to BOLD-100 in
liquid cancers. In solid cancer cell lines (n = 202), a total of 12 drugs’ sensitivity profiles
showed a significant correlation with that of BOLD-100 (Table 1, Table S2 and Figure S2;
Spearman rank correlation, α < 0.01). A parallel analysis in solid cancers with cisplatin
identified 195 significantly correlated drug sensitivity profiles. In liquid cancer cell lines
(n = 58), a total of 39 drugs’ sensitivity profiles showed significant correlations with BOLD-
100 (Spearman rank correlation, α < 0.01), while 35 drugs were significantly correlated with
cisplatin.

Table 1. Spearman correlation results between sensitivity profiles of anticancer compounds from the
Genomics of Drug Sensitivity in Cancer (GDSC) database and BOLD-100 and cisplatin profile from
the cell panel. Associated pathway annotated for each drug was obtained from the GDSC database.

BOLD-100 vs. GDSC—Solid Cancers

Drug Pathway Name ρ FDR

AT-7519 Cell cycle 0.321 0.00290
Bleomycin DNA replication 0.316 0.00290

Thapsigargin Other 0.314 0.00290
FMK Other, kinases 0.310 0.00327

Bosutinib Other, kinases 0.291 0.00327

BOLD-100 vs. GDSC—Liquid Cancers

Drug Pathway Name ρ FDR

KRAS (G12C) Inhibitor-12 ERK MAPK signaling 0.658 0.000698
ULK1_4989 Other, kinases 0.640 0.000698
VSP34_8731 Other 0.635 0.000698
Vincristine Mitosis 0.626 0.000698
Carmustine DNA replication 0.622 0.000698

Cisplatin vs. GDSC—Solid Cancers

Drug Pathway Name ρ FDR

Cisplatin DNA replication 0.688 1.54 × 10−24

Camptothecin DNA replication 0.547 6.68 × 10−14

Mitoxantrone DNA replication 0.516 7.45 × 10−11

Topotecan DNA replication 0.509 1.21 × 10−10

Irinotecan DNA replication 0.473 5.94 × 10−10

Cisplatin vs GDSC—Liquid Cancers

Drug Pathway Name ρ FDR

Epirubicin DNA replication 0.792 1.41 × 10−8

Talazoparib Genome integrity 0.776 1.48 × 10−9

PARP_9482 Genome integrity 0.756 1.41 × 10−8

PARP_0108 Genome integrity 0.747 1.46 × 10−8

Camptothecin DNA replication 0.729 3.74 × 10−7

Cisplatin had a high degree of similarity to itself (solid tumors; ρ = 0.688; liquid
tumors; ρ = 0.640) and the top associated drugs were exclusively from pathways related
to DNA replication and genome integrity, which corresponds to the known mechanism
of cisplatin’s cytotoxicity (Table 1) [7,65–67]. In solid cancer cell lines, BOLD-100 showed
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the largest degree of correlation to AT-7519, a cyclin-kinase inhibitor (ρ = 0.321) [68,69]. In
liquid cancer derived cell lines, an inhibitor of the mutant KRAS-G12C protein showed
the largest degree of correlation with BOLD-100 (ρ = 0.657). In both sets of analyses, there
was no clear overarching theme in the correlated drugs to BOLD-100 with respect to their
mode of action. This contrasting evidence suggests the MOA of BOLD-100 may be unique,
multimodal, or complex in nature.

3.5. Multiple Regression Analysis Reveals Genes Associated to BOLD-100 Response

Multiple regression analyses were performed to identify potential associations be-
tween BOLD-100 sensitivity and various genomic modalities. For gene expression data
analysis, a total of 294 cell lines were used. At a significance cut-off of α < 0.1, a total of
124 genes’ expression values showed an association with BOLD-100 response (Table S4).
Using cancer driver mutations, metabolomics, and protein expression data from CCLE,
multiple regression analysis did not return any significant associations with BOLD-100
sensitivity after FDR correction (α < 0.1). These results suggest that genomic modalities
outside of gene expression showed no significant association with BOLD-100 sensitivity in
the cell panel, at least in the scope of the data available in CCLE and the number of cell
lines profiled in the current assay.

3.6. Pathway Enrichment Analysis of Associated Genes Reveals Key Biological Pathways

To identify underlying biological pathways related to genes associated with BOLD-100
sensitivity, the results from the gene expression multiple regression model (n = 124 genes)
were used as input for functional enrichment analysis. Over-representation analysis using the
GO annotation database returned a total of 51 enriched terms after FDR correction (α < 0.05)
(Figure S3, Table S5). The top over-represented GO terms were associated with ribosomal
processes, protein translation, and processes related to the ER. This over-representation was
attributed to the abundance of genes coding for ribosomal proteins (RPs) including both large-
and small-subunit proteins (RPLs and RPSs, respectively) present in the significant gene hit
list (Table S4). To consolidate the pathway over-representation results, the GO analysis result
was exported to the tool REVIGO for summarization based on representative pathways [52].
The REVIGO treemap based on the GO: BP over-representation result (n = 38) showed that the
GO terms were grouped into the following families: processes related to protein targeting,
RNA metabolic processes and translation, viral gene expression, and ribosomal biogenesis
and assembly (Figure 3).

To elucidate the directionality of associations between BOLD-100 response and indi-
vidual ribosomal gene expressions, correlation analyses were carried out (Figure 4). There
was a consistently negative correlation between significant genes within the GO term
GO:0042254: ribosome biogenesis and BOLD-100 IC50 from the cell panel. This finding
suggests that the expression levels of genes associated with ribosome biogenesis are in-
versely related to the susceptibility to BOLD-100 treatment in the cell panel. Though the
interaction between BOLD-100 and RPs have been elucidated in the past [38], the possibility
of an association at the transcriptional level has not yet been studied; our current finding
suggests there may be a predisposition in cell lines with higher levels of ribosome related
genes to be more susceptible to BOLD-100 treatment.
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Figure 3. Over-represented Gene Ontology, biological process (GO:BP) terms in BOLD-100 sensitivity
associated genes summarized by semantic similarity. Over-represented GO:BP terms (n = 38) were
grouped and summarized via a treemap using REVIGO. The coloring of the individual tiles in the
treemap represents family groupings based on term similarity while the size represents the size of
the GO term in the database.
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Figure 4. Correlation between genes related to ribosome biogenesis and BOLD-100 sensitivity in the
cancer cell line panel. Significant genes within the Gene Ontology (GO) term GO:0042254—ribosome
biogenesis showed consistent negative correlation with BOLD-100 IC50 from the cell panel. The
x-axis denotes the natural log of BOLD-100 IC50 obtained from the cell panel. The y-axis denotes the
normalized gene expression values for each gene in log-counts-per-million (lcpm), as per the data
obtained from the Cancer Cell Line Encyclopedia (CCLE).



Cancers 2023, 15, 28 12 of 20

3.7. Cell Line Gene Expression Data Shows Predictive Potential for BOLD-100 Response

Modeling techniques allow for drug response prediction using unseen data and
the identification of variables with high predictive power [70,71]. In order to assess the
potential of cancer cell line gene expression data in predicting BOLD-100 sensitivity, a
machine learning model was trained to predict BOLD-100 IC50 in cancer cell lines. To
select the number of features in the model (i.e., number of genes and their expression
values), n = 300 genes sorted by statistical significance from the multiple regression model
output were used for model training. Higher numbers of features (i.e., n = 500 and
n = 600) were also tested and no significant differences in model performance was found
(Figure S4). The model was trained on 80% of the cell line panel in response to BOLD-100
with their corresponding gene expression data. Hyperparameter tuning was performed
using five-fold cross-validation within the training dataset; this reduced the possibility
of overfitting and potential biases in the data partitions. The trained model was then
tested on the remaining 20% of the cell panel data in order to obtain model evaluation
metrics such as R2 and the RMSE by comparing the predicted IC50 values to the actual
IC50 values measured from the viability assay. Using 300 features, the predictive model
returned an R2 of 0.399 with an RMSE of log 0.473 µM (Figure 5A). This finding suggests
that based on the BOLD-100 cell screen data, expression of select genes associated with
BOLD-100 response had a moderate predictive potential in line with previous studies on
drug response prediction models [22,23].
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Figure 5. Evaluation of the random forest regression model fitting BOLD-100 sensitivity to gene
expression data. (A) Model evaluation using the Pearson correlation between the model predicted
BOLD-100 IC50 values on the test dataset and the measured IC50 values from the cell panel. Blue line
represents the linear line of best fit and the gray shaded area represents the 95% confidence interval
for the line of fit. The root-mean-squared-error (RMSE), mean-absolute-error (MAE), and R2 are
reported for the model evaluation. (B) Variable importance of genes in the BOLD-100 IC50 prediction
model. Top 20 features are shown. X-axis denotes the variable importance score, which is measured
by the Gini impurity method.
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In a random forest model, variable importance describes a variable’s influence on
output predictions. In ensemble tree models such as the random forest, this is typically
measured by the drop in prediction accuracy after permutation of a given variable or
the reduction in impurity in tree nodes that contain a given variable [72]. In order to
identify pertinent genes in predicting BOLD-100 sensitivity, variable importance of each
feature was extracted from the random forest model using the Gini impurity method.
The tumor suppressor candidate 1 (TUSC1) gene scored the highest in terms of variable
importance, which suggests its level of expression has the greatest influence on the model’s
ability to predict BOLD-100 response (Figure 5B). Therefore, the prediction modeling work
provides an additional dimension in the identification of genomic biomarkers that relate to
BOLD-100 sensitivity.

4. Discussion

There is a significant unmet need for novel anticancer therapeutics, especially in
advanced patients, that molecules such as BOLD-100 can address. In this study, a cell line
screening assay of 319 cancer cell lines across 24 cancer types was completed in order to
(1) identify possible cancer indications with greater susceptibility to BOLD-100 treatment
and (2) generate a sensitivity profile of BOLD-100 to investigate its potential MOA. Specific
cancer types, including esophageal, bladder and liquid cancers, were identified as having
strong potential for further investigations. Using an integrated bioinformatics approach,
this study also expanded the understanding of BOLD-100’s potential mechanism, with the
identification of the importance of ribosomal proteins, thus providing avenues for future
validation studies.

By screening broad categories of cancer types, this study supports the current clinical
strategies with BOLD-100. BOLD-100 is currently being tested in a multiple-arm Phase 1b/2
clinical study (NCT04421820) in combination with fluorouracil, oxaliplatin and leucovorin
(FOLFOX) for patients with advanced metastatic colorectal, bile duct, gastric, and pancreatic
cancer. Encouragingly, this cell screen identified colorectal, bile duct, and pancreatic cancer
as potential indications where BOLD-100 might have increased efficacy. Colorectal cancer
has previously been identified as an indication with strong potential for BOLD-100 efficacy.
In a previous Phase 1 monotherapy study of KP1339/IT-139 (a precursor version of BOLD-
100 with the same active ingredient), the two patients with the largest decrease in target
lesion size were both colorectal cancer patients [30]. This may be due to the differentiated
resistance profile in colon cancer. In contract to BOLD-100, cisplatin had high intrinsic
resistance in colon cancer cell lines in the cell screen, a phenotype which is reflected
in the clinic [73]. Further, KP1019 (an imidazolium salt precursor to BOLD-100) does
not have cross resistance to cisplatin in the A2780 ovary cisplatin resistant model [74].
Mechanistically, resistance to BOLD-100 has been linked to elevated glucose update and an
increased lysosomal compartment [40], which differs from cisplatin’s primary resistance
pathways that include transporters and DNA repair genes [75]. Collectively, the findings
from the current study and early clinical findings both highlight BOLD-100’s differentiated
clinical and resistance profile from cisplatin.

Cancer types with development potential were identified. Esophageal cancer is of
particular interest due to it being the most responsive cancer type by median to BOLD-100
in the screen, while having high resistance to cisplatin. Within the esophageal cell lines,
four out of five cell lines profiled were squamous cell carcinomas (SCCs), a cancer type
that has low progression-free survival and overall survival for advanced patients, even
with immunomodulating agents [76–78]. Liquid tumors were also identified as having
an increased response to BOLD-100, reflecting earlier data on the precursor molecule
KP1019 in an NCI60 screen [79]. Finally, bladder cancer is a potential development strategy,
especially within the luminal subtype (Figure 1B). Although these new development
directions are encouraging, cell screens can underrepresent certain cancer types, and do
not fully recapitulate the clinical landscape, highlighting the need for additional validation
work and investigations into additional cancer types [80–83]. Indeed, though the utilization
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of a cell panel may be limited in its ability to represent the complex landscape of cancer,
current findings support the early clinical strategies in the development of BOLD-100 and
provided potential new avenues for translational research.

The mechanism of action of BOLD-100 is likely to be multimodal and complex, with
contributions from the regulation of multiple cellular stress pathways. Previous work
on BOLD-100, and earlier generation molecules KP1339 (also referred to as NKP1339
and IT-139) and KP1019, have shown that ER stress and the downregulation of the stress
regulator GRP78 are critical for BOLD-100’s efficacy [31,35,37]. In contrast, others have
suggested ROS generation and DNA damage are the primary pathways involved in the
anticancer effects of BOLD-100 [32,36]. Additional pathways including lipid metabolism
have also been proposed [40,41]. Collectively, this suggests the presence of a multimodal
mechanism that helps explain the results identified in this study. A considerably larger
range of GRmax values with BOLD-100 compared to cisplatin was observed, suggesting that
the pathways altered by BOLD-100 may be cell-line dependent. Similarly, comparison of
the drug sensitivity profile against that of other compounds, a method that has previously
been used to elucidate drug mechanisms [62,63], provided limited overlap to standard
drugs. Differing from cisplatin, which was primarily associated with drugs related to
DNA replication and genomic stability in concordance with its well-known mechanism
of DNA chelation [5], BOLD-100’s association hits were across multiple drug classes,
including cell cycle, DNA replication, and kinases. Of interest was a correlation of BOLD-
100 to thapsigargin, a classical ER stress agent that has a very different impact on GRP78
expression but has similar downstream activation of the unfolded protein response (UPR)
and C/EBP homologous protein (CHOP) induced apoptosis to BOLD-100 [31,84–86]. This
association highlights the importance of ER stress as part of BOLD-100’s mechanism. The
heterogeneity in correlated drugs with respect to their mode of action—as well as generally
moderate correlation coefficients—suggests BOLD-100 may employ a complex, multimodal
MOA dissimilar to a well-characterized compound such as cisplatin.

Ribosomal biogenesis was identified to be associated with the response to BOLD-100,
with the expression levels of the RPs showing an inverse relationship with BOLD-100
sensitivity. In target identification studies, BOLD-100 was shown to bind RPLs and BOLD-
100 increased expression of RPLs in treated HCT116 cells [38]. These results support the
possible association between ribosomal processes and BOLD-100’s bioactivity. Indeed, the
link between cytotoxic cancer therapy and the ribosome has been postulated in the past,
with a variety of chemotherapeutic drugs targeting ribosome biogenesis [87,88]. Mechanis-
tically, ribosomal stress is linked to downstream apoptosis via interactions between RPs
and E3 ubiquitin-protein ligase (MDM2), which subsequently leads to P53 stabilization and
cell cycle arrest [89]. This behavior has been shown to be dependent on protein kinase R
(PKR)-like ER kinase (PERK), which is one of the downstream UPR effectors that BOLD-100
activates [31,90]. PERK induced phosphorylation of eukaryotic initiation factor 2A(eIF2A),
also upregulated by BOLD-100, has been shown to cause the inhibition of ribosomal re-
cycling and ribosomal disruption, which in turn enables RPs to sequester MDM2 from
P53 [31,90]. The increasing evidence of an association between BOLD-100 and ribosomal
processes suggests a potential role of the RP-MDM2-P53 axis in BOLD-100’s bioactivity.
Ribosomal homeostasis and regulation are complex cellular processes and downstream
validation analyses are required to identify the role of BOLD-100 in this context.

Drug sensitivity prediction modeling is an opportunity to develop unique response
profiles for therapeutics. This study employed a simple generalized linear model as a
means of feature selection and a classical machine learning model in the random forest
regressor, which is a standardly utilized approach in the field of pharmacogenomics [23,91,92].
The model evaluation revealed an R2 of 0.399, which suggests the model explained the
variability in the dataset to a reasonable degree, in line with the previous literature on drug
sensitivity prediction tasks using random forests [92]. In pharmacogenomic models such
as the one deployed in this study, collinearity between predictor variables (i.e., correlation
between individual gene expression levels) may introduce biases in variable importance
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calculations [93]. However, there is evidence in the literature that genetic markers associated
with interactions with other markers can be more efficiently identified using the random
forest model [94]. Indeed, the advantage of the random forest compared to a univariate
model is that variable importance captures the impact of not only the predictors on their
own but also of interactions with other predictor variables. The top identified variable
TUSC1 is a putative tumor suppressor gene [95] with no previously identified relationship
to BOLD-100 response, and follow-up experiments are needed to elucidate the impact of
this relationship. The results suggest that the in vitro BOLD-100 response profile can be
modeled by readily available gene expression data with minimal feature engineering or
preprocessing.

The cell screening approach and subsequent bioinformatics analysis using gene ex-
pression provided a wealth of new information around BOLD-100. However, no significant
associations in the other genomic datasets were identified, including oncogene or tumor
suppressor gene mutations or protein expression patterns. Gene expression data has been
shown to be the most predictive modality in drug sensitivity prediction tasks [22–24].
Further, chemotherapeutics such as BOLD-100 are less likely to have significant associa-
tion than targeted therapies in cell screens [50]. Additionally, Iorio et al. illustrated that
larger cell screens are more likely to identify significant associations. They showed that
a reduction from 1001 cell lines to 500 cell lines caused an ~80% loss in the number of
statistically significant associations, a number that still exceeds the size of this study’s cell
panel [50]. Although we cannot exclude the potential of unidentified molecular markers
in hypersensitive cells driving the results, the response profile of BOLD-100 aligns with
the current clinical strategies in bile duct, colorectal, and pancreatic cancer indications.
This provides an encouraging outlook in the translation of BOLD-100 efficacy to patient
populations. Collectively, the efforts outlined in this study have elucidated some of the
complex features of BOLD-100’s mode of action, which provides hypotheses for further
validation studies in more clinically relevant models.

5. Conclusions

The current study employed a cancer cell line panel to infer the differential sensitivity
of BOLD-100 across different tissues and build a sensitivity profile that can be used for
downstream pathway analysis. This enabled the finding of potential routes for clinical
development of BOLD-100 in cancer types which were not identified previously, includ-
ing esophageal, bladder, and liquid cancers. BOLD-100 generally exhibited cytotoxic
effects across the cell panel and shared moderate correlations to a heterogeneous group
of anticancer drugs found in the literature, with no clear overarching theme in bioactivity.
Furthermore, potential molecular determinants of BOLD-100 sensitivity were identified,
namely the association with genes coding for RPs and related pathways. This study thus
provides a platform for translational research in BOLD-100 to expand the current findings
to in vivo models and additional avenues towards next-generation machine learning tasks
in oncology and drug prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15010028/s1, Figure S1: The sensitivity profile of cisplatin
across the 319 cancer cell line panel. Figure S2: Correlation between BOLD-100/cisplatin sensitivity
profile from the cell panel and drugs from the Genomics of Drug Sensitivity in Cancer (GDSC)
database. Figure S3: Over-represented Gene Ontology (GO) terms in BOLD-100 sensitivity associated
genes. Figure S4: Performance of the random forest regression model trained on Cancer Cell
Line Encyclopedia (CCLE) gene expression data and BOLD-100 IC50 from the cell panel. Table S1:
Sensitivity profile of BOLD-100 and cisplatin across the cancer cell line panel. Table S2: Correlation
analysis results between BOLD-100/Cisplatin sensitivity profile to the drugs from Genomics of
Drug Sensitivity in Cancer (GDSC) database. Table S3: Linear regression result between possible
confounding variables and BOLD-100 sensitivity profile across cell line panel. Table S4: Multiple
regression results between BOLD-100 sensitivity profile and various genomic modalities from Cancer
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Cell Line Encyclopedia (CCLE). Table S5: Gene Ontology over-representation analysis result using
genes (n = 124) associated with BOLD-100 sensitivity.
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