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Simple Summary: Few therapies are available for patients with aggressive or metastatic pituitary
neuroendocrine tumours (PitNETs). Peptide receptor radionuclide therapy (PRRT), widely used to
treat gastroenteropancreatic neuroendocrine tumours, has been emerging as a potential option for
aggressive or metastatic PitNETs if other treatment approaches are not feasible or failed in controlling
the disease progression. However, the data regarding the use of PRRT in this setting is scarce, and
mainly derives from few case reports or small series of cases. Here, we review the published data
regarding the effectiveness and safety of PRRT in the management of aggressive or metastatic PitNETs,
as well as the effects of PRRT on the pituitary function in other cancer patients.

Abstract: Pituitary neuroendocrine tumours (PitNETs) are usually benign and slow-growing; how-
ever, in some cases, they may behave aggressively and become resistant to conventional treatments.
Therapeutic options for aggressive or metastatic PitNETs are limited, and currently mainly consist
of temozolomide, with little experience of other emerging approaches, including peptide receptor
radionuclide therapy (PRRT). Somatostatin receptor expression in PitNETs explains the effectiveness
of somatostatin analogues for treating PitNETs, particularly those hypersecreting pituitary hormones,
such as growth hormone or adrenocorticotropic hormone. The expression of such receptors in pi-
tuitary tumour cells has provided the rationale for using PRRT to treat patients with aggressive or
metastatic PitNETs. However, the PRRT efficacy in this setting remains unestablished, as knowledge
on this today is based only on few case reports and small series of cases, which are reviewed here.
A total of 30 PRRT-treated patients have been thus far reported: 23 aggressive PitNETs, 5 carcinomas,
and 2 of malignancy status unspecified. Of the 27 published cases with information regarding the
response to PRRT, 5 (18%) showed a partial response, 8 (30%) had stable disease, and 14 (52%) had
progressive disease. No major adverse effects have been reported, and there is also no increased
risk of clinically relevant hypopituitarism in patients with pituitary or non-pituitary neuroendocrine
tumours following PRRT. PRRT may be regarded as a safe option for patients with aggressive or
metastatic PitNETs if other treatment approaches are not feasible or have failed in controlling the
disease progression, with tumour shrinkage occurring in up to a fifth of cases, while about a third of
aggressive pituitary tumours may achieve stable disease. Here, the data on PRRT in the management
of patients with aggressive pituitary tumours are reviewed, as well as the effects of PRRT on the
pituitary function in other PRRT-treated cancer patients.

Keywords: pituitary neuroendocrine tumour (PitNET); pituitary adenoma; peptide receptor
radionuclide therapy (PRRT); somatostatin receptors (SSTRs); somatostatin receptor ligand (SRL)

1. Introduction

Pituitary neuroendocrine tumours (PitNETs) originate from the adenohypophysis
cells, and account for about 15% of all intracranial neoplasms [1,2]. Although PitNETs are
usually benign, up to 30–45% of them invade the cavernous or sphenoid sinus [1,3,4], and
occasionally, they also behave aggressively, invading other surrounding tissues, growing
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rapidly, recurring multiple times and/or becoming resistant to conventional treatments.
Rarely, PitNETs may also metastasise [1,2].

Nuclear medicine employs radiopharmaceuticals for imaging and treatment purposes,
and plays a key role in the management of patients with endocrine-related cancers, most
notably neuroendocrine tumours (NETs). The therapeutic approach based on peptide
receptor radionuclide therapy (PRRT), specifically directed to neoplasms expressing high
levels of somatostatin receptors (SSTRs), has proven effective and safe in patients with
NETs, and has now been emerging as a potential treatment option also for patients with
aggressive PitNETs or pituitary carcinomas, now known as metastatic PitNETs.

Here, the existing clinical data regarding the effectiveness and safety of targeted PRRT
in the management of aggressive or metastatic PitNETs are reviewed, as well as the effects
of PRRT on the pituitary function in other cancer patients submitted to PRRT.

2. Principles, Usefulness and Safety of Peptide Receptor Radionuclide Therapy (PRRT)

PRRT is designed to deliver cytotoxic radiation locally and selectively, comprising
a radionuclide linked by a chelator to a somatostatin receptor ligand that binds cell sur-
face SSTRs (Figure 1). The two most used radiopeptides for therapeutic purpose are
90Y-DOTATOC (90Yttrium-DOTA-tyr3-octreotide) and 177Lu-DOTATATE (177Lutetium-
DOTA-tyr3-octreotate) [5,6]. On the other hand, functional SSTR imaging using gamma-
emitting isotopes such as 68Ga or 111In may be of great theranostic interest, as it may
predicts the behaviour and effectiveness of therapeutic radiopharmaceuticals, and also
allow biodistribution assessments, beyond its recognised usefulness in the diagnosis and
staging of several cancers, particularly NETs [6,7].
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ticals (177Lu or 90Y) are linked to the somatostatin receptor ligand (TOC or TATE) by a binding 
Figure 1. Principles of peptide receptor radionuclide therapy (PRRT). Therapeutic radiopharma-
ceuticals (177Lu or 90Y) are linked to the somatostatin receptor ligand (TOC or TATE) by a binding
chelator (DOTA or DTPA), which stabilises the radioisotope and avoids its dissociation in vivo before
targeting the SSTR-positive tumour tissues. The somatostatin receptor ligand will then bind to the
SSTRs in the surface of the tumour cell, after which the complex is internalized. Once inside of the
cell, degradation of the SSTR and the somatostatin receptor ligand will occur, and the radiation will
be delivered to the double stranded DNA causing damage and cell death. DNA, deoxyribonucleic
acid; DOTA, tetraazacyclododecane-tetraacetic acid; DTPA, diethylenetriamine pentaacetic acid;
Lu, Lutetium; SRL, somatostatin receptor ligand; SSTR, somatostatin receptor; TATE, tyr3-octreotate;
TOC, tyr3-octreotide; Y, Yttrium.
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DOTANOC shows a very high affinity for SSTR2 and low affinity for SSTR3 and SSTR5,
whereas DOTATATE only binds to SSTR2; thus, the main target of PRRT with radiolabelled
somatostatin analogues is represented by SSTR2 [5,7]. PRRT has been successfully used
to treat NETs due to their high expression levels of SSTR2 [8–10], but PRRT may also be
effective for other cancers, such as primary brain tumours [5], paragangliomas [11–14], or
thyroid cancer [15–18].

PRRT has emerged as a crucial treatment for advanced NETs [8–10,19], and it is
now approved for metastatic SSTR-positive gastroenteropancreatic NETs based on the
NETTER-1 trial [10]. PRRT is effective and safe when employed in the re-treatment of
NET patients [20], and also for bronchopulmonary NETs expressing SSTRs [21]. The
high expression of SSTRs in other tumours has expanded the clinical use of PRRT [19,22].
Brain tumours may express high levels of SSTRs, in particular meningiomas (90% of
them express SSTR2) [5,23–25], but also astrocytomas and gliomas [5,26–29], making such
tumours amenable to PRRT. PRRT has also been effective for treating paragangliomas, with
disease control rates of 67–80% [12,13], including a malignant primary sellar paraganglioma
case [11]. Additionally, PRRT has been used with variable efficacy for medullary and non-
medullary thyroid cancer [15–18].

Because PRRT is a targeted therapy, the risk of systemic adverse effects is lower com-
pared to other conventional forms of radiotherapy or chemotherapy. In general, PRRT is
safe; however, there are few side effects that may occur. Nephrotoxicity is the most common
adverse effect due to the kidney excretion of the radiolabelled somatostatin analogues.
Amin-acid infusion should be given in order to reduce the renal uptake of radiopharmaceu-
ticals, and thereby to minimise the occurrence of kidney injury [5,19,22]. Other common
side effects include transitory and often mild haematotoxicity, such as anaemia, leukopenia
or thrombocytopenia [5,22]. Grade 3–4 haematological toxicities were not observed in an
open-label prospective phase II trial using 177Lu-DOTATATE [30], but in another study,
these toxicities occurred in 32.1% of patients, although none developed myelodysplasia
or haematological neoplasms [31]. In a different series including 1631 PRRT-treat pa-
tients, 1.8% had therapy-related myeloid neoplasms after a median time of 43 months [32].
Other adverse effects of PRRT include nausea (mainly caused by the amino-acid infusion),
vomiting, mild abdominal pain and temporary hair loss [22,33].

3. PRRT for Aggressive or Metastatic Pituitary Neuroendocrine Tumours (PitNETs)
3.1. Aggressive and Metastatic PitNETs

Aggressive PitNETs are tumours that display an unusually rapid growth rate or clini-
cally relevant growth rate despite the optimal use of conventional therapies [34]. However,
an agreed definition for aggressive PitNET is currently still lacking [1,2]. The prevalence of
aggressive PitNETs varies across studies, but overall, such cases remain relatively rare with
less than 2% of pituitary macroadenomas showing an aggressive course [35]. In rare circum-
stances, PitNETs develop either craniospinal or systemic metastasis (more commonly to
the liver, followed by cervical lymph nodes, bones and lungs), being commonly known as
pituitary carcinomas, or more recently as metastatic PitNETs. Metastatic PitNETs represent
<0.2% of all pituitary tumours, mainly derive from corticotroph or lactotroph tumours, and
are associated with a poor prognosis [1,2,34].

Many studies have sought to identify markers of aggressive PitNET behaviour; how-
ever, only few aggressiveness markers are recognised, including radiological invasion (into
the cavernous/sphenoid sinus or bone erosion), the proliferation markers Ki-67, mitotic
count and p53 staining, as well as some histotypes such as sparsely granulated somatotroph
tumours, null-cell or Crooke’s tumours [1,36–39]. To improve the prognostic assessment of
PitNETs, a clinicopathological classification was proposed [37], and validated in further
studies [37,40–44]. Other markers of aggressive PitNET disease have been investigated,
including in the following domains: (i) genetics, with germline mutations in AIP and
MEN1 genes, or duplications in GPR101, as well as somatic mutations in genes ATRX
or TP53, leading to more invasive and resistant PitNETs [45–50]; (ii) transcriptional and
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post-transcriptional regulation [51–54]; (iii) serum inflammation-based biomarkers [55–57];
and (iv) tumour microenvironment [58–60]. Nevertheless, no single marker is able to
predict aggressive or recurrent PitNETs, and most of the above-mentioned markers still
need validation in predicting aggressive or malignant PitNET disease.

The therapeutic goals in patients with aggressive or metastatic PitNETs are to control
tumour growth and mass effects, as well as to control pituitary hormone excess syndromes,
while at same time, preserving as much as possible, the patient’s quality of life and prolong-
ing the progression-free survival (PFS) and overall survival. The management of aggressive
or metastatic PitNETs is challenging as, by definition, such cases do not optimally respond
to conventional treatments such as surgery, standard medical therapy or radiotherapy [2,34].
Further options beyond conventional treatments are limited, and at present, mainly include
temozolomide [2,34,61]. Other unconventional medications currently being investigated
and/or experimentally used are anti-angiogenic drugs such as bevacizumab, mTOR in-
hibitors (everolimus), tyrosine kinase inhibitors (lapatinib and sunitinib), and more recently,
immune checkpoint inhibitors such as ipilimumab and nivolumab [58,61–69]. Due to
PRRT’s effectiveness in the management of NETs and other SSTR-expressing tumours, as
well as to the high expression of SSTRs in PitNETs, PRRT has emerged as a possible option
to treat patients with aggressive or metastatic PitNETs.

3.2. Somatostatin, Somatostatin Receptors (SSTRs) and Somatostatin Analogues for PitNETs

The discovery of somatostatin as an inhibitory polypeptide hormone was soon fol-
lowed by its therapeutic use in the form of somatostatin analogues, which are now widely
used to treat gastroenteropancreatic NETs, as well as patients with certain subtypes of
PitNETs, particularly those hypersecreting growth hormone (GH), adrenocorticotropic
hormone (ACTH) or thyroid-stimulating hormone (TSH) [70,71]. Somatostatin is an ubiq-
uitous neuropeptide produced by the hypothalamus, which has inhibitory effects on the
secretion of several hormones [70,71], as well as inhibits many biological functions like
exocrine secretion, cell proliferation and angiogenesis [72,73]. The action of somatostatin
is mediated by SSTRs [74–77]. There are five different SSTR subtypes (SSTR1 to SSTR5)
widely expressed in many different tissues and organs, all of them bind to somatostatin
with high affinity [70–72,77].

The anti-proliferative and anti-secretory effects of somatostatin raised great interest in
the oncology field, particularly for NETs. The usefulness of somatostatin itself is limited
due to its short half-life (~1.5 min), which has led to the development of somatostatin
analogues with a higher stability and longer half-life. Despite their lower affinity for SSTRs
in comparison to somatostatin, such analogues are effective in treating NETs [78], and
also PitNETs [71]. Currently, there are three somatostatin analogues approved for clinical
practice: octreotide, lanreotide and pasireotide [71,77,79,80].

The normal pituitary, as well as PitNET tissues, express in general all five SSTRs
(Table 1). The expression of the different SSTR subtypes varies according to the subtype of
PitNET [70,81–88]. GH- and TSH-secreting PitNETs mainly express SSTR2 (with more than
90% expressing SSTR2), but they also express SSTR5 to a lesser extent. The predominant
subtype in ACTH-secreting PitNETs is SSTR5, but they also express SSTR2. Gonadotroph
tumours mainly express SSTR3, and in prolactinomas, SSTR1 and SSTR5 are the most
representative subtypes (Table 1) [70,89,90]. Expression levels of SSTRs, namely SSTR2,
correlate with the response to somatostatin analogues [86–88,91,92], while resistance to
these drugs was predominantly found in PitNETs lacking SSTR2 [91,92].

Effective targeting of SSTRs with high-affinity somatostatin analogues allowed the
emergence of a theranostic approach centred on radiolabelled somatostatin analogues
using radioisotopes with diagnostic purpose (111In and 68Ga), but also with therapeutic
intention (90Y and 177Lu) [5,6]. The expression of SSTRs in PitNETs can be effectively
evaluated using functional SSTR imaging, which helps predicting the applicability of
PRRT [5,6]. Positive uptake on 111In-octreotide-scintigraphy has been reported in more
than two-thirds of patients with GH- and TSH-secreting PitNETs, in at least half of the
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patients with non-functioning PitNETs (NF-PitNETs), and in about 40% of prolactinoma
patients [93]. 68Ga-DOTATOC and 68Ga-DOTATATE positron emission tomography imag-
ing represent a major advance when compared to 111In-octreotide-scintigraphy [6,93], with
the quantitative radioisotope uptake correlating positively with SSTR2 expression in the
respective tissues [94].

Table 1. Expression pattern of somatostatin receptors in the normal and neoplastic pituitary.

SSTR1 SSTR2 SSTR3 SSTR4 SSTR5

Normal pituitary gland
Foetal pituitary + + + + +
Adult pituitary + + + - +

Pituitary tumour
GH-secreting PitNET 60% 90% 45% <5% 90%

ACTH-secreting PitNET 60% 75% 10% 30% 75%
Prolactin-secreting PitNET 90% 60% 20% 0% 80%

TSH-secreting PitNET 100% 100% 0% 0% 50%
Non-functioning PitNET 25% 55% 45% 0% 50%

Adapted from Cuevas-Ramos D and Fleseriu M 2014 J Mol Endocrinol [70]. For the normal pituitary gland, data
are shown as positive expression (+) or negative expression (−) of somatostatin receptors (SSTRs). For pituitary
neuroendocrine tumours (PitNETs), data are shown as values representing the percentage of PitNETs per tumour
type expressing each SSTR subtype. ACTH, adrenocorticotropic hormone; GH, growth hormone; PitNET, pituitary
neuroendocrine tumour; SSTR, somatostatin receptor; TSH, thyroid-stimulating hormone.

3.3. Data on Clinical Use of PRRT for Aggressive or Metastatic PitNETs

Despite the wide evidence of SSTRs expression in PitNETs, PRRT has been rarely
used in the management of patients with aggressive or metastatic PitNETs. To the best of
our knowledge, so far, the employment of PRRT has been reported only in 30 published
cases [61,95–108], summarised in Table 2. From the 30 reported patients treated with
PRRT, 23 (82%) had aggressive PitNETs and 5 (18%) had carcinomas (malignancy status
was not provided in 2 cases [103]): 11 had NF-PitNETs [61,96,97,99,101,102,104,105]; 5,
lactotroph tumours [61,95,96,101]; 3, somatotroph tumours [101,106,107]; 2, corticotroph
tumours [98,108]; 1, somatolactotroph tumour [102]; 1, thyrotroph tumour [61,104]; and 9,
unknown subtype (Figure 2).
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Figure 2. Aggressive or metastatic pituitary tumours treated with PRRT. Data were compiled and
analysed considering three aspects: (i) pituitary adenomas vs. carcinomas; (ii) pituitary tumour
subtype; and (iii) response to PRRT. Data are depicted in the graphs as the absolute number of patients
and the respective percentages in brackets, concerning only the cases where that specific information
were available; published case reports that omitted the respective data were not considered in the
graphs, and were counted as “unknown”. The number of cases with “unknown” data are shown
below each graph. ACTH, ACTH-secreting pituitary tumour; GH, GH-secreting pituitary tumour;
PitNET, pituitary neuroendocrine tumour; PRL, PRL-secreting pituitary tumour; PRL + GH, PRL and
GH co-secreting pituitary tumour; PRRT, peptide receptor radionuclide therapy; TSH, TSH-secreting
pituitary tumour.
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Table 2. Summary of the published patients with aggressive or metastatic pituitary tumours treated with PRRT.

Reference (PMID) Age/Sex Tumour
Type

Previous
Treatments

Functional Imaging
Prior to PRRT Type of PRRT

Total
Activity/Cycles

Number

Response in Tumour
Growth

Response in
Hormone
Reduction

PFS
(Months)

Baldari 2012 Pituitary [95]
(PMID: 22222543) #

Giuffrida 2019 Endocr Connect
[96] (PMID: 30939449) #

Priola 2017 World Neurosurg
[100] (PMID: 27713064) ¥

58/F PRLoma DA, Op, RT, SSA
111In-octreotide-

scintigraphy

111In-DTPA-
octreotide

37 GBq/5 cycles
PR-significant

shrinkage over 9 yrs
(from 63 to 3.1 mL)

Significant PRL
decrease from

350,000 before PRRT
vs. 30,310 U/L at

last visit

108

Kumar Gupta 2012 Int J
Endocrinol Metab [99] (PMID:

23843835)
71/F NF-PitNET None

68Ga-DOTA-NOC
PET/CT

177Lu-DOTA-TATE 150 mCi/1 cycle na na na

Kovács 2013 Eur J Clin Invest
[98] (PMID: 23134557) 16/F ACTH-PitCa 8xOp, BA, 3xRT

111In-octreotide-
scintigraphy

90Y-DOTA-TATE 400 mCi/2 cycles PD-died within the
following year No response na

Komor 2014 Pituitary [97]
(PMID: 23740146) 56/M NF-PitNET Op, RT

111In-octreotide-
scintigraphy

177Lu-DOTA-TOC 600 mCi/3 cycles SD > 8 yrs not applicable 96

Maclean 2014 Pituitary [102]
(PMID: 24323313) 63/M NF-PitCa 2xOp, RT

68Ga-DOTA-TATE
PET/CT

177Lu-DOTA-TATE 29.6 GBq/4 cycles
SD for 40 months,
with CR in some

metastatic nodules
not applicable 40

Maclean 2014 Pituitary [102]
(PMID: 24323313) 42/M

GH/PRL-
secreting
PitNET

5xOp, RT, DA,
SSA, TMZ

68Ga-DOTA-TATE
PET/CT

177Lu-DOTA-TATE 15.3 GBq/2 cycles
PD-died shortly

afterwards (prior to
cycle 3 of PRRT)

na 0

Maclean 2014 Pituitary [102]
(PMID: 24323313) 32/M Silent

ACTHoma 4xOp, RT, TMZ
68Ga-DOTA-TATE

PET/CT
177Lu-DOTA-TATE

7.4 GBq?/1 cycle
only due to facial

pain

PD-died ~9 months
later despite further

Ctx, Op, TMZ and RT
not applicable 0

Bengtsson 2015 J Clin
Endocrinol Metab [101] (PMID:

25646794)
59/F NF-PitNET TMZ na 177Lu-DOTA-TATE na na na na

Bengtsson 2015 J Clin
Endocrinol Metab [101] (PMID:

25646794)
Burman 2022 Eur J Endocrinol

[61] (PMID: 36018781) §

46/M GH-PitCa TMZ Octreoscan 90Y-DOTA-TATE
Activity na/1

cycle PD na na
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Table 2. Cont.

Reference (PMID) Age/Sex Tumour
Type

Previous
Treatments

Functional Imaging
Prior to PRRT Type of PRRT

Total
Activity/Cycles

Number

Response in Tumour
Growth

Response in
Hormone
Reduction

PFS
(Months)

Bengtsson 2015 J Clin
Endocrinol Metab [101] (PMID:

25646794)
Burman 2022 Eur J Endocrinol

[61] (PMID: 36018781) §

23/M PRLoma RT, TMZ 68Ga-PET 68Ga-DOTA-TATE
Activity na/2

cycles PD na na

Novruzov 2015 Clin Nucl Med
[105] (PMID: 25275413) 68/M NF-PitCa Op, RT

68Ga-DOTA-TATE
PET/CT

177Lu-DOTA-TATE 22.2 GBq/3 cycles SD for 4 yrs not applicable 48

Waligórska-Stachura 2016 J
Neurosurg [106] (PMID:

26636388)
26/M GH-secreting

PitNET Op, RT, SSA
68Ga-DOTA-TATE

PET/CT
90Y-DOTA-TATE 400 mCi/4 cycles

PR-significant
shrinkage at 12

months
IGF-1 decreased 12

Lasolle 2017 Eur J Endocrinol
[103] (PMID: 28432119) na na na na DOTA-NOC na PD PD na

Lasolle 2017 Eur J Endocrinol
[103] (PMID: 28432119) na na na na DOTA-NOC na Ongoing Ongoing na

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
Burman 2022 Eur J Endocrinol

[61] (PMID: 36018781) §

na NF-PitNET TMZ Octreoscan 90Y-DOTA-TOC
Activity na/2

cycles SD at 12 months not applicable 12

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
Burman 2022 Eur J Endocrinol

[61] (PMID: 36018781) §

na
TSH-

secreting
PitNET

TMZ Octreoscan 177Lu-DOTA-TATE
Activity na/1

cycle PD na na

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
na

Aggressive
PitNET (type
not specified)

None na na na PR na na
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Table 2. Cont.

Reference (PMID) Age/Sex Tumour
Type

Previous
Treatments

Functional Imaging
Prior to PRRT Type of PRRT

Total
Activity/Cycles

Number

Response in Tumour
Growth

Response in
Hormone
Reduction

PFS
(Months)

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
na

Aggressive
PitNET (type
not specified)

None na na na SD na na

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
na

Aggressive
PitNET (type
not specified)

TMZ na na na PD na na

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
na

Aggressive
PitNET (type
not specified)

TMZ na na na PD na na

McCormack 2018 Eur J
Endocrinol [104] (PMID:

29330228)
na

Aggressive
PitNET (type
not specified)

TMZ na na na PD na na

Giuffrida 2019 Endocr Connect
[96] (PMID: 30939449)

Priola 2017 World Neurosurg
[100] (PMID: 27713064) ¥

54/M PRLoma DA, 3xOp, RT
111In-octreotide-

scintigraphy
177Lu-DOTA-TOC 12.6 GBq/2 cycles

PD-increase after the
2nd cycle from 20 to
83.6 mL; then, TMZ

and Ctx without
benefit

na 0

Giuffrida 2019 Endocr Connect
[96] (PMID: 30939449)

Priola 2017 World Neurosurg
[100] (PMID: 27713064) ¥

53/F NF-PitNET 5xOp, RT, TMZ
111In-octreotide-

scintigraphy
177Lu-DOTA-TOC 29.8 GBq/5 cycles PD-increase from 7.7

to 14.1 mL not applicable 0

Assadi 2020 Eur J Nucl Med
Mol Imaging [107] (PMID:

31741022)
48/M GH-secreting

PitNET
Op, unspecific

medical therapy

99
m-EDDA-HYNIC-

tyr3-octreotide
scintigraphy

177Lu-DOTA-TATE 22.2 GBq/3 cycles SD over 1 year, then
pituitary apoplexy

GH decreased; but
IGF-1 remained high 12

Lin 2021 J Endocr Soc [108]
(PMID: 34466766) 45/F ACTH-PitCa

4xOp, 3xRT, SSA,
DA, ketoconazole,
CAPTEM, BA, Ctx,

ICI

28.07
GBq/4 cycles

SD immediately after
PRRT; nivolumab

resumed after with
shrinkage 6 months

later (61% reduction)

ACTH decreased 6



Cancers 2023, 15, 2710 9 of 21

Table 2. Cont.

Reference (PMID) Age/Sex Tumour
Type

Previous
Treatments

Functional Imaging
Prior to PRRT Type of PRRT

Total
Activity/Cycles

Number

Response in Tumour
Growth

Response in
Hormone
Reduction

PFS
(Months)

Burman 2022 Eur J Endocrinol
[61] (PMID: 36018781) na NF-PitNET 2xTMZ 68Ga-PET 177Lu-DOTA-TATE

Activity na/
4 cycles PR at 8 months not applicable 8

Burman 2022 Eur J Endocrinol
[61] (PMID: 36018781) na NF-PitNET TMZ Octreoscan 177Lu-DOTA-TATE

Activity na/
4 cycles PR > 26 months not applicable >26

Burman 2022 Eur J Endocrinol
[61] (PMID: 36018781) na NF-PitNET RT Octreoscan 177Lu-DOTA-TOC

Activity na/
6 cycles SD not applicable na

Burman 2022 Eur J Endocrinol
[61] (PMID: 36018781) na PRLoma TMZ+

Bevacizumab
68Ga-PET 177Lu-DOTA-TATE

Activity na/
1 cycle PD na na

Burman 2022 Eur J Endocrinol
[61] (PMID: 36018781) na PRLoma 2xTMZ 68Ga-PET

90Y-DOTA-TOC;
177Lu-DOTA-TATE

Activity na/
2 cycles; 1 cycle PD na na

# This patient has been reported on two different publications: in Baldari 2012 Pituitary, the short-term effectiveness of PRRT after 4 cycles was shown; in Giuffrida 2019 Endocr Connect, the
long-term efficacy of PRRT during the following 7 years of this same patient was shown. ¥ Some data regarding these patients were briefly given in Priola 2017 World Neurosurg; however,
the most detailed follow-up data concerning these were provided later in Giuffrida 2019 Endocr Connect. § These patients were first reported in other papers; however, further clinical
and follow-up details were provided later in Burman 2022 Eur J Endocrinol. ACTHoma, corticotrophinoma; BA, bilateral adrenalectomy; CAPTEM, temozolomide + capecitabine; Ctx,
chemotherapy; CR, complete response; CT, computed tomography; DA, dopamine agonists; GBq, gigabecquerel; GH, growth hormone; ICIs, immune checkpoint inhibitors; IGF-1, insulin-like
growth factor 1; na, not available; NF-PitCa, non-functioning pituitary carcinoma; NF-PitNET, non-functioning pituitary neuroendocrine tumour; Op, operation; PD, progressive disease; PET,
positron emission tomography; PFS, progression-free survival; PitCa, pituitary carcinoma; PitNET, pituitary neuroendocrine tumour; PMID, PubMed identifier; PR, partial response; PRL,
prolactin; PRLoma, prolactinoma; PRRT, peptide receptor radionuclide therapy; RT, radiotherapy; SD, stable disease; SSA, somatostatin analogues; TMZ, temozolomide.
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Of the 27 published cases with available information regarding the response to PRRT,
5 (18%) showed a partial response [61,95,104,106], 8 (30%) demonstrated stable disease,
and 14 patients (52%) had progressive disease (Figure 2 and Table 2). Notably, some re-
sponses to PRRT are remarkable and long-lasting, as illustrated in a female patient with
an aggressive prolactinoma that shrunk markedly following five cycles of PRRT, reducing
from 63.1 mL (volume pre-PRRT) to 28.2 mL (after two cycles) and then to 15.3 mL (after
four cycles) [95]; the long-term efficacy of PRRT was proven in this case, with a further
noteworthy reduction down to 3.1 mL over the following 7 years, with a PFS after PRRT
estimated at 108 months [96]. In this case, the initial tumour was resistant to cabergoline
(0.5 mg/daily); however, cabergoline was resumed in the same dosage after PRRT [95,96].
Thus, it is unclear as to whether the observed long-term efficacy is only attributable to
PRRT, or there may be a synergistic effect between PRRT and cabergoline. Interestingly,
a synergic effect between PRRT and checkpoint inhibitors was documented in a patient
with a multi-treated corticotroph carcinoma [69,108]. This case initially responded well
to ipilimumab and nivolumab [69], but eventually escaped and the disease progressed,
requiring a new therapeutic approach that consisted of four cycles of PRRT [108]. Imme-
diately following the fourth cycle, her disease stabilised and nivolumab was resumed;
remarkably, a 60% reduction of the tumour mass was seen 6 months later, accompanied
by a decrease in serum ACTH levels [108]. This case suggests that checkpoint inhibitors
(which have been increasingly used in pituitary tumours [58,62,63]) and PRRT-derived
radiation may be complementary for the management of aggressive or metastatic PitNETs.
It is possible that PRRT radiation-related cell lysis uncovers antigenic sites, triggers the
release of proinflammatory cytokines, and/or has immunomodulatory effects, resulting
in an immunogenic phenotype and sensitising PitNETs to checkpoint inhibitors, thereby
augmenting the effectiveness of immunotherapy in PitNET patients, as already seen for
other cancers [109,110].

More than 50% of the published cases had progressive disease after PRRT (i.e., did not
respond to PRRT), despite these pituitary tumours had, in general, a significant expression
of SSTRs on functional imaging prior to PRRT [93,96,111], suggesting that other properties
than tumour surface SSTR2 expression and binding are needed for the tumouricidal effects
of PRRT. SSTR functional imaging before PRRT is still needed to identify the expression of
SSTRs in aggressive PitNETs, thus confirming the suitability for the treatment; however,
challenges remain in predicting its efficacy as functional imaging is not able to adequately
predict the response to PRRT. Another observation that can be made from the published
non-responder cases is that PRRT seems to show no benefit for rapidly progressive disease,
which often undergo few PRRT cycles (one or two) that may be insufficient to stabilise
the disease or induce a response; consistently, a low Ki-67 proliferation index has been
associated with better PRRT outcomes [112]. Maclean et al. reported a patient with an
aggressive GH/PRL-secreting PitNET who had significant progressive disease and died
prior to the third PRRT cycle, and another case of a silent corticotroph tumour ‘unsuc-
cessfully’ treated with PRRT for rapidly progressive disease, although only one cycle was
given [102]. Six more cases labelled as progressive after only 1 or 2 PRRT cycles were
reported [61,96,98,100,101]. Therefore, in total, 8 of 14 cases with progressive disease after
PRRT (57%) were actually submitted to only 1 or 2 cycles of PRRT, which may reflect
a fruitless selection for PRRT in highly aggressive and rapidly progressive tumours that
possibly would progress regardless of the type of treatment. Ultimately, this may lead to
a critical underestimation of the efficacy and usefulness of PRRT in the management of
aggressive (but not rapidly progressive) pituitary tumours. Conversely, patients with good
performance status and slowly progressive disease may have more potential to benefit
from PRRT, including stabilising tumour growth if shrinkage is not achieved [102].

The response or resistance to PRRT appears not to be related with patient’s age
or gender, neither with the radionuclide/peptide or dosage used [96,111], nor with the
PitNET subtype [61]. In fact, partial responses were observed in functioning and non-
functioning tumours [61,95,96,106]. However, Giuffrida et al. described an association
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between PRRT resistance and previous treatment with temozolomide [96]. Currently, 3 out
of 5 published patients with partial response after PRRT (60%), and 6 out of 8 patients
with stable disease after PRRT (75%) were actually naïve for temozolomide, whereas
among the 14 cases with progressive disease, at least 11 (79%) had previous temozolomide.
These figures align with the Giuffrida et al. findings correlating a previous exposure
to temozolomide with less responsiveness to PRRT. Although it is unclear if there is
a biological mechanism explaining this association, or if instead, there is some sort of
patient selection bias as tumours previously unresponsive to temozolomide might be more
aggressive and less sensitive to other forms of treatment, including PRRT. Theoretically,
PitNETs that progressed despite recent radiotherapy may be relatively radio-resistant,
and thus less likely of benefiting from PRRT; additionally, changes in the blood supply
following radiotherapy may also limit the delivery of PRRT to the pituitary tumour [102].
Nevertheless, prior radiotherapy should not preclude the use of PRRT, as there are cases
previously submitted to external radiotherapy who had a partial response or stable disease
after PRRT [61,95,97,102,106].

In general, PRRT has been well tolerated, and no major side effects are reported in
patients with aggressive or metastatic PitNETs submitted to PRRT [61,104], apart from
transient cytopenia [102,106], and an increase in facial pain following the first PRRT cycle in
one case, although imaging studies pointed the PitNET progression as its likely cause [102].
There is also a report of a patient who suffered pituitary apoplexy about 1 year after
PRRT [107], raising the question as to whether apoplexy could be a late consequence of the
radiation exposure during PRRT. However, no other reports of pituitary apoplexy following
PRRT have been described, namely in PitNET patients with follow-up longer than 3 years
after PRRT [95,97,102,105]. Komor et al. reported intact pituitary function in a NF-PitNET
patient more than 8 years after PRRT [97], while Maclean et al. described a patient with
a non-functioning carcinoma who had PRRT remaining with stable disease for 40 months
and required no adjustment to his replacement therapy [102]; also, the residual pituitary
function has not changed over the course of 9 years since the administration of PRRT to an
aggressive prolactinoma [95,96]. These reports, together with the data from studies on NET
patients (discussed below) [33,113–115], suggest that the residual pituitary function may
not be significantly affected in patients with aggressive or metastatic PitNETs after PRRT.

According to the latest guidelines on aggressive or metastatic PitNETs, PRRT may
be considered as a therapeutic option for a patient with an aggressive tumour in case
other treatments are not feasible or have failed in controlling the disease progression [34].
Overall, 30% of the published cases achieved stable disease while 18% showed partial
response (Figure 2); hence, the likelihood of a positive outcome following PRRT (i.e., stable
disease or partial response) for a patient with an aggressive, refractory and progressive
pituitary tumour may be as high as near 50%, with up to one-fifth of cases potentially
showing tumour reduction. Such a response rate is not very different from the other
(few) therapeutic options for patients with aggressive PitNETs, including temozolomide
and other systemic therapies [34,61,96,103]. Thus, PRRT can be regarded a safe option to
consider in a patient with an aggressive or metastatic PitNET after demonstrating high
expression of SSTRs through pre-PRRT functional imaging.

In order to further understand the role and usefulness of PRRT in this setting, as well
as to optimise PRRT-related response rates and outcomes, clinical research and prospective
studies are needed. Future research could potentially explore different avenues, includ-
ing: (i) the role of the earlier use of PRRT in the management algorithm of patients with
aggressive PitNETs; (ii) the use of new radioligands such as radiolabelled somatostatin
antagonists or radioligands with affinity for other SSTRs rather than only SSTR2 (possibly
an universal radioligand able to bind all SSTRs); (iii) the combined use of PRRT with other
medications, such as drugs able to upregulate the expression of SSTRs or drugs that may
have synergic effects such as immunotherapy; (iv) the potential interaction and effects of
previous exposure to temozolomide and other treatments such as radiotherapy in determin-
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ing the efficacy and safety of PRRT; (v) the assessment as to whether the extent of isotope
uptake on pre-PRRT functional imaging correlates or predicts the therapeutic response.

4. Pituitary Function following PRRT

SSTR density in normal endocrine organs is not as high as in NETs; however, the existence
of SSTRs in such organs expose them to some degree of radiation during PRRT [77,115]. The
normal anterior pituitary express SSTRs (Table 1), mainly SSTR2, SSTR5 and SSTR1 [74–76].
The expression of different SSTR subtypes varies according to the pituitary cell type, with
rat studies suggesting that the highest expression of SSTR2 can be found in somatotrophs
and thyrotrophs [74,116]. Consistently, the anterior pituitary shows the uptake on SSTR
imaging, suggesting that pituitary cells may be exposed to radiation during PRRT [6,93].
Hypopituitarism secondary to external beam radiotherapy is widely recognised, and the
risk increases proportionally with higher doses and long periods following the irradiation,
with GH and gonadotrophin axes being more radiosensitive, whereas ACTH and TSH
axes are significantly more resistant [117,118]. Hence, patients who received PRRT may
be theoretically at risk of developing hypopituitarism, which has prompted some groups
to investigate the effects of PRRT on the pituitary function. Four studies, summarised
in Table 3, have assessed the PRRT effects on pituitary function in patients with non-
pituitary neuroendocrine neoplasms who received PRRT [33,113–115]. Overall, the data
from these studies suggest that there is no significant increased risk of clinically relevant
hypopituitarism in patients exposed to PRRT [33,113–115].

4.1. Gonadal Axis

In post-menopausal women, two studies showed a decrease in serum follicle-stimulating
hormone (FSH) and luteinising hormone (LH) levels following PRRT [114,115], which
may suggest a potential effect of PRRT on gonadotrophs, although hypogonadotropic
hypogonadism in post-menopausal women is not clinically relevant. In contrast, a previous
study showed unchanged levels of LH and FSH (as well as oestradiol and inhibin B) before
and 24 months after PRRT [33], and another study with a longer follow-up showed no
differences in secondary hypogonadism rates between PRRT-treated and control females,
with no differences in FSH levels between these two subgroups; moreover, none of the
PRRT-treated post-menopausal women had inappropriately low levels of FSH and LH [113].

In men, gonadotrophins rise shortly after PRRT, accompanied by a decrease of inhibin
B; however, both returned to baseline 18–24 months after PRRT [33,115]. Total testosterone
decreases during the follow-up after PRRT [33,115], coincident with a decrease in sex
hormone binding globulin (SHBG), but the biochemically active non-SHBG-bound testos-
terone does not change [115]. Elston et al. found no differences in the rates of secondary
hypogonadism between PRRT-treated vs. control males, and PRRT was not a predictor of
male hypogonadism [113].

Taking together these data, gonadal function may be subject to subtle changes follow-
ing PRRT, but in the long-term, clinically relevant secondary hypogonadism seems not to
be an issue for PRRT-treated patients. Men undergoing PRRT may suffer from a transient
and reversible impairment of spermatogenesis [33,115], similar to male patients with thy-
roid cancer who undergo radioiodine therapy [119,120]. Although sperm analyses have
not been systematically performed in the studies, the observation of remarkable decrease
in inhibin B with concomitant raise in FSH, both returning to baseline several months
after PRRT [33,115], suggest a temporarily impaired spermatogenesis. In fact, inhibin B,
produced by the testicular Sertoli cells, plays a crucial role in the spermatogenesis, and is
also a major (negative) feedback regulator of FSH [121–123].
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Table 3. Studies investigating the pituitary function following PRRT.

Reference (PMID) Study Population Gender/ Mean
Age

Previous
Treatments Type of PRRT

Activity/
Number of

Cycles

Follow-Up
after PRRT Main Findings Regarding the Pituitary Function Post-PRRT

Kwekkeboom 2005
J Clin Oncol [33]

(PMID: 15837990)

131 pts with
metastasized or

inoperable
gastroentero-

pancreatic
NETs

65 M,
66 F/56 years

48% had surgery;
5% EBRT;

15% chemotherapy;
50% SSA

177Lu-
DOTATATE

600–800 mCi 24 months

- Serum TSH did not change during or after PRRT, while FT4 levels
decreased significantly (mean 18.3 pmol/L before PRRT; and 15.5 to
17.5 pmol/L 3- to 24-months after PRRT)

- In women: LH, FSH, estradiol and inhibin B levels did not change
- In men: serum testosterone decreased in the follow-up period (from

a mean of 14.4 nmol/L before PRRT to 10.4 nmol/L 24 months after
the last cycle of PRRT; p < 0.01), while LH did not change. Serum
inhibin B also decreased (from a mean of 179 ng/L before PRRT to
23 ng/L 3 months after the last cycle) accompanied by a rise in FSH,
both returning to baseline at 18–24 months after the last PRRT cycle.

Teunissen 2009 Eur
J Nucl Med Mol
Imaging [115]

(PMID: 19471926)

79 pts with various
types of

endocrine-related
cancers (74 NETs,
4 thyroid cancers,
1 paraganglioma)

38 M, 41
F/54.8 years

46% had surgery;
8% chemotherapy;
4% EBRT; 46% SSA

177Lu-
DOTATATE

600–800 mCi
(3–4 cycles with

6- or 9-week
intervals)

24 months

- 15 of 35 male pts (43%) had hypogonadism prior to PRRT
- In men: serum inhibin B decreased 3 months after PRRT (205 ± 16

to 25 ± 4 ng/L; p < 0.05), suggesting transient spermatogenesis
impairment; there was also an increase in FSH (5.9 ± 0.5 to 22.7 ±
1.4 IU/L; p < 0.05) and LH (5.2 ± 0.6 to 7.7 ± 0.7 IU/L; p < 0.05);
these returned later near to the baseline level. Total testosterone and
SHBG decreased (respectively, 15.0 ± 0.9 to 10.6 ± 1.0 nmol/L;
p < 0.05, and 61.8 ± 8.7 to 33.2 ± 3.7 nmol/L; p < 0.05) while
non-SHBG-bound testosterone did not change.

- In post-menopausal women: serum FSH and LH decreased
24 months after PRRT (respectively, 74.4 ± 5.6 to 62.4 ± 7.7 IU/L;
p < 0.05, and 21.1 ± 3.0 to 21.1 ± 3.0 IU/L; p < 0.05)

- Thyroid axis: FT4 decreased 24 months after PRRT (17.7 ± 0.4 to
15.6 ± 0.6 pmol/L; p < 0.05), but TSH and T3 did not change
(although tended to increase and decrease, respectively). rT3
decreased from 0.38 ± 0.03 to 0.30 ± 0.01 nmol/L (p < 0.05). Two of
66 pts (3%) developed primary hypothyroidism.

- Adrenal axis: adequate cortisol response on ACTH stimulation tests
in all pts before and after PRRT. Mean peak cortisol response before
PRRT was higher than after PRRT (909 ± 57 vs. 822 ± 35 nmol/L;
p < 0.001)

- GH/IGF-1 axis was not evaluated
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Table 3. Cont.

Reference (PMID) Study Population Gender/Mean
Age

Previous
Treatments Type of PRRT

Activity/
Number of

Cycles

Follow-Up
after PRRT Main Findings Regarding the Pituitary Function Post-PRRT

Sundlöv 2021
Neuroendocrinology

[114] (PMID:
32259830)

68 pts with
progressive grade

1–2 NETs

37 M, 31
F/66 years

80% had SSA;
12% chemotherapy;

15% biologics;
1% MIBG;

40% liver- therapies

177Lu-
DOTATATE

Median
37.0 GBq

(IQR: 14.8–66.6)

Median
30 months

(range:
11–89)

- IGF-1 decreased during follow-up (p < 0.005): a decrease of −15%
and −30% at 19–24 months and >48 months of follow-up,
respectively.

- Extent of IGF-1 decrease correlated with the number of cycles
(p = 0.008) and with the absorbed radiation dose (p = 0.03)

- In post-menopausal women, serum LH and FSH tended to decrease
(p value NS) during follow-up, while in men, they increased in the
first year following PRRT, after which returned to baseline

- No changes in the adrenal or thyroid axes

Elston 2021 Cancer
Med

[113] (PMID:
34697905)

66 pts with
unresectable

metastatic NETs:
34 received PRRT

vs. 32 controls

PRRT group:
23 M,

11 F/65.1 years
vs.

Controls: 15 M,
17 F/61.6 years

53% had SSA;
50% chemotherapy na Mean 31.8 GBq

(IQR: 31.2–35)

Median
68 months

(IQR:
51.3–102)

- There were no differences in male hypogonadism or other hormone
deficiencies between PRRT-treated pts vs. controls

- 16 of 38 pts (42%) men from the whole cohort had hypogonadism:
7 pts had primary hypogonadism (5 from the PRRT group); 9 pts
had secondary hypogonadism (6 from the PRRT group)

- No differences in the proportion of pts with secondary
hypogonadism between PRRT-treated vs. control males (48 vs. 33%;
p = 0.51), as well as among PRRT-treated vs. control females (0 vs.
12%; p = 0.51). PRRT did not predict male hypogonadism (OR = 1.8,
95% CI 0.5–7.1).

- No differences in median FSH between post-menopausal women
who had PRRT vs. those who did not (61.5 vs. 66 U/L)

- No differences in the total dose received between PRRT-treated pts
who developed secondary hypogonadism vs. those who did not
(32.1 vs. 32.5 GBq; p = 1.000)

- One of 34 PRRT-treated pts (3%) developed GH deficiency
confirmed by both low IGF-1 and glucagon stimulation testing
(55 months after PRRT, cumulative dose 33.7 GBq)

- No differences in the proportion of pts with hyperprolactinaemia
between PRRT-treated pts vs. controls (12 vs. 7%; p = 0.67)

- No diabetes insipidus

ACTH, adrenocorticotropic hormone; CI, confidence interval; EBRT, external beam radiotherapy; F, females; FSH, follicle-stimulating hormone; FT4, free thyroxine; GBq, gigabecquerel;
GH, growth hormone; IGF-1, insulin-like growth factor 1; IQR, interquartile range; LH, luteinising hormone; M, males; mCi, millicurie; MIBG, metaiodobenzylguanidine; na, not available;
NET, neuroendocrine tumour; NS, not significant; OR, odds ratio; PMID, PubMed identifier; PRRT, peptide receptor radionuclide therapy; pts, patients; rT3, reverse triiodothyronine;
SHBG, sex hormone binding globulin; SSA, somatostatin analogues; T3, triiodothyronine; TSH, thyroid-stimulating hormone.
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4.2. Somatotroph Axis

The somatotroph axis, recognised as the most radiosensitive and the first pituitary
axis to reflect the radiation effects [117,118], was assessed in PRRT-treated patients in
two studies [113,114]. Sundlöv et al. showed a decrease in serum insulin-like growth
factor 1 (IGF-1) levels following PRRT, estimated at −15% and −30% at 19–24 months and
>48 months of follow-up, respectively, which correlated with the number of PRRT cycles
and the absorbed radiation doses. This was interpreted as pituitary-related GH deficiency,
as albumin levels during the follow-up did not change, making unlikely that IGF-1 decrease
would be a result of liver damage; moreover, most patients were already receiving a fixed
dose of somatostatin analogues at baseline which remained stable, therefore not explaining
either the decrease of IGF-1 during the follow-up [114]. On a different study, 1 of 34 patients
(3%) developed GH deficiency 55 months after PRRT, and Elston et al. reported a trend for
GH deficiency based on lower IGF-1 Z-scores in PRRT-treated vs. control patients [113].
Whilst the development of GH deficiency may eventually explain constitutional symptoms,
such as fatigue or body composition changes that might be reported by PRRT-treated
patients, a finding of GH deficiency post-PRRT would not alter the management, as GH
replacement therapy is contraindicated in patients with active malignancy [124], and neither
should it preclude clinicians prescribing PRRT for a progressive and potentially threating
neuroendocrine neoplasm.

4.3. Thyroid Axis

Sundlöv et al. and Elston et al. reported no changes in the thyroid axis as a result of
PRRT [113,114], while two earlier studies showed that free thyroxine (FT4) levels decrease
3 to 24 months after PRRT with no changes in TSH and T3 [33,115]. The development of
primary hypothyroidism is also uncommon in PRRT-treated patients, occurring in only 3%
of cases [115]. The levels of reverse triiodothyronine (rT3) also decrease after PRRT [115].
Considering the chronicity and severity of the underlying malignant disease and their
impact on the thyroid axis, it is currently unknown as to whether such changes, particularly
in serum FT4, are secondary to the effects of PRRT or instead due to a cancer-related
non-thyroidal illness [115], neither it is clear if these patients at a longer term will evolve to
hypothyroidism requiring thyroxine replacement therapy.

4.4. Hypothalamo–Pituitary–Adrenal Axis

The hypothalamo–pituitary–adrenal axis remained intact in patients submitted to
PRRT across three studies investigating the adrenal function post-PRRT [113–115]. These
studies mainly relied on measuring basal serum ACTH and cortisol, while Teunissen
et al. studied the adrenal reserve with low dose ACTH stimulation tests. An adequate
cortisol response (>550 nmol/L) on the ACTH stimulation test was seen in all patients
before and 24 months after PRRT; however, the mean peak cortisol response before PRRT
was higher than that after PRRT (909 ± 57 vs. 822 ± 35 nmol/L; p < 0.001). Whether
this subtle difference in the mean peak stimulated cortisol after PRRT reflects any partial
radiation-induced adrenal insufficiency or just a less stressful state of patients remains
unclear; nevertheless, such a difference is not clinically relevant as any of the patients
failed the ACTH stimulation test, and thus none of them would be diagnosed with adrenal
insufficiency nor require glucocorticoid replacement therapy [115].

5. Conclusions

Aggressive pituitary tumours can be resistant to conventional treatments, including
surgery, radiotherapy or medical therapy. Temozolomide is recommended as first-line
therapy for aggressive or metastatic PitNETs, when conventional means failed; however, the
rate of relapse after temozolomide in the long-term is high. Other therapeutic approaches
are emerging as possible options for selected cases, including PRRT. The expression of
SSTRs in PitNETs, together with the effectiveness of somatostatin analogues in some
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subtypes of PitNETs, paved the way for employing PRRT for aggressive or metastatic
PitNETs. However, there are only a few cases where such treatment has been used; hence,
data about efficacy and safety of PRRT in this setting are scarce. From the 30 published
cases, it seems that PRRT may induce a partial response in up to a fifth of cases, stabilise the
disease in about a third, while the majority of patients will not respond to PRRT and will
have progressive disease (Figure 2). Regarding safety, PRRT seems to be safe for PitNET
patients, and there is no increased risk for new-onset (or worsening) of clinically relevant
hypopituitarism in patients with PitNETs or non-pituitary NETs who undergo PRRT. At
present, PRRT can be considered as a therapeutic option for patients with aggressive
or metastatic PitNETs if other approaches are not feasible or have failed in controlling
the disease progression. However, to fully establish the role and usefulness of PRRT
in the management of patients with aggressive pituitary tumours, further research and
prospective studies, in particular, are needed.
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