Clinical Meaning of Stromal Tumor Infiltrating Lymphocytes (sTIL) in Early Luminal B Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Pathologic Evaluation and sTIL Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics and sTIL Distribution According to Clinical and Pathological Variables
3.2. Predictive Value of sTIL for pCR after Neoadjuvant Chemotherapy
3.3. Association of sTIL with RFI and OS in Luminal B Tumors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. REMARK Criteria Checklist
Item to Be Reported | Page No. | |
---|---|---|
INTRODUCTION | ||
1 | State the marker examined, the study objectives, and any pre-specified hypotheses. | 2–3 |
MATERIALS AND METHODS | ||
Patients | ||
2 | Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria. | 3 |
3 | Describe treatments received and how chosen (e.g., randomized or rule-based). | 3 |
Specimen characteristics | ||
4 | Describe type of biological material used (including control samples) and methods of preservation and storage. | 3 |
Assay methods | ||
5 | Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint. | 3 |
Study design | ||
6 | State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time. | 3 |
7 | Precisely define all clinical endpoints examined. | 3 |
8 | List all candidate variables initially examined or considered for inclusion in models. | 3 |
9 | Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size. | |
Statistical analysis methods | ||
10 | Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled. | 4 |
11 | Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination. | 4 |
RESULTS | ||
Data | ||
12 | Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events. | 4 Figure S1 |
13 | Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values. | 4–6 |
Analysis and presentation | ||
14 | Show the relation of the marker to standard prognostic variables. | 6–7 |
15 | Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan–Meier plot is recommended. | 6–7 |
16 | For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker and, at least for the final model, all other variables in the model. | 7–9 |
17 | Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard prognostic variables are included, regardless of their statistical significance. | 7–9 |
18 | If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation. | 7–9 |
DISCUSSION | ||
19 | Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study. | 9–11 |
20 | Discuss implications for future research and clinical value. | 10–11 |
References
- Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; Xu, R.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022, 8, 420–444. [Google Scholar] [CrossRef] [PubMed]
- Cejalvo, J.M.; Pascual, T.; Fernández-Martínez, A.; Brasó-Maristany, F.; Gomis, R.R.; Perou, C.M.; Muñoz, M.; Prat, A. Clinical implications of the non-luminal intrinsic subtypes in hormone receptor-positive breast cancer. Cancer Treat. Rev. 2018, 67, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.L.; Huppert, L.A.; Rugo, H.S. Role of Immunotherapy in Breast Cancer. JCO Oncol. Pract. 2023, 19, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.M.; Yau, C.; Wulfkuhle, J.; Brown-Swigart, L.; Gallagher, R.I.; Lee, P.R.E.; Zhu, Z.; Magbanua, M.J.; Sayaman, R.; O’grady, N.; et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022, 40, 609–623.e6. [Google Scholar] [CrossRef]
- Denkert, C.; Von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Delord, J.-P.; Im, S.-A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer. Clin. Cancer Res. 2018, 24, 2804–2811. [Google Scholar] [CrossRef]
- Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat. 2018, 167, 671–686. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Barroso-Sousa, R.; Keenan, T.; Li, T.; Trippa, L.; Vaz-Luis, I.; Wulf, G.; Spring, L.; Sinclair, N.F.; Andrews, C.; et al. Effect of Eribulin With or Without Pembrolizumab on Progression-Free Survival for Patients With Hormone Receptor–Positive, ERBB2-Negative Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1598–1605. [Google Scholar] [CrossRef]
- Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; et al. Effect of Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women With Early-Stage Breast Cancer: An Analysis of the Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncol. 2020, 6, 676–684. [Google Scholar] [CrossRef]
- Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.; Hitre, E.; et al. Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin With Doxorubicin-Based Chemotherapy: BIG 02-98. J. Clin. Oncol. 2013, 31, 860–867. [Google Scholar] [CrossRef]
- Ahn, S.G.; Cha, Y.J.; Bae, S.J.; Yoon, C.; Lee, H.W.; Jeong, J. Comparisons of tumor-infiltrating lymphocyte levels and the 21-gene recurrence score in ER-positive/HER2-negative breast cancer. BMC Cancer 2018, 18, 320. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.; Criscitiello, C.; Goubar, A.; Viale, G.; Conte, P.; Guarneri, V.; Ficarra, G.; Mathieu, M.; Delaloge, S.; Curigliano, G.; et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: A retrospective multicenter study. Ann. Oncol. 2014, 25, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Kolberg-Liedtke, C.; Gluz, O.; Heinisch, F.; Feuerhake, F.; Kreipe, H.; Clemens, M.; Nuding, B.; Malter, W.; Reimer, T.; Wuerstlein, R.; et al. Association of TILs with clinical parameters, Recurrence Score® results, and prognosis in patients with early HER2-negative breast cancer (BC)—A translational analysis of the prospective WSG PlanB trial. Breast Cancer Res. 2020, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-H.; Li, C.-X.; Liu, M.; Jiang, J.-Y. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: A meta-analysis. BMC Cancer 2020, 20, 1150. [Google Scholar] [CrossRef]
- Ali, H.R.; Provenzano, E.; Dawson, S.-J.; Blows, F.M.; Liu, B.; Shah, M.; Earl, H.M.; Poole, C.J.; Hiller, L.; Dunn, J.A.; et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 2014, 25, 1536–1543. [Google Scholar] [CrossRef]
- Sobral-Leite, M.; Salomon, I.; Opdam, M.; Kruger, D.T.; Beelen, K.J.; Van Der Noort, V.; Van Vlierberghe, R.L.P.; Blok, E.J.; Giardiello, D.; Sanders, J.; et al. Cancer-immune interactions in ER-positive breast cancers: PI3K pathway alterations and tumor-infiltrating lymphocytes. Breast Cancer Res. 2019, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Valenza, C.; Salimbeni, B.T.; Santoro, C.; Trapani, D.; Antonarelli, G.; Curigliano, G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers 2023, 15, 767. [Google Scholar] [CrossRef]
- Criscitiello, C.; Vingiani, A.; Maisonneuve, P.; Viale, G.; Curigliano, G. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2− breast cancer. Breast Cancer Res. Treat. 2020, 183, 347–354. [Google Scholar] [CrossRef]
- Hanamura, T.; Kitano, S.; Kagamu, H.; Yamashita, M.; Terao, M.; Okamura, T.; Kumaki, N.; Hozumi, K.; Iwamoto, T.; Honda, C.; et al. Expression of hormone receptors is associated with specific immunological profiles of the breast cancer microenvironment. Breast Cancer Res. 2023, 25, 13. [Google Scholar] [CrossRef]
- El Bairi, K.; Haynes, H.R.; Blackley, E.; Fineberg, S.; Shear, J.; Turner, S.; de Freitas, J.R.; Sur, D.; Amendola, L.C.; Gharib, M.; et al. The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2021, 7, 150. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Watanabe, T.; Hida, A.I.; Higuchi, T.; Miyagawa, Y.; Ozawa, H.; Bun, A.; Fukui, R.; Sata, A.; Imamura, M.; et al. Prognostic significance of tumor-infiltrating lymphocytes may differ depending on Ki67 expression levels in estrogen receptor-positive/HER2-negative operated breast cancers. Breast Cancer 2019, 26, 738–747. [Google Scholar] [CrossRef] [PubMed]
- de la Peña, F.A.; Andrés, R.; Garcia-Sáenz, J.A.; Manso, L.; Margelí, M.; Dalmau, E.; Pernas, S.; Prat, A.; Servitja, S.; Ciruelos, E. SEOM clinical guidelines in early stage breast cancer (2018). Clin. Transl. Oncol. 2019, 21, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Klauschen, F.; Müller, K.-R.; Binder, A.; Bockmayr, M.; Hägele, M.; Seegerer, P.; Wienert, S.; Pruneri, G.; de Maria, S.; Badve, S.; et al. Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Semin. Cancer Biol. 2018, 52, 151–157. [Google Scholar] [CrossRef] [PubMed]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res. Treat. 2006, 100, 229–235. [Google Scholar] [CrossRef]
- Hudis, C.A.; Barlow, W.E.; Costantino, J.P.; Gray, R.J.; Pritchard, K.I.; Chapman, J.-A.W.; Sparano, J.A.; Hunsberger, S.; Enos, R.A.; Gelber, R.D.; et al. Proposal for Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials: The STEEP System. J. Clin. Oncol. 2007, 25, 2127–2132. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Garrett-Mayer, E.; White, J.; Blinder, V.S.; Foster, J.C.; Amiri-Kordestani, L.; Hwang, E.S.; Bliss, J.M.; Rakovitch, E.; Perlmutter, J.; et al. Updated Standardized Definitions for Efficacy End Points (STEEP) in Adjuvant Breast Cancer Clinical Trials: STEEP Version 2.0. J. Clin. Oncol. 2021, 39, 2720–2731. [Google Scholar] [CrossRef]
- Anurag, M.; Zhu, M.; Huang, C.; Vasaikar, S.; Wang, J.; Hoog, J.; Burugu, S.; Gao, D.; Suman, V.; Zhang, X.H.; et al. Immune Checkpoint Profiles in Luminal B Breast Cancer (Alliance). J. Natl. Cancer Inst. 2020, 112, 737–746. [Google Scholar] [CrossRef]
- Dunbier, A.K.; Ghazoui, Z.; Anderson, H.; Salter, J.; Nerurkar, A.; Osin, P.; A’Hern, R.; Miller, W.R.; Smith, I.E.; Dowsett, M. Molecular Profiling of Aromatase Inhibitor–Treated Postmenopausal Breast Tumors Identifies Immune-Related Correlates of Resistance. Clin. Cancer Res. 2013, 19, 2775–2786. [Google Scholar] [CrossRef]
- Fernandez-Martinez, A.; Pascual, T.; Singh, B.; Nuciforo, P.; Rashid, N.U.; Ballman, K.V.; Campbell, J.D.; Hoadley, K.A.; Spears, P.A.; Pare, L.; et al. Prognostic and Predictive Value of Immune-Related Gene Expression Signatures vs Tumor-Infiltrating Lymphocytes in Early-Stage ERBB2/HER2-Positive Breast Cancer. JAMA Oncol. 2023, 7295, 490. [Google Scholar] [CrossRef]
- Schroth, W.; Büttner, F.A.; Kandabarau, S.; Hoppe, R.; Fritz, P.; Kumbrink, J.; Kirchner, T.; Brauer, H.A.; Ren, Y.; Henderson, D.; et al. Gene Expression Signatures of BRCAness and Tumor Inflammation Define Subgroups of Early-Stage Hormone Receptor–Positive Breast Cancer Patients. Clin. Cancer Res. 2020, 26, 6523–6534. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.; Seo, J.-H.; Gong, G.; Lee, H.J. Changes in Tumor-infiltrating Lymphocytes After Neoadjuvant Chemotherapy and Clinical Significance in Triple Negative Breast Cancer. Anticancer. Res. 2020, 40, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
Total | sTIL (%) | sTIL = 0% | sTIL > 0% | |||
---|---|---|---|---|---|---|
Characteristic | n (%) | Median (Q1, Q3) | p-Value | n (%) | n (%) | p-Value * |
Total | 345 (100%) | 5 (0, 10) | -- | 100 (29.0%) | 245 (71.0%) | -- |
Age | -- | <0.001 | ||||
Median (Q1, Q3) | 52 (44, 63) | 57 (47, 68) | 50 (42, 60) | |||
Menopause status | <0.001 | 0.005 | ||||
Postmenopausal | 178 (51.9%) | 5 (0, 10) | 64 (64.0%) | 114 (46.9%) | ||
Premenopausal | 165 (48.1%) | 5 (5, 10) | 36 (36.0%) | 129 (53.1%) | ||
Histology | 0.006 | 0.086 | ||||
IDC | 315 (91.3%) | 5 (0, 10) | 86 (86.0%) | 229 (93.5%) | ||
ILC | 27 (7.8%) | 2.5 (0, 5) | 13 (13.0%) | 14 (5.7%) | ||
Other | 3 (0.9%) | 5 (2.5, 7.5) | 1 (1.0%) | 2 (0.8%) | ||
Subtype 1 | <0.001 | <0.001 | ||||
Luminal A | 59 (17.1%) | 1 (0, 5) | 29 (29.0%) | 30 (12.2%) | ||
Luminal B | 286 (82.9%) | 5 (1, 10) | 71 (71.0%) | 215 (87.8%) | ||
PgR | 0.055 | 0.849 | ||||
Negative | 44 (12.8%) | 10 (0, 15) | 12 (12.0%) | 32 (13.1%) | ||
Positive | 300 (87.2%) | 5 (0, 10) | 88 (88.0%) | 212 (86.9%) | ||
Ki67 | -- | <0.001 | ||||
Median (Q1, Q3) | 30.0 (16.1, 41.7) | 20.0 (10.0, 30.0) | 35.0 (20.0, 50.0) | |||
Grade | <0.001 | <0.001 | ||||
1 | 52 (15.1%) | 5 (0, 5) | 24 (24.0%) | 28 (11.4%) | ||
2 | 190 (55.1%) | 5 (0, 10) | 63 (63.0%) | 127 (51.8%) | ||
3 | 103 (29.9%) | 10 (5, 18) | 13 (13.0%) | 90 (36.7%) | ||
T stage | 0.003 | 0.004 | ||||
T1 | 90 (26.3%) | 5 (0, 8.8) | 37 (37.0%) | 53 (21.9%) | ||
T2-4 | 252 (73.7%) | 5 (1, 10) | 63 (63.0%) | 189 (78.1%) | ||
T size (cm) | -- | <0.001 | ||||
Mean (SD) | 34.9 (21.6) | 29.7 (20.5) | 37.1 (21.7) | |||
Nodal stage | 0.001 | <0.001 | ||||
N0 | 157 (47.6%) | 5 (0, 10) | 62 (62.6%) | 95 (41.1%) | ||
N positive | 173 (52.4%) | 5 (2.5, 10) | 37 (37.4%) | 136 (58.9%) | ||
Positive nodes number | -- | <0.001 | ||||
Mean (SD) | 2.1 (3.7) | 1.44 (3.4) | 2.4 (3.8) | |||
Chemotherapy 2 | <0.001 | <0.001 | ||||
No chemotherapy | 56 (16.2%) | 0 (0, 5) | 32 (32.0%) | 24 (9.8%) | ||
2nd generation | 52 (15.1%) | 5 (0, 10) | 16 (16.0%) | 36 (14.7%) | ||
3rd generation | 237 (68.7%) | 5 (2.5, 10) | 52 (52.0%) | 185 (75.5%) | ||
Clinical risk 3 | <0.001 | |||||
Low | 70 (20.3%) | 5 (0, 5) | 30 (30.0%) | 40 (16.3%) | 0.006 | |
High | 275 (79.7%) | 5 (0, 10) | 70 (70.0%) | 205 (83.7%) |
Models | OR (95% CI) | p-Value | AIC | AUC ROC | LRT p-Value |
---|---|---|---|---|---|
Model 1 = Ki67 | |||||
Ki67 (continuous) | 1.06 (1.03, 1.09) | <0.001 | 87.5 | 0.822 | 1 (reference) |
Model 2 = Ki67 + sTIL | |||||
Ki67 | 1.05 (1.02, 1.09) | <0.001 | 75.9 | 0.876 | Model 2 vs. model 1, p = 0.006 |
sTIL (continuous) | 1.05 (1.01, 1.08) | 0.005 | |||
Model 3 = Ki67 + sTIL + grade | |||||
Ki67 | 1.04 (1.01, 1.08) | <0.011 | 76.7 | 0.872 | Model 3 vs. model 2, p = 0.273 |
sTIL | 1.04 (1.01, 1.08) | 0.021 | |||
Grade 3 | 2.64 (0.48, 20.50) | 0.300 |
Models | HR (95% CI) | p-Value | AIC | C-Index | LRT p-Value |
---|---|---|---|---|---|
Model 1 = T size + N+ (nr) + Ki67 + PgR | |||||
T size (cm) | 1.02 (1.01, 1.03) | 0.002 | 323.5 | 0.76 | 1 (reference) |
Number of positive nodes | 1.09 (1.04–1.16) | 0.001 | |||
Ki67 (continuous) | 1.01 (0.99, 1.03) | 0.060 | |||
PgR (positive) | 0.47 (0.21, 1.03) | 0.059 | |||
Model 2 = T size + N+ (nr) + Ki67 + PgR + sTIL | |||||
T size (cm) | 1.02 (1.01, 1.03) | <0.001 | 317.4 | 0.75 | Model 2 vs. model 1, p = 0.004 |
Number of positive nodes | 1.09 (1.04–1.16) | 0.001 | |||
Ki67 (continuous) | 1.01 (0.99, 1.03) | 0.336 | |||
PgR (positive) | 0.36 (0.16, 0.82) | 0.015 | |||
sTIL (>0%) | 4.85 (1.33, 17.65) | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Torralba, E.; Pérez Ramos, M.; Ivars Rubio, A.; Navarro-Manzano, E.; Blaya Boluda, N.; de la Morena Barrio, P.; García-Garre, E.; Martínez Díaz, F.; Chaves-Benito, A.; García-Martínez, E.; et al. Clinical Meaning of Stromal Tumor Infiltrating Lymphocytes (sTIL) in Early Luminal B Breast Cancer. Cancers 2023, 15, 2846. https://doi.org/10.3390/cancers15102846
García-Torralba E, Pérez Ramos M, Ivars Rubio A, Navarro-Manzano E, Blaya Boluda N, de la Morena Barrio P, García-Garre E, Martínez Díaz F, Chaves-Benito A, García-Martínez E, et al. Clinical Meaning of Stromal Tumor Infiltrating Lymphocytes (sTIL) in Early Luminal B Breast Cancer. Cancers. 2023; 15(10):2846. https://doi.org/10.3390/cancers15102846
Chicago/Turabian StyleGarcía-Torralba, Esmeralda, Miguel Pérez Ramos, Alejandra Ivars Rubio, Esther Navarro-Manzano, Noel Blaya Boluda, Pilar de la Morena Barrio, Elisa García-Garre, Francisco Martínez Díaz, Asunción Chaves-Benito, Elena García-Martínez, and et al. 2023. "Clinical Meaning of Stromal Tumor Infiltrating Lymphocytes (sTIL) in Early Luminal B Breast Cancer" Cancers 15, no. 10: 2846. https://doi.org/10.3390/cancers15102846
APA StyleGarcía-Torralba, E., Pérez Ramos, M., Ivars Rubio, A., Navarro-Manzano, E., Blaya Boluda, N., de la Morena Barrio, P., García-Garre, E., Martínez Díaz, F., Chaves-Benito, A., García-Martínez, E., & Ayala de la Peña, F. (2023). Clinical Meaning of Stromal Tumor Infiltrating Lymphocytes (sTIL) in Early Luminal B Breast Cancer. Cancers, 15(10), 2846. https://doi.org/10.3390/cancers15102846