Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Sample and Design
2.2. Segmentation and Image Preprocessing
2.3. Machine Learning
2.4. Statistical Analysis and Performance Evaluation
3. Results
3.1. Study Population
3.2. Hand-Crafted, Deep, and Hybrid Features
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CECT | contrast-enhanced CT |
AUC | Area under the receiver operating curve |
ROC | receiver operating curve |
BS | Brier score |
SBS | Scaled Brier score |
18FDG | 18F-fluorodeoxyglucose |
PET/CT | positron emission tomography/computed tomography |
CNN | Convolutional neural network |
References
- Gunluoglu, M.Z.; Melek, H.; Medetoglu, B.; Demir, A.; Kara, H.V.; Dincer, S.I. The validity of preoperative lymph node staging guide-lines of European Society of Thoracic Surgeons in non-small-cell lung cancer patients. Eur. J. Cardiothorac. Surg. 2011, 40, 287–290. [Google Scholar] [PubMed]
- Gonzalez-Stawinski, G.V.; Lemaire, A.; Merchant, F.; O’Halloran, E.; Coleman, R.E.; Harpole, D.H.; D’Amico, T.A. A comparative analysis of positron emission tomography and medias-tinoscopy in staging non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2003, 126, 1900–1904. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, N.; Liu, Y.; Zheng, R.; Liang, Y.; Zhang, W.; Zhao, P. Regional nodal staging with 18F-FDG PET–CT in non-small cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging. Eur. J. Radiol. 2012, 81, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Hawkins, S.H.; Schabath, M.B.; Gillies, R.J.; Hall, L.O.; Goldgof, D.B. Predicting malignant nodules by fusing deep features with classical radiomics features. J. Med. Imaging 2018, 5, 011021. [Google Scholar] [CrossRef] [PubMed]
- Nibali, A.; He, Z.; Wollersheim, D. Pulmonary nodule classification with deep residual networks. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, F.; Wang, N.; Zhang, C.; Yu, Q.; Zhang, M.; Babyn, P.; Zhong, H. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. J. Digit. Imaging 2019, 32, 995–1007. [Google Scholar] [CrossRef]
- Lennartz, S.; Mager, A.; Hokamp, N.G.; Schäfer, S.; Zopfs, D.; Maintz, D.; Reinhardt, H.C.; Thomas, R.K.; Caldeira, L.; Persigehl, T. Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules. Cancer Imaging 2021, 21, 17. [Google Scholar] [CrossRef]
- El Ayachy, R.; Giraud, N.; Giraud, P.; Durdux, C.; Giraud, P.; Burgun, A.; Bibault, J.E. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front. Oncol. 2021, 11, 603595. [Google Scholar] [CrossRef] [PubMed]
- Cester, D.; Eberhard, M.; Alkadhi, H.; Euler, A. Virtual monoenergetic images from dual-energy CT: Systematic assessment of task-based image quality performance. Quant. Imaging Med. Surg. 2022, 12, 726–741. [Google Scholar] [CrossRef]
- Euler, A.; Laqua, F.C.; Cester, D.; Lohaus, N.; Sartoretti, T.; dos Santos, D.P.; Alkadhi, H.; Baessler, B. Virtual Monoenergetic Images of Dual-Energy CT—Impact on Repeatability, Reproducibility, and Classification in Radiomics. Cancers 2021, 13, 4710. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Leger, S.; Agolli, L.; Pilz, K.; Troost, E.G.C.; Richter, C.; Löck, S. Assessing robustness of radiomic features by image perturbation. Sci. Rep. 2019, 9, 614. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Ziegelmayer, S.; Reischl, S.; Harder, F.; Makowski, M.; Braren, R.; Gawlitza, J. Feature Robustness and Diagnostic Capabilities of Convolutional Neural Networks Against Radiomics Features in Computed Tomography Imaging. Investig. Radiol. 2022, 57, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ziegelmayer, S.; Kaissis, G.; Harder, F.; Jungmann, F.; Müller, T.; Makowski, M.; Braren, R. Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) Versus Autoimmune Pancreatitis (AIP). J. Clin. Med. Res. 2020, 9, 4013. [Google Scholar] [CrossRef] [PubMed]
- Decuyper, M.; Bonte, S.; Van Holen, R. Binary glioma grading: Radiomics versus pre-trained CNN features. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Lecture notes in computer science; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 498–505. [Google Scholar]
- Woznicki, P.; Laqua, F.; Bley, T.; Baeßler, B. AutoRadiomics: A Framework for Reproducible Radiomics Research. Front. Radiol. 2022, 2, 919133. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. International Conference on Machine Learning. arXiv 2019, arXiv:1905.11946v5. [Google Scholar]
- Tsamardinos, I.; Greasidou, E.; Borboudakis, G. Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Mach. Learn. 2018, 107, 1895–1922. [Google Scholar] [CrossRef]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Seymour, L.; Litière, S.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Standardisation and disease-specific adaptations: Perspectives from the RECIST Working Group. Eur. J. Cancer 2016, 62, 138–145. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Sepulveda, J.; Zeng, W.; Carew, J.; Schuster, D. The significance of a fatty hilum within an FDG avid lymph node. J. Nucl. Med. 2008, 49 (Suppl. 1), 251P. [Google Scholar]
- Ouyang, M.-L.; Wang, Y.-R.; Deng, Q.-S.; Zhu, Y.-F.; Zhao, Z.-H.; Wang, L.; Wang, L.-X.; Tang, K. Development and Validation of a 18F-FDG PET-Based Radiomic Model for Evaluating Hypermetabolic Mediastinal–Hilar Lymph Nodes in Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 710909. [Google Scholar] [CrossRef] [PubMed]
- Forghani, R.; Chatterjee, A.; Reinhold, C.; Pérez-Lara, A.; Romero-Sanchez, G.; Ueno, Y.; Bayat, M.; Alexander, J.W.; Kadi, L.; Chankowsky, J.; et al. Head and neck squamous cell carcinoma: Prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning. Eur. Radiol. 2019, 29, 6172–6181. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, B.; Liu, Y.; Chen, Y.; Zhou, H.; Chen, Y.; Li, W.; Long, W. Deep learning nomogram for predicting lymph node metastasis using computed tomography image in cervical cancer. Acta Radiol. 2021, 64, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Gerds, T.A.; Kattan, M.W. Medical Risk Prediction Models: With Ties to Machine Learning; Taylor & Francis Limited: Abingdon, UK, 2022. [Google Scholar]
- Grahovac, M.; Spielvogel, C.P.; Krajnc, D.; Ecsedi, B.; Traub-Weidinger, T.; Rasul, S.; Kluge, K.; Zhao, M.; Li, X.; Hacker, M.; et al. Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1607–1620. [Google Scholar] [CrossRef]
- Gabelloni, M.; Faggioni, L.; Fusco, R.; Simonetti, I.; De Muzio, F.; Giacobbe, G.; Borgheresi, A.; Bruno, F.; Cozzi, D.; Grassi, F.; et al. Radiomics in Lung Metastases: A Systematic Review. J. Pers. Med. 2023, 13, 225. [Google Scholar] [CrossRef]
- Elia, S.; Pompeo, E.; Santone, A.; Rigoli, R.; Chiocchi, M.; Patirelis, A.; Mercaldo, F.; Mancuso, L.; Brunese, L. Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly. Diagnostics 2023, 13, 384. [Google Scholar] [CrossRef]
- Hu, Q.; Li, K.; Yang, C.; Wang, Y.; Huang, R.; Gu, M.; Xiao, Y.; Huang, Y.; Chen, L. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front. Oncol. 2023, 13, 1133164. [Google Scholar] [CrossRef]
- Nguyen, H.S.; Ho, D.K.N.; Nguyen, N.N.; Tran, H.M.; Tam, K.-W.; Le, N.Q.K. Predicting EGFR Mutation Status in Non–Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad. Radiol. 2023, in press. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, J.; Cheon, M.; Kim, H.; Choi, Y.S.; Pyo, H.; Ahn, M.-J.; Choi, J.Y. Radiomics Analysis of 18F-FDG PET/CT for Prognosis Prediction in Patients with Stage III Non-Small Cell Lung Cancer Undergoing Neoadjuvant Chemoradiation Therapy Followed by Surgery. Cancers 2023, 15, 2012. [Google Scholar] [CrossRef] [PubMed]
- Rufibach, K. Use of Brier score to assess binary predictions. J. Clin. Epidemiol. 2010, 63, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Assel, M.; Sjoberg, D.D.; Vickers, A.J. The Brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagn. Progn. Res. 2017, 1, 19. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, D.B.; Coelho, C.A.S.; Jolliffe, I.T. Two Extra Components in the Brier Score Decomposition. Weather. Forecast. 2008, 23, 752–757. [Google Scholar] [CrossRef]
- Wu, C.; Borné, Y.; Gao, R.; Rodriguez, M.L.; Roell, W.C.; Wilson, J.M.; Regmi, A.; Luan, C.; Aly, D.M.; Peter, A.; et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat. Commun. 2021, 12, 6486. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H.; on behalf of AME Big-Data Clinical Trial Collaborative Group. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image classification: A literature review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
(i) | Traditional hand-crafted shape, first-order, and higher-order features were extracted from the VOI in the respective CECT images using the AutoRadiomics application (https://github.com/pwoznicki/AutoRadiomics (accessed on 20 May 2023); [16]) as a wrapper for the pyradiomics package. |
(ii) | A transfer-learning approach with a 2D-CNN to extract deep features (i.e., features considered relevant in an image classification task in a different domain) was applied. The output of the first k layers of an EfficientNet [17] pre-trained on the ImageNet database was aggregated and used as tabular deep features for machine learning classification. In detail, we masked the original image using the respective segmentation of a lymph node, cropped it to the bounding box of the lymph node segmentation, and finally rescaled it to match EfficientNet’s input dimensions. We rescaled the z-axis of the images to 10 pixels (the median z-axis length of all lymph nodes). We took the output of a forward pass through the first k convolutional layers of EfficientNet17 and applied an average pooling operation to get a number of features equal to the filters in the respective layer. The depth k of the final layer was considered a hyperparameter and optimized along with the other hyperparameters. |
(iii) | Hybrid radiomics: a combination of transfer-learning CNN features from (ii) with traditional hand-crafted first-order and shape features from (i). |
Total | |
---|---|
N = 100 | |
Age (years) | 65 (10) |
Sex | |
male | 51 (51%) |
female | 49 (49%) |
Smoker | |
yes | 64 (64%) |
no | 18 (18%) |
N/A | 18 (18%) |
Therapy | |
neoadjuvant chemotherapy | 4 (4%) |
adjuvant chemotherapy | 16 (16%) |
surgery | 30 (30%) |
definitive radiotherapy | 71 (71%) |
immunotherapy | 4 (4%) |
Side of primary tumor | |
both sides | 1 (1%) |
right | 47 (47%) |
left | 52 (52%) |
Histology of primary tumor | |
adenocarcinoma | 60 (60%) |
adeno-squamous carcinoma | 1 (1%) |
large cell neuroendocrine carcinoma | 2 (2%) |
unspecific non-small-cell lung cancer | 3 (3%) |
squamous cell carcinoma | 21 (21%) |
small-cell lung cancer | 8 (8%) |
unclear | 5 (5%) |
Metastasis at initial diagnosis | |
yes | 43 (43%) |
no | 53 (53%) |
N/A | 4 (4%) |
Outcome (survival 07/2022) | |
yes | 22 (22%) |
no | 25 (25%) |
N/A | 51 (51%) |
lymph node count per patient | 27 (14) |
percentage of round lymph nodes | 3% (6%) |
percentage of calcified lymph nodes | 1% (3%) |
percentage of inhomogeneous lymph nodes | 2% (6%) |
percentage of PET-positive lymph nodes | 15% (25%) |
Metric | AUC | Brier Score (BS) | Scaled BS [%] | ||
---|---|---|---|---|---|
Model | |||||
Logit: (i) Radiomics data | 0.857 (0.828–0.865) | 0.112 (0.109–0.115) | 30.8 (28.7–32.9) | 0.76 (0.711–0.799) | 0.803 (0.782–0.823) |
Logit: (ii) Deep Radiomics data | 0.788 (0.779–0.796) | 0.137 (0.133–0.14) | 15.7 (14.3–17) | 0.784 (0.764–0.806) | 0.72 (0.696–0.741) |
Logit: (iii) Shape/First-order Features + Deep Radiomics | 0.868 (0.861–0.875) | 0.106 (0.102–0.109) | 34.8 (33.2–36.4) | 0.825 (0.789–0.861) | 0.771 (0.735–0.807) |
Random Forest: (i) Radiomics data | 0.839 (0.831–0.847) | 0.112 (0.109–0.116) | 30.6 (28.7–32.4) | 0.72 (0.698–0.744) | 0.811 (0.788–0.831) |
Random Forest: (ii) Deep Radiomics data | 0.801 (0.793–0.809) | 0.131 (0.128–0.135) | 18.9 (17.5–20.2) | 0.774 (0.755–0.792) | 0.728 (0.71–0.745) |
Random Forest: (iii) Shape/First-order Features + Deep Radiomics * | 0.871 (0.865–0.878) | 0.104 (0.101–0.107) | 35.8 (34.2–37.2) | 0.794 (0.764–0.824) | 0.793 (0.764–0.823) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laqua, F.C.; Woznicki, P.; Bley, T.A.; Schöneck, M.; Rinneburger, M.; Weisthoff, M.; Schmidt, M.; Persigehl, T.; Iuga, A.-I.; Baeßler, B. Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer. Cancers 2023, 15, 2850. https://doi.org/10.3390/cancers15102850
Laqua FC, Woznicki P, Bley TA, Schöneck M, Rinneburger M, Weisthoff M, Schmidt M, Persigehl T, Iuga A-I, Baeßler B. Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer. Cancers. 2023; 15(10):2850. https://doi.org/10.3390/cancers15102850
Chicago/Turabian StyleLaqua, Fabian Christopher, Piotr Woznicki, Thorsten A. Bley, Mirjam Schöneck, Miriam Rinneburger, Mathilda Weisthoff, Matthias Schmidt, Thorsten Persigehl, Andra-Iza Iuga, and Bettina Baeßler. 2023. "Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer" Cancers 15, no. 10: 2850. https://doi.org/10.3390/cancers15102850
APA StyleLaqua, F. C., Woznicki, P., Bley, T. A., Schöneck, M., Rinneburger, M., Weisthoff, M., Schmidt, M., Persigehl, T., Iuga, A. -I., & Baeßler, B. (2023). Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer. Cancers, 15(10), 2850. https://doi.org/10.3390/cancers15102850