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Simple Summary: Overview of the onset and progression of B-cell lymphoma under infection with
the hepatitis C virus, and a review of the current status of biomarkers related to treatment efficacy
and prognosis under the progress of DAA therapy.

Abstract: The hepatitis C virus (HCV) is potentially associated with liver cancer, and advances
in various drugs have led to progress in the treatment of hepatitis C and attempts to prevent its
transition to liver cancer. Furthermore, reactivation of HCV has been observed in the treatment of
lymphoma, during which the immortalization and proliferation of lymphocytes occur, which leads
to the possibility of further stimulating cytokines and the like and possibly to the development of
lymphoid malignancy. There are also cases in which the disappearance of lymphoid malignancy has
been observed by treating HCV and suppressing HCV-Ribonucleic acid (RNA), as well as cases of
recurrence with an increase in HCV-RNA. While HCV-associated lymphoma has a poor prognosis,
improving the prognosis with Direct Acting Antivirals (DAA) has recently been reported. The
reduction and eradication of HCV-RNA by means of DAA is thus important for the treatment of
lymphoid malignancy associated with HCV infection, and HCV-RNA can presumably play a role as
a biomarker. This review provides an overview of what is currently known about HCV-associated
lymphoma, its epidemiology, the mechanisms underlying the progression to lymphoma, its treatment,
the potential and limits of HCV-RNA as a therapeutic biomarker, and biomarkers that are expected
now that DAA therapy has been developed.

Keywords: hepatitis C virus (HCV); Direct Acting Antivirals (DAA); Non-Hodgkin’s lymphoma
(NHL); HCV-RNA; micro-RNA

1. Introduction

HCV is a factor in the pathogenesis of hepatocellular carcinoma. Compared with
healthy individuals, HCV is associated with a 23 to 35 times greater rate of liver cancer
occurrence [1,2]. Control of HCV is thus considered to be important to suppress the patho-
genesis of hepatocellular carcinoma. Meanwhile, the mechanism of how HCV is involved
in the development of hepatocellular carcinoma is still not clear [2]. There have been reports
since 2000 suggesting the involvement of HCV in lymphoproliferative disorders [3,4]. The
mechanism of pathogenesis to lymphoid malignancy in HCV-infected cases is gradually
becoming clear. However, there are still many areas that remain unelucidated [5]. Mean-
while, concerning lymphoma complicated with HCV infection, reactivation of HCV when
rituximab is used has been reported [6,7]. The recurrence of non-Hodgkin’s lymphoma
(NHL) with increasing HCV-RNA load has also been reported [8]. These cases suggest
the possibility that an increase or eradication of HCV-RNA may affect the progression of
HCV-positive lymphoid malignancy and its course of treatment. In this review, we pro-
vide an overview of studies to date, as well as discuss HCV reactivation in HCV-infected
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patients, epidemiology of lymphoid malignancy, mechanism involved in its pathogenesis,
the impact of DAA therapy on HCV-positive lymphoid malignancy, the potential and
limitations of HCV-RNA as biomarker, and the potential of biomarkers that are needed in
the DAA era.

2. HCV Reactivation When Rituximab Is Administered

To trace the relationship between HCV and lymphoid malignancy, it is necessary to
consider HCV reactivation during chemotherapy for HCV positive lymphoid malignancy.
One model of the contribution to HCV reactivation is the decrease in B cells due to rituximab
administration, which results in the decrease of antibody production and an increase in
HCV load. Stamataki et al. reported cases of lysis of HCV-infected B cells when rituximab
was used to treat cryoglobulinemia, resulting in the release of HCV and an increase in
HCV viral load [9]. They posit that HCV loses its adherence to B cells when B cells are
destroyed by rituximab administration, resulting in an increase in HCV viral load [10]. For
chemotherapy of patients with B-cell NHL complicated with HCV infection, we have used
rituximab alone or in combination with other drugs. In contrast to an increase in HCV
viral load after rituximab administration, with chemotherapy alone, we have observed a
decrease in HCV viral load after its increase, or a lack of increase in HCV viral load [11].
Our findings support the findings of Stamataki et al. However, it is difficult to explain
the reason for the decrease in HCV viral load after its increase in peripheral blood when
rituximab is not used. Because B cells do not recover for at least six to nine months after
the use of rituximab, it is unlikely that B cells were reinfected [12,13]. It is very likely that
the increased HCV in peripheral blood reenters the bloodstream and infects hepatocytes.
As a result, cytotoxic T cells (CTL) are attacked, and hepatitis occurs [14]. On the other
hand, there have been few reports of severe cases of hepatitis due to HCV reactivation. The
reason is believed to be related to the fact that compared with the hepatitis B virus (HBV),
HCV is more likely to become chronic. However, the mechanism remains unclear. It is
known that after rituximab is administered, B cells not only decrease, but that changes in
CD4- and CD8-positive T cells due to changes in cytokines and other factors also occur. As
a result, CD8-positive T cells decrease, making it easier for HCV to proliferate like HBV.
In the case of HBV, CD8-positive T cells are produced that target HBV antigens during
CD8-positive T cell recovery. At the same time, memory T cells are impaired (they decrease).
As a result, the phenomenon of HBV randomly attacking infected hepatocytes and causing
hepatitis occurs. In such a case, the hepatitis tends to be more severe [15,16]. When HCV
is reactivated, it is believed to produce hepatitis with a similar mechanism. However, it
is known that HCV is not completely eliminated even though HCV-specific CTL in the
host is produced [17,18]. These systems create escape mutation that allows HCV to slip
past CTL recognition when HCV is reactivated after rituximab treatment, thus establishing
immune tolerance to the host and promoting chronicity of HCV infection. At the same
time, compared with HBV reactivation, severe hepatitis is prevented as a result.

Many studies on HCV reactivation predate the use of rituximab, and few have actually
evaluated HCV reactivation on a large scale. There have been scattered reports of HCV
reactivation and resulting hepatitis, but few reports of large-scale occurrences [7,11,19–22].
These reports include cases of death resulting from post-HCV activation hepatitis [19,21].
Although there have been few large patient studies, in a representative study, Ennishi et al.
reported that of the patients who were HCV-positive, 27% had hepatitis, compared with
3% of patients who were HCV-negative; furthermore, HCV-positive patients treated with
transaminase had a higher rate of hepatitis [7]. Arcaini et al. reported that liver damage
was observed in 17.9% of HCV-positive patients when R-CHOP was used [23]. Together
with Ennishi et al.’s report, these findings show that liver damage occurs in about 15–30%
of HCV-positive patients. In these reports, fatal hepatotoxicity in HCV-positive cases and
delayed treatment due to liver damage caused the exacerbation of lymphoma [24]. On the
other hand, no need to delay treatment even with the occurrence of liver damage has been
reported [23,25,26]. In addition, HCV reactivation when rituximab is used is considered to
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be more frequent with genotype 2 HCVI, although the number of cases is small [19]. There
has also been a report that the fatality rate is higher in patients with high initial HCV-RNA
load [6]. It may be that the severity of hepatitis and the ease of reactivation depend on
the HCV genome and viral load. However, there is a possibility that debate about HCV
reactivation may be resolved with the development of direct-acting antivirals (DAA).

3. Epidemiology of HCV-Infected B-Cell Lymphoma

Like HCV’s involvement in hepatocellular carcinoma, whether HCV is involved in
lymphoproliferative disorders has also been studied. Cryoglobulinemia has been reported
to be strongly associated with HCV [27–31]. Because cases of cryoglobulinemia are rare
in Japan, and NHL has been found to be associated with HCV, this review will focus
on B-cell NHL. There have been reports stating an association between HCV and B-cell
NHL [31–37], and in existing reports, the rate of HCV-positive lymphomas is considered
to be approximately 0.5-25% [8,38,39]. The rate is also considered to depend on the type
of lymphoma. Marginal zone lymphoma (MZL), diffuse large B cell lymphoma (DLBCL),
and lymphoplasmacytic lymphoma have been reported to have a high association with
being HCV-positive [40]. Nieters et al.’s study found HCV-infected patients were more
likely to have DLBCL and unclassifiable B-cell lymphoma [41]. Dai Maso et al. conducted
a meta-analysis of 15 studies on the association between HCV infection and NHL and
found a 2–2.5 relative risk of lymphomagenesis in HCV-positive cases. Similar trends
were found for various subtypes of NHL [32]. Meanwhile, in Japan there have been
few epidemiological studies of B-cell lymphoma in HCV-infected patients. Ohsawa et al.
reported on six-year (average) follow-ups of 2,162 HCV-positive patients [42]. Four cases
of NHL were found, and although the association did not reach the dangerous level
of hepatocarcinogenesis, they found a moderate association. Recently, Alkrekshi et al.
compared the rate of B-cell lymphoma in HCV-positive and HCV-negative patients based
on a database of 72 million patients from 2013 to 2020. They reported that there were
940 cases of NHL in 129,970 patients in the HCV group versus 107,480 cases of NHL in
37,961,970 patients in the control cohort (odds ratio (OR) 2.6, 95%, confidence interval
(CI) 2.4–2.7). A positive association was observed for chronic lymphocytic leukemia,
follicular lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma, diffuse
large B-cell lymphoma, Burkitt’s lymphoma, non-Hodgkin’s T-cell lymphoma, and primary
cutaneous T-cell lymphoma. There were no differences in mantle cell lymphoma. They
also reported that the increased risk of HCV-associated lymphoma was persistent across
genders, between Caucasians and African-Americans, and across age groups. While the risk
of NHL in the HCV-negative population was higher in Caucasians than African-Americans
(OR 1.8, 95% CI 1.7–1.8), the risk of HCV-associated NHL was not different [43]. The
researchers also found that there were few cases of NHL in patients under 40 years of
age. In a prospective cohort study, Rabkin et al. analyzed 95 HCV-positive cases where
B-cell lymphoproliferative disorder has developed. They reported the development of
lymphoproliferative neoplasia a mean of 21 years after HCV infection [44]. These above
findings indicate that a certain period of time is required after HCV infection before
lymphoproliferative neoplasia develops.

4. Mechanisms of B-Cell Lymphomagenesis in HCV-Infected Patients

Marcucci et al. reviewed the possibility of HCV-induced lymphoma in the research
literature and hypothesized the following mechanisms: (1) growth of lymphoma due to
antigenic stimulation, (2) suppression of tumor immunity due to HCV infection, (3) co-
infection with an unknown tumor virus, and (4) direct tumor antigenicity of HCV [45].
We first became aware of the association between HCV and lymphoma in a case of HCV-
positive DLBCL where rapid increase in HCV-RNA was observed prior to recurrence [8].
Subsequently, we conducted staining of lymphoma specimens from cases of HCV-positive
lymphoma with HCV-specific antibodies, and found that nonstructural protein 3 (NS3), an
HCV antigen, stained positive, both strongly and weakly, in 76.9% of the cases. However,
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there was no significant correlation between the degree of HCV staining and the rate of
recurrence or resistance to treatment [46]. While these findings suggest the possibility
that HCV is associated with lymphoma, because not all pathology specimens from HCV-
positive lymphoma were positive for NS3, it is inferred that HCV may not be necessarily
directly involved in lymphoma in HCV-positive cases.

A factor currently considered in the association of HCV with B-cell lymphomagenesis
is the possibility of HCV infection of hepatocytes and lymphocytes due to the fact that both
hepatocytes and lymphocytes share CD81 [47–49]. Furthermore, CD81 forms a stimulatory
complex with CD19 and CD21, which results in the promotion of the activation and prolif-
eration of B cells via the B-cell antigen receptor (BCR) [50]. In addition, CD81 upregulates
chemokine receptor CXCR3, activating B cells [51].

On the other hand, intracellular viral replication is not necessarily required for tu-
morigenesis of those cells [52]. The reason is considered to be the possibility of the loss of
viral genome from the nascent cell in the process of being inserted into the cell’s DNA or
during cell replication [53]. Viral oncoproteins can also cause epigenetic dysregulation to
genetically reprogram cellular gene expression. After determining these changes in the
gene expression pattern, the viral genome may be lost completely. Thus, a hit-and-run
mechanism may be sufficient to induce tumorigenesis of the host cell with the temporary
acquisition of a complete or incomplete viral genome [53]. A hit-and-run mechanism has
also been suggested for HCV, and some researchers have shown that in vitro, HCV can
induce mutations in several genes associated with cellular replication, such as p53, bcl6,
and beta-catenin [54,55]. However, the possibility that HCV produces phenotypes that
increase mutation rates has not been confirmed in vitro or from lymphocytes obtained from
chronically HCV-infected patients [56].

The involvement of chronic antigen stimulation in the pathogenesis of NHL has
been shown in mucosa-associated lymphoid tissue (MALT) lymphoma, which arises from
Helicobacter pylori (HP) infection [57]. It has been suggested that a certain period of time is
required until lymphomagenesis [43,44]. It is believed that chronic antigen stimulation of B
cells is mediated by CD81, causing oligoclonal expansion and finally monoclonal expansion
of lymphocytes and leading to NHL pathogenesis. The HCV-E2 protein also causes the
proliferation of B cells by activating the JNK pathway through binding to CD81 [51].

In addition, overexpression of anti-apoptotic protein bcl-2 is often observed in HCV-
positive mixed cryoglobulinemia (MC). It is also considered to be a second hit for the
transition of lymphocyte proliferation to lymphoma [58,59]. Interleukin 6 (IL6) has been
reported to be involved in the transformation of MC to lymphoma. An increase in IL6
causes inflammation, bringing changes in host conditions, and may strongly stimulate
tumorigenesis [60].

Thus, as surveyed above, mechanisms of the pathways of potential lymphomagenesis
include active lymphocyte proliferation and replication by viruses, and associated with that,
cytogenetic abnormalities; run-and-hit mechanism; and chronic antigen stimulation. These
mechanisms may act singly or in combination to contribute to lymphoma pathogenesis.

5. Prognosis of HCV-Positive Lymphoma

There have only been retrospective analyses when it comes to examining the prognosis
of HCV-positive B-cell malignant lymphoma and HCV-negative B-cell lymphoma. Some
reports find poor prognosis of HCV-positive lymphoma [23,38], whereas other reports find
no difference in prognosis [8,20] or good prognosis [25]. In these reports, the prognosis
cannot be stated with certainty because of noticeable variations in the cases. For example,
the good prognosis group had many young patients and patients with low-grade lymphoma
and the poor prognosis group had many patients with high LDH [39]. In the retrospective
study we conducted in 2011, we found that patients with HCV-positive lymphoma tended
to have poor prognosis. However, the difference in prognosis was not significant because
of the small number of cases [46].
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Studying prognostic factors, Merli et al. analyzed prognostic factors of HCV-positive
malignant lymphoma in 535 patients given an anthracycline-based therapy. They found
that ECOG performance status of 2 or over, serum albumin below 3.5 g/dL, and HCV-
RNA viral load over 1000 KIU/mL were significant prognostic factors. The researchers
proposed a way to stratify patients into three risk categories with different overall and
progression-free survival (low = 0; intermediate = 1; high-risk ≥ 2 factors) by combining
the three prognostic factors into a new prognostic score [61].

Recently, Elbedewy et al. analyzed the prognosis of HCV-positive DLBCL in Egypt and
reported that compared to uninfected cases, HCV infection was independently associated
with poor prognosis [62]. They also reported that although it had been suggested that
antiviral therapy may improve prognosis, it was not an independent prognostic factor.
Regarding these prognostic factors, Zhang et al. reviewed and analyzed previous reports
on HCV-positive NHL [63]. They found that the overall survival (OS) and progression free
survival (PFS) were both significantly shorter for HCV-positive NHL, which also showed
poorer response to treatment. HCV-positive NHL patients also exhibited an advanced
disease stage, elevated LDH level, high-intermediate or high international prognosis index
(IPI) and follicular lymphoma international prognosis index (FLIPI) scores, as well as
spleen and liver involvement [63]. They also found that antiviral therapy against HCV
improved OS and PFS, and furthermore, combination with rituximab led to good results
for HCV-positive NHL. However, patients with low albumin levels and hepatic cirrhosis
still had a poor prognosis [63].

Synthesizing the above findings, it can be considered that for HCV-positive NHL,
prognosis is still poor compared to HCV-negative NHL unless antiviral therapy is provided.
Reasons include the progression of hepatic cirrhosis, IPI and FLIPI risk factors, low albumin,
and the maintenance of a certain level of HCV-RNA.

6. Antiviral Therapy with Interferon and HCV-Positive NHL

Concerning the prognosis of antiviral therapy for HCV-positive lymphoma, interfer-
ons initially dominated treatments. In 2002, Hermine et al. reported observing therapeutic
efficacy in treating HCV-positive patients with splenic lymphoma with villous lymphocytes
(SLVL) with interferon alone or in combination with ribavirin; in a case when lymphoma
recurred, HCV-RNA was again detectable in blood [64]. Saadoun et al. further expanded
this study to 18 patients with chronic HCV and SLVL as well as Type II mixed cryoglobu-
linemia (MC) (both symptomatic and asymptomatic). They were treated with interferon
alone or in combination with ribavirin, and in 14 cases, a sustained complete hematologic
response was achieved [65].

On the other hand, for low-grade lymphomas other than marginal zone lymphoma
(MZL), while peg-IFN may have a better outcome than conventional IFN, most reports
suggest a hematologic response of 60–77%, depending on the addition of ribavirin or
not [66,67]. Arcaini et al. reported results of treating 134 HCV-positive low-grade lym-
phomas with interferon alone or in combination with ribavirin. The objective response
rate (ORR) was 77%. Noteworthy were the findings that treatment of lymphoma had
greater efficacy in patients who achieved sustained virological response (SVR) and that
there was no difference in therapeutic outcome between MZL and non-MZL non-grade
lymphoma. Furthermore, 34 patients who received second-line antiviral therapy also had
similar results [68].

Meanwhile, concerning DLBCL, we examined pre- and post-treatment changes in
HCV-RNA and found that patients with lower HCV-RNA levels after treatment levels were
less likely to relapse, whereas those with higher HCV-RNA levels after treatment were
more likely to relapse or be refractory to treatment. In particular, patients that become HCV-
negative after interferon therapy for malignant lymphoma did not relapse [46]. Suppression
of HCV with interferon may thus contribute to a better prognosis of HCV-positive DLBCL.
However, it has been reported that antiviral therapy with INF or ribavirin for HCV did not
show positive results for immunochemotherapy, such as standard Rituxan or chemotherapy.
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This is believed to be due to the aggressiveness of DLBCL, which exceeded therapeutic
efficacy as a result of gaining additional mutations and other factors [69].

The prognostic value of treatment with antiviral drugs for HCV after treatment for
DLBCL was studied with retrospective analysis and combined analysis of retrospective
prospective occurrences. In the group with antiviral therapy, 5-year OS and PFS rates may
both improve [70,71]. However, Michot et al. reported the possibility that some cases of
DLBCL may have been transformed from splenic marginal zone lymphoma (SMZL). In
Europe and the U.S., there are many cases where SMZL is associated with HCV. These
cases are highly responsive to HCV antiviral therapy, suggesting the possibility of an
improved prognosis. On the other hand, Michot et al.’s report included some patients in
the antiviral therapy group who did not achieve SVR, and Hosry et al.’s report included
many patients with hepatic cirrhosis in their analysis. These factors may have adversely
affected OS and PFS rates [70,71]. A factor that makes the treatment of hepatic cirrhosis
difficult is Rho-associated kinase 2 (ROCK2), which is involved in hepatic fibrogenesis [72].
It has been suggested that besides promoting liver fibrosis, ROCK2 is also involved in
the progression of lymphoma [73]. This suggests that hepatic fibrogenesis creates an
environment conductive to lymphoma growth, which makes treatment difficult. On the
other hand, in a retrospective study, La Mura et al. reported the group that received
antiviral therapy did not experience recurrence and that antiviral therapy was associated
with longer DFS [74].

The above findings suggest that in HCV-positive DLBCL patients, antiviral therapy
with INF by itself does not achieve sufficient results; instead, side effects are noticeable. On
the other hand, adding this therapy after immunochemotherapy may contribute to better
disease-free survival (DFS) and OS rates.

7. Relationship between Hepatitis C and Lipids

Chronic HCV infection has been known to cause not only liver fibrosis and hep-
atomas but also fatty liver and disorders of lipid metabolism. Advances in experimental
systems that can evaluate the HCV infection cycle have revealed that HCV exploits the lipid
metabolic system with a variety of steps to enable efficient replication in hepatocytes [75–79].
In addition, it has been discovered that scavenger receptor type 1 (SR-B1) and low-density
lipoprotein receptor (LDLR), which are receptors necessary for HCV entry, are also, re-
spectively, HDL and LDL receptors [80–83]. Furthermore, it has been discovered that
the lipid droplet is used as scaffold in the production of HCV core particle [84], and that
apolipoproteins play an important role in the production of HCV infectious particles in
the ER lumen [85–87]. Thomssen et al. first found that lipoproteins bind directly to HCV
particles in sera of patients with chronic hepatitis C [88]. HCV particles interacting with
lipoproteins are called lipoviroparticles (LVPs). LVPs with specific gravity close to that
of LDL and VLDL are highly infectious, suggesting that HCV particles’ interaction with
lipoproteins contribute to HCV’s high infectivity [89–91]. Furthermore, when the lipid
composition of purified viral particles was analyzed, it was found that it was similar to
the composition of VLDL and LDL [92]. Thus, HCV and lipids are deeply involved in
infectious proliferation. Statins, which inhibit HMG-CoA reductase, have been shown to
inhibit HCV genome replication in in vitro evaluation. In clinical trials, statins have been
found to have anti-HCV activity in combination with other drugs [93–95]. Considering
that HCV hijacks the lipid metabolic system, drugs that inhibit lipid metabolism may also
inhibit HCV replication, and hold promise for DAA-resistant cases.

8. Treatment of HCV-Positive NHL in Era of Interferon-Free DAA Changes in
DAA Therapy

HCV is currently classified into six genotypes, with genotypes 1 and 2 each having
two subtypes (1a, 1b and 2a, 2b). In Japan, genotypes 1b, 2a, and 2b are predominant.
With the exception of some DAAs agents, the antiviral efficacy of IFN and DAA differs
depends on the genotype, so determining the genotype is essential for treatment. In
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2013, the HCV NS5B nucleotide polymerase inhibitor sofosbuvir (Sovaldi) and ribavirin
combination (administration of 12/24 weeks) was approved for genotype 2 and 3 chronic
hepatitis and compensated cirrhosis, the first treatment for such HCV conditions in the
world. In 2014, the NS5B-NS5A inhibitor combination of ledipasvir/sofosbuvir (Harvoni)
(12-weeks) was approved as first-line treatment for genotype 1 chronic hepatitis and
compensated cirrhosis, with a reported SVR12 of 95%. In Japan, the same treatment method
was approved in 2015, and it showed outstanding therapeutic efficacy [96]. However,
while the SVR12 in patients without Y93 or L31 resistance mutations was as high at 98%,
in patients with Y93 mutations or Y93 + L31 double resistance mutations, the SVR of
the ledipasvir/sofosbuvir combination was found to be around 90%. In 2017, a new
combination of NS3-NS5A inhibitor glecaprevir/pibrentasvir (8 and 12 weeks) (Mavillet)
was approved. The drug showed high therapeutic efficacy in patients with Y93+L31 double
resistance. The combination therapy achieved more than 98% SVR12 after eight weeks of
treatment for first-time treatment of genotype 1 and 2 chronic hepatitis [97] and shortened
the treatment period from the heretofore 12 weeks of DAA treatment. Furthermore, a
high therapeutic efficacy of more than 90% was achieved with 12 weeks of treatment
in patients with prior DAA treatment failures. However, the glecaprevir/pibrentasvir
combination showed poor therapeutic efficacy for patients with P32 deletion, which occurs
in about 5% of patients with prior DAA treatment failures (mainly patients for whom
DCV/ASV combination treatment was not effective). Next, the combination therapy
velpatasvir/sofosbuvir (12/24 weeks) (Epclusa) was approved. This treatment provides a
new option for patients with decompensated cirrhosis (12-week treatment) and patients
with prior failed DAA treatments and P32 deficiency (24-week treatment with the addition
of ribavirin) [98]. Other drugs have also been developed around the world and are being
used differentially depending on patient conditions such as the presence of hepatic cirrhosis,
renal failure, and maintenance dialysis [99].

9. Significance of DAA for HCV-Positive Indolent Lymphoma

For indolent NHL, it has been reported that only antiviral therapy improved splenic
marginal zone lymphoma and marginal zone lymphoma, where subcutaneous “lipoma-
like” nodules are formed. Antiviral therapy by itself is expected to improve prognosis of
HCV-positive lymphoma [100–102].

There are still only a few comprehensive reports on the efficacy of DAA therapy for
HCV-positive indolent NHL. Representative studies are shown in Table 1. Arcaini et al.
used DAA therapy for HCV-positive indolent NHL patients and reported that SVR was
achieved in 45 of 46 patients (including 7 with hepatic cirrhosis); one patient failed to
continue treatment. They reported that the treatment for lymphoma resulted in achieving
complete remission (CR) or partial remission (PR) in 27 or 37 patients with MZL and in
31 of 46 patients with other forms of indolent NHL. The cases of progressive disease (PD)
in the report were hepatic cirrhosis that transformed to DLBCL. Two other cases of MZL
became PD [103]. Mereli et al. reported similar results, with an SVR of 92.5% with DAA.
The results of treatment for lymphoma were CR+PR in 13 of 27 patients with MZL and
in 18 of 40 patients with other indolent NHL. The researchers reported that two patients
died of lymphoma exacerbations, one patient died of a cause unrelated to lymphoma, and
three patients had exacerbations in re-staging. In the report, being a male patient and the
white blood cell count were associated with lymphoma exacerbations [104]. Both reports
above give promising results in terms of OS and PFS rates and suggest that the introduction
of immunochemotherapy in the early stage may not be necessary for patients with HCV-
positive indolent NHL who have some hematologic response after DAA therapy. On the
other hand, there were also results showing that compared with cases of HCV-positive
patients treated also with interferon mentioned above, the effects may be slightly inferior.
These results indicate the undeniable anti-tumor effects of interferon itself. Furthermore,
since some cases of disease progression were observed at a relatively early stage, it is hoped
that the poor prognosis factors shown by Mereli et al. will be confirmed in the majority of
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studies. Frigeni et al. compared cases of HCV-positive indolent lymphoma treated with
DAA, including Arcaini et al.’s cases and previous cases, with cases of indolent lymphoma
treated with DAA that included IFN. They found that DAA therapy had superior outcome
for SVR and duration of treatment, and treatment that included IFN had superior CR rate.
These findings indicate the possibility, again, that IFN may have antitumor effects [105].
The researchers also found no CR or PR in CLL patients, suggesting that there are some
types of lymphomas that require treatment of the lymphoma itself, regardless of SVR. Based
on the above findings, for patients with HCV-positive indolent NHL who are considered to
have poor prognosis, and for those who have SVR against HCV but who do not respond
adequately to treatment alone, the therapeutic efficacy of a combination of drugs that
includes anti-CD20 antibody, BTK inhibitor, BCL2 inhibitor, and lenalidomide is expected
to be promising. The reactivation of HCV amid the state of immunosuppression by these
drugs is also of interest.

Table 1. Previous studies of low-grade lymphoma treated with DAAs.

Disease n Treatment Outcome
SVR CR PR SD PD

Arcaini et al. [80]

MZL 37 11 16 6 4
CLL/SLL 4 0 0 4 0

FL 2 0 2 0 0
LPL 2 0 1 1 0

Low grade NOS 1 1 0 0 0
Total 46 45 12 19 11 4

Mereli et al. [81]

MZL 27 7 6 10 4
CLL/SLL 2 0 1 0 1

FL 1 0 1 0 0
LPL 6 0 1 5 0

Low grade NOS 4 1 1 1 1
Total 40 38 8 10 16 6

Abbreviations: DAA: direct-acting antiviral agents; SVR: sustained virological response; CR: complete re-
mission; PR: partial remission; SD: stable disease; PD: progressive disease; MZL: marginal zone lymphoma;
CLL/SLL: chronic lymphocytic leukemia/small lymphocytic lymphoma; FL: follicular lymphoma; LPL: lym-
phoplasmacytic lymphoma.

10. Significance of DAA in Aggressive HCV-Positive Lymphoma

Table 2 shows the results of first-line DAA therapy against mainly HCV-positive
DLBCL. We evaluated the prognostic value of antiviral therapy against HCV after remis-
sion was achieved with CHOP or CHOP-like therapy combined with rituximab in five
successive cases of HCV-RNA-positive DLBCL. The control groups consisted of a group
of HCV-RNA-positive DLBCL cases prior to this trial (control 1), and a group of cases
that tested negative for HIV, HCV, and HBV (control 2). All the cases were in remission at
the time of initial treatment. The results showed that the DAA group had more genotype
2 patients, and the control 1 group had more genotype 1 patients. Although the genotype
difference may have influenced the results, all five patients who received DAA therapy
after immunochemotherapy survived without any recurrence at the two-year mark after
treatment [106]. However, after the completion of this study, one patient who had also
been infected with HBV from the time of initial onset developed hepatic cirrhosis, recurred
DLBCL, and died. While there is a question of whether DAA therapy should be given
concurrently or sequentially, in a report where immunochemotherapy (I-CT) and DAA
therapy were performed, neutropenia and grade 3 fever associated with neutropenia were
observed, but almost all patients were treated as planned [107,108]. A report found that
low IPI risk scores and antiviral therapy were factors correlated with better prognosis [107].
Meanwhile, another study found that an IPI score of high-intermediate risk or above, or
the presence of two or more extra-lymphatic node invasions, was considered to be the
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predominant factor for poor prognosis [109]. Further analysis of these factors with a large
number of cases is desired.

Table 2. Previous studies of aggressive lymphoma treated with DAAs.

Disease n DAA Treatment Outcome
Concurrent Sequential SVR CR PR PD Died

Tsutsumi Y et al. [83] DLBCL 5 0 5 5 4 0 1 1

Persico M et al. [84] DLBCL 20 20 0 19 19 0 unknown 1

Occhipinti V et al. [85] DLBCL 7 7 0 7 7 0 0 0

Mereli M et al. [86]
DLBCL 45 9 36 42 0 3 2
G3 FL 2 0 2 2 0 0 0
Total 47 9 38 45 38 0 3 2

Abbreviations: DAA: direct-acting antiviral agents; SVR: sustained virological response; CR: complete remission;
PR: partial remission; PD: progressive disease; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma.

Merelli et al. studied salvage therapy on patients with relapsed or refractory HCV-
positive DLBCL with concurrent or sequential DAA therapy. They reported that while
four patients died, the 4-year overall survival (OS) rate was 76% [110]. This result suggests
that DAA therapy for HCV-positive DLBCL can be carried out concurrently. Even when
carried out sequentially, it is considered to have a positive effect on HCV-positive DLBCL,
such as during recurrence. The findings indicate that DAA therapy to suppress HCV at any
point in time is important (although it should be conducted while the therapeutic efficacy
of I-CT can be expected).

Recently, a retrospective study reported on cases where DAA therapy was performed
or not performed for HCV-positive mantle cell lymphoma. Of the ten patients who did
not receive DAA, eight had PD or relapse, and seven of them died. On the other hand,
three of the four patients who received DAA maintained CR, and all four were reported to
have survived at the time of the report. These results reaffirm the importance of DAA for
HCV-positive NHL [111].

11. HCV-RNA as Biomarker

The above results suggest that as a result of HCV-RNA loss due to DAA and other
means, therapeutic efficacy for HCV-RNA-positive NHL and its prognosis are improved.
This suggests that HCV-RNA is useful as a biomarker for NHL. It also brings up the question
of whether HCV-RNA is useful as a biomarker for NHL recurrence. We have previously
reported on a case of NHL recurrence with increased HCV-RNA load [8]. However, this
case occurred prior to the introduction of DAA, and is uncharacteristic in light of current
conditions. Although there have been few cases of HCV-positive NHL after the introduction
of DAA, what is noteworthy are scattered reports of recurrence immediately after SVR
is achieved with DAA. In these reports, recurrences of HCV-positive DLBCL and other
lymphomas occurred after I-CT and DAA; furthermore, a rise in HCV-RNA level was not
detected [112–115]. These reports concerned NHL recurrences relatively early after SVR
was achieved by DAA, so the involvement of DAA is suspected. On the other hand, we
have encountered a case of NHL recurrence four years after SVR was achieved in an HCV-
positive NHL patient who had undergone DAA therapy and achieved remission, even
though SVR was maintained [106]. It is thus not clear whether DAA is directly involved in
recurrences of HCV-positive NHL. In the current situation, where antiviral therapy is being
applied with DAA, because recurrence of NHL has been observed despite SVR maintenance,
an increase or decrease in viral load may not be appropriate as a biomarker for recurrence.
In the past, attempts have been made to identify serum biomarkers for the presence or
absence of B-cell NHL in HCV-RNA-positive cases, and sCD27, sIL-2Rα, gammaglobulins
and C4 levels associated with the presence of overt B-NHL in HCV-infected patients have
been reported [116]. The study was also conducted before the introduction of DAA, so it is
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unclear whether HCV-RNA can be used as a biomarker for HCV-positive NHL when SVR
has been achieved with DAA. Future investigation of this area would be beneficial.

12. Micro RNAs (miRNAs) as Biomarkers

MicroRNAs (miRNAs) are single-stranded RNA molecules, approximately 21–25 nucleotides
long. They are involved in the post-transcriptional regulation of gene expression in eu-
karyotes. The human genome is believed to encode more than 1000 miRNAs. miRNAs
bind to their target mRNAs with incomplete homology. In general, they bind to the 3′

UTR of the mRNA of the target gene to destabilize it and suppress protein production
through translational downregulation. miRNA-mediated transcriptional repression plays
an important role in a wide range of biological processes, including development, cell
proliferation and differentiation, apoptosis, and metabolism [117]. These various miRNAs
are known to activate both canonical and alternative NF-κB pathways [118]. Of these
miRNAs, miR-26b is known to be involved in lymphomagenesis through downregula-
tion, and this phenomenon has been observed in HCV-positive splenic marginal zone
lymphoma (SMZL) [119]. Furthermore, it has been reported that with regard to NHL,
in addition to a decrease in miR-26b, an increase in expression of miR-21, mi-R16, and
miR-155 was detected [120]. However, these miRNAs are associated with the growth and
pathogenesis of HCV-positive lymphoproliferative disorders. Their abnormal expression
and repression may become unchecked when SVR is achieved by DAA. Their usefulness
as biomarkers in the DAA era is thus unclear. On the other hand, with the advancement
of DAA, HCV-RNA is not necessarily useful as a biomarker. Considering that there have
been cases of recurrence immediately after SVR by DAA, biomarkers that can, from the
outset, stratify cases with poor prognosis are deemed necessary. Augello et al. analyzed
lymph nodes obtained from 19 patients with HCV-positive DLBCL, 18 patients with HCV-
negative DLBCL, 30 patients with HCV-positive reactive lymph nodes, and 30 patients
with HCV-negative reactive lymph nodes. They found decreased expression of miR-138-5p
and increased expression of miR-147a, miR-147b, and miR-511-5p in HCV DLBCL to be
factors of poor prognosis for HCV-positive DLBCL patients. These miRNAs hold promise
as biomarkers that can stratify poor prognostic cases from the outset for HCV-positive NHL
patients [121]. It is desirable to study if these biomarkers are still useful in the current era
of DAA advancements.

13. Conclusions

As a result of advances in DAA therapy, the prognosis of HCV-positive lymphoprolif-
erative disorders has improved. The reduction or loss of HCV-RNA is useful as a biomarker
predicting the success of the treatment of an HCV-positive lymphoproliferative disorder or
its prognosis. However, HCV-RNA loses its usefulness for predicting recurrence. On the
other hand, in some lymphoproliferative disorders where SVR was achieved by DAA, early
recurrence was observed. There is thus a need to stratify lymphoproliferative disorders
with possible poor prognosis from the outset. Some miRNAs are biomarkers that can
predict lymphoproliferative diseases with a poor prognosis from an early stage. Their
usefulness after SVR is achieved by DAA is being studied and promises to bring about
further practical applications.
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