The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Technical Insight
3. A Role of Exosomes in Cancer: From Preclinical to Clinical Data
4. Exosomes Deliver Enzymatic Activity
5. Exosomes Deliver Nucleic Acids
6. Conclusions
Tumor | Biomarkers | Source | References |
---|---|---|---|
Breast cancer | Breast cancer resistance protein (BCRP) | Plasma | [113] |
Her2 | Plasma Serum | [114,115] | |
Glypican-1 | Serum | [56] | |
Fibronectin | Plasma | [116] | |
Periostin | Plasma | [117] | |
Del-1 | Plasma | [118,119] | |
miR-101, miR-372, and miR-373 | Serum | [84] | |
miR-1246 and miR-21 | Plasma | [85] | |
Colorectal cancer | Hsp60 | Plasma | [38] |
TSAP6/CEA | Plasma | [86] | |
Glypican-1 | Plasma | [28] | |
CEA | Serum | [45,87] | |
CD147 | Serum | [87] | |
Plasma | [89] | ||
let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a | Serum | [90] | |
miR-19 | Serum | [91] | |
miR-4772-3p | Serum | [92] | |
miR-21 | Serum | [87] | |
miR-221 | Serum | [94] | |
Esophageal squamous sell sarcinoma | miR-21 | Serum | [95] |
Gastric cancer | GKN1 | Serum | [96] |
TGF-β1 | Plasma | [97] | |
RNA | Bile | [98] | |
miR-423-5p | Serum | [99] | |
Hematological tumors | CD9, CD13, CD19, CD30, CD38, and CD63 | Serum | [100] |
Hepatocellular carcinoma | miR-18a, miR-221, miR-222, and miR-224 | Serum | [101] |
miR-718 | Serum | [102] | |
Laryngeal squamous cell carcinoma | miR-21 and HOTAIR (lncRNA) | Serum | [103] |
Lung cancer | NY-ESO-1 | Plasma | [104] |
miR-125a-5p, miR-145, and miR-146a | Serum | [105] | |
miR-151a-5p, miR-30a-3p, miR-200b-5p, miR-629, miR-100, and miR-154-3p | Plasma | [106] | |
Melanoma | Caveolin-1 | Plasma | [24] |
HSP70 and HSP90 | Plasma | [120] | |
MIA and S100B | Serum | [121] | |
Oral squamous cell carcinoma | CAV-1 | Plasma | [43] |
Ovarian cancer | EpCAM, CD24, and CA-125 | Plasma | [122,123,124] |
TGF-beta1 and MAGE3/6, | Plasma | [125] | |
miR-21, miR-214, miR-200a, miR-200b, miR-200c, miR-203, miR-205, and miR-141 | Serum | [126] | |
miR-21, miR-100, miR-200, miR-320, and miR373 | Serum | [107] | |
Pancreatic cancer | CD44v6, Tspan 8, EpCAM, and CD104 miR-1246 miR-3976 miR-4306 miR-4644 | Serum Urine | [64] |
KRAS P53 mutations | Serum | [71] | |
miR-17-5p and miR-21 | Serum | [108] | |
miR-10b, miR-21, miR-30c, miR-181a, and miR-let7a | Serum | [127] | |
Glypican-1 | Plasma | [109] | |
miR-191, miR-21, and miR-451a | Serum | [110] | |
miR-451a | Plasma | [111] | |
Prostate cancer (PCa) | PSA | Plasma | [44,53] |
Urine | [25] | ||
CA IX | Plasma | [47] | |
Survivin | Plasma | [128] | |
Exosome levels | Plasma | [41] | |
PTEN | Plasma | [129] | |
miR-141 and miR-375 | Serum | [130] | |
miR-1290 and miR-375 | Plasma | [131] | |
miR-141 | Serum | [132] |
NCT Number | Status | Disease | Characteristics | Ref. |
---|---|---|---|---|
NCT03235687 | Active, not reciting | Prostate Cancer | Year: 2017 Population: n = 1000; Age: 50 years and older; Sex: male Phase: Not applicable | [133] |
NCT03974204 | Withdrawn | Breast Cancer Leptomeningeal Metastasis | Year: 2019 Population: n = 0; Age: 18 years and older; Sex: female Phase: Not applicable | [134] |
NCT05286684 | Recruiting | Breast Cancer | Year: 2023 Population: n = 30; Age: 18 years and older; Sex: female Phase: Not applicable | [135] |
NCT04781062 | Active, not recruiting | Breast Cancer | Year: 2021 Population: n = 367; Age: 18 years and older; Sex: female Phase: Not applicable | [136] |
NCT02662621 | Completed | Cancer (Solid Tumors) | Year: 2015 Population: n = 71; Age: 18 years and older; Sex: all Phase: Not applicable | [137] |
NCT04530890 | Recruiting | Breast Cancer Digestive Cancer Gynecologic Cancer Circulating Tumor DNA Exosomes | Year: 2021 Population: n = 1000; Age: 18 years and older; Sex: all Phase: Not applicable | [138] |
NCT04258735 | Recruiting | Metastatic Breast Cancer | Year: 2019 Population: n = 300; Age: 18 years and older; Sex: all Phase: Not applicable | [139] |
NCT04556916 | Recruiting | Prostate Cancer | Year: 2021 Population: n = 320; Age: 40 years and older; Sex: male Phase: Not applicable | [140] |
NCT03711890 | Recruiting | Pancreatic Carcinoma Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary Type | Year: 2019 Population: n = 75; Age: 18 years and older; Sex: all Phase: Not applicable | [141] |
NCT02507583 | Completed | Malignant Glioma Neoplasms | Year: 2015 Population: n = 33; Age: 18 years and older; Sex: all Phase: Phase 1 | [142] |
NCT05218759 | Not yet recruiting | Non-Small Cell Lung Cancer | Year: 2022 Population: n = 30; Age: 18 to 75 years; Sex: all Phase: Not applicable | [143] |
NCT04427475 | Unknown status | NSCLC Patients | Year: 2020 Population: n = 200; Age: 18 years and older; Sex: all Phase: Not applicable | [144] |
NCT04636788 | Unknown status | Pancreas Adenocarcinoma | Year: 2020 Population: n = 102; Age: 18 years and older; Sex: all Phase: Not applicable | [145] |
NCT03542253 | Unknown status | Early Lung Cancer | Year: 2018 Population: n = 80; Age: child, adult, and older adult; Sex: all Phase: not reported | [146] |
NCT04529915 | Active, not recruiting | Lung Cancer | Year: 2020 Population: n = 470; Age: 40 years and older; Sex: all Phase: not reported | [147] |
NCT03821909 | Unknown status | Pancreatic Cancer | Year: 2018 Population: n = 30; Age: 18 to 80 years; Sex: all Phase: not repoted | [148] |
NCT03830619 | Completed | Lung Cancer (Diagnosis) | Year: 2017 Population: n = 1000; Age: 18 to 75 years; Sex: all Phase: not reported | [149] |
NCT04394572 | Completed | Colorectal Cancer | Year: 2021 Population: n = 80; Age: 18 years and older; Sex: all Phase: not reported | [150] |
NCT04155359 | Recruiting | Bladder Cancer | Year: 2020 Population: n = 3000; Age: 45 to 85 years; Sex: all Phase: not reported | [151] |
NCT01344109 | Withdrawn | Breast Neoplasms | Year: 2011 Population: n = 0; Age: 18 years and older; Sex: female Phase: not reported | [152] |
NCT05587114 | Recruiting | Lung Cancer Diagnosis | Year: 2022 Population: n = 150; Age: 40 years and older; Sex: all Phase: not reported | [153] |
NCT05270174 | Not yet recruiting | Explore Whether lncRNA-ElNAT1 in Urine Exosomes Can be Used as a New Target for Preoperative Diagnosis of Lymph Node Metastasis | Year: 2023 Population: n = 75; Age: 18 years and older; Sex: all Phase: not reported | [154] |
NCT03032913 | Completed | Pancreatic Ductal Adenocarcinoma (PDAC) | Year: 2017 Population: n = 52; Age: 18 years and older; Sex: all Phase: not reported | [155] |
NCT02702856 | Completed | Prostate Cancer | Year: 2014 Population: n = 2000; Age: 50 years and older; Sex: male Phase: not reported | [156] |
NCT04523389 | Unknown status | Colorectal Cancer | Year: 2020 Population: n = 172; Age: 18 years and older; Sex: all Phase: not reported | [157] |
NCT03694483 | Suspended | Prostate Cancer | Year: 2018 Population: n = 600; Age: 18 years and older; Sex: male Phase: not reported | [158] |
NCT04661176 | Active, not recruiting | Prostate Cancer | Year: 2020 Population: n = 500; Age: 22 years and older; Sex: male Phase: not reported | [159] |
NCT02393703 | Recruiting | Pancreatic Cancer Benign Pancreatic Disease | Year: 2015 Population: n = 111; Age: 18 years and older; Sex: all Phase: not reported | [160] |
NCT01779583 | Unknown status | Gastric Cancer | Year: 2013 Population: n = 80; Age: 18 years and older; Sex: all Phase: not reported | [161] |
NCT04081194 | Unknown status | New Tumor Diagnostics From Human Plasma Samples | Year: 2016 Population: n = 15; Age: 50 to 90 years; Sex: all Phase: not reported | [162] |
NCT03236688 | Suspended | Metastatic Castrate-Resistant Prostate Cancer | Year: 2016 Population: n = 30; Age: 18 years and older; Sex: male Phase: not reported | [163] |
NCT04629079 | Recruiting | Lung Cancer | Year: 2020 Population: n = 800; Age: 18 years and older; Sex: all Phase: not reported | [164] |
NCT04939324 | Active, not recruiting | Lung Cancer Exosomes Non-Small Cell Lung Cancer | Year: 2021 Population: n = 30; Age: 18 years and older; Sex: all Phase: Not Applicable | [165] |
NCT04288141 | Recruiting | HER2-positive Breast Cancer | Year: 2019 Population: n = 40; Age: 18 years and older; Sex: all Phase: not reported | [166] |
NCT03874559 | Unknown status | Rectal Cancer | Year: 2018 Population: n = 30; Age: 18 years and older; Sex: all Phase: not reported | [167] |
NCT03738319 | Unknown status | High-Grade Serous Carcinoma Ovarian Cancer Exosomes Prognosis Early Diagnosis | Year: 2018 Population: n = 160; Age: 18 years and older; Sex: female Phase: not reported | [168] |
NCT04720599 | Completed | Urologic Cancer | Year: 2020 Population: n = 120; Age: 50 years and older; Sex: male Phase: not reported | [169] |
NCT05101655 | Completed | Osteosarcoma Pulmonary Metastases | Year: 2020 Population: n = 60; Age: 12 to 60 years; Sex: all Phase: not reported | [170] |
NCT04315753 | Unknown status | Lung Cancer | Year: 2018 Population: n = 2000; Age: 55 years and older; Sex: all Phase: not reported | [171] |
NCT03895216 | Completed | Bone Metastases | Year: 2018 Population: n = 34; Age: 18 years and older; Sex: all Phase: not reported | [172] |
NCT04960956 | Terminated | Prostate Cancer Urothelial Carcinoma | Year: 2016 Population: n = 13; Age: 18 years and older; Sex: male Phase: not reported | [173] |
NCT03911999 | Completed | Prostate Cancer | Year: 2018 Population: n = 180; Age: 45 years and older; Sex: male Phase: not reported | [174] |
NCT05572099 | Recruiting | Prostate Cancer | Year: 2018 Population: n = 750; Age: 45 years and older; Sex: male Phase: not reported | [175] |
NCT04323579 | Unknown status | Lung Cancer | Year: 2018 Population: n = 2000; Age: 55 years and older; Sex: all Phase: not reported | [176] |
NCT04357717 | Terminated | Prostate Cancer | Year: 2020 Population: n = 150; Age: 50 years and older; Sex: male Phase: not reported | [177] |
NCT04100811 | Recruiting | Prostate Cancer | Year: 2020 Population: n = 4000; Age: 45 years and older; Sex: male Phase: not reported | [178] |
NCT05463107 | Not yet recruiting | Thyroid Cancer Follicular Thyroid Cancer | Year: 2022 Population: n = 50; Age: 20 to 80 years; Sex: all Phase: not reported | [179] |
NCT04653740 | Recruiting | Advanced Breast Cancer | Year: 2020 Population: n = 25; Age: 18 years and older; Sex: female Phase: Not applicable | [180] |
NCT02147418 | Recruiting | Oropharyngeal Cancer | Year: 2015 Population: n = 30; Age: 18 years and older; Sex: all Phase: Not reported | [181] |
NCT03432806 | Recruiting | Colon Cancer Liver Tumors | Year: 2017 Population: n = 80; Age: 18 years and older; Sex: all Phase: Not reported | [182] |
NCT05397548 | Recruiting | Gastric Cancer | Year: 2022 Population: n = 700; Age: 18 to 80 years; Sex: all Phase: Not reported | [183] |
NCT03811600 | Completed | Sleep Apnea Syndromes, Obstructive Cancer | Year: 2019 Population: n = 90; Age: 18 years and older; Sex: all Phase: not reported | [184] |
NCT03108677 | Active, not recruiting | Lung Metastases Osteosarcoma | Year: 2017 Population: n = 90; Age: 12 to 60 years; Sex: all Phase: not reported | [185] |
NCT04499794 | Recruiting | Untreated Advanced NSCLC Patients FISH-Identified ALK Fusion (Positive or Negative) | Year: 2020 Population: n = 75; Age: 18 years and older; Sex: all Phase: not reported | [186] |
NCT04182893 | Unknown status | Pulmonary Nodules | Year: 2019 Population: n = 400; Age: 18 years and older; Sex: all Phase: not reported | [187] |
NCT02464930 | Unknown status | Barrett’s Esophagus Gastroesophageal Reflux Esophageal Adenocarcinoma | Year: 2015 Population: n = 220; Age: 18 years and older; Sex: all Phase: not reported | [188] |
NCT05625529 | Not yet recruiting | Pancreas Cancer Exosomes Extracellular Vesicles Pancreatic Neoplasms | Year: 2022 Population: n = 1000; Age: 18 years and older; Sex: all Phase: not reported | [189] |
NCT03581435 | Unknown status | Proteinosis Gallbladder Carcinoma | Year: 2018 Population: n = 50; Age: 18 years and older; Sex: all Phase: not reported | [190] |
NCT03102268 | Unknown status | Cholangiocarcinoma Benign Biliary Stricture | Year: 2017 Population: n = 80; Age: 18 years and older; Sex: all Phase: not reported | [191] |
NCT05705583 | Recruiting | Renal Cell Carcinoma | Year: 2023 Population: n = 100; Age: 18 years and older; Sex: all Phase: not reported | [192] |
NCT03334708 | Recruiting | Pancreatic Cancer Pancreatic Diseases Pancreatitis Pancreatic Cyst | Year: 2017 Population: n = 700; Age: 18 years and older; Sex: all Phase: not reported | [193] |
NCT03800121 | Recruiting | Sarcoma | Year: 2018 Population: n = 30; Age: 18 years and older; Sex: all Phase: not reported | [194] |
NCT05744076 | Active, not recruiting | Melanoma | Year: 2019 Population: n = 150; Age: 18 years and older; Sex: all Phase: not reported | [195] |
NCT04053855 | Recruiting | Clear Cell Renal Cell Carcinoma | Year: 2020 Population: n = 100; Age: 18 years and older; Sex: all Phase: not reported | [196] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Logozzi, M.; Spugnini, E.; Mizzoni, D.; Di Raimo, R.; Fais, S. Extracellular Acidity and Increased Exosome Release as Key Phenotypes of Malignant Tumors. Cancer Metastasis Rev. 2019, 38, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Mizzoni, D.; Angelini, D.; Di Raimo, R.; Falchi, M.; Battistini, L.; Fais, S. Microenvironmental PH and Exosome Levels Interplay in Human Cancer Cell Lines of Different Histotypes. Cancers 2018, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Nogués, L.; Benito-Martin, A.; Hergueta-Redondo, M.; Peinado, H. The Influence of Tumour-Derived Extracellular Vesicles on Local and Distal Metastatic Dissemination. Mol. Asp. Med. 2018, 60, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Spugnini, E.P.; Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int. J. Mol. Sci. 2018, 19, 3968. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Van der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol. Rev. 2012, 64, 676–705. [Google Scholar] [CrossRef]
- Bobrie, A.; Colombo, M.; Raposo, G.; Théry, C. Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic 2011, 12, 1659–1668. [Google Scholar] [CrossRef]
- Fais, S.; O’Driscoll, L.; Borras, F.E.; Buzas, E.; Camussi, G.; Cappello, F.; Carvalho, J.; Cordeiro da Silva, A.; Del Portillo, H.; El Andaloussi, S.; et al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano. 2016, 10, 3886–3899. [Google Scholar] [CrossRef]
- Logozzi, M.; Mizzoni, D.; Bocca, B.; Di Raimo, R.; Petrucci, F.; Caimi, S.; Alimonti, A.; Falchi, M.; Cappello, F.; Campanella, C.; et al. Human Primary Macrophages Scavenge AuNPs and Eliminate It through Exosomes. A Natural Shuttling for Nanomaterials. Eur. J. Pharm. Biopharm. 2019, 137, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef] [PubMed]
- Andreola, G.; Rivoltini, L.; Castelli, C.; Huber, V.; Perego, P.; Deho, P.; Squarcina, P.; Accornero, P.; Lozupone, F.; Lugini, L.; et al. Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-Bearing Microvesicles. J. Exp. Med. 2002, 195, 1303–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Achreja, A.; Iessi, E.; Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Nagrath, D.; Fais, S. The Key Role of Extracellular Vesicles in the Metastatic Process. Biochim. Biophys. Acta Rev. Cancer 2018, 1869, 64–77. [Google Scholar] [CrossRef]
- Canitano, A.; Venturi, G.; Borghi, M.; Ammendolia, M.G.; Fais, S. Exosomes Released in Vitro from Epstein-Barr Virus (EBV)-Infected Cells Contain EBV-Encoded Latent Phase MRNAs. Cancer Lett. 2013, 337, 193–199. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Nolte-’t Hoen, E.N.M.; Buermans, H.P.J.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.M.; ’t Hoen, P.A.C. Deep Sequencing of RNA from Immune Cell-Derived Vesicles Uncovers the Selective Incorporation of Small Non-Coding RNA Biotypes with Potential Regulatory Functions. Nucleic Acids Res. 2012, 40, 9272–9285. [Google Scholar] [CrossRef]
- Camussi, G.; Deregibus, M.-C.; Bruno, S.; Grange, C.; Fonsato, V.; Tetta, C. Exosome/Microvesicle-Mediated Epigenetic Reprogramming of Cells. Am. J. Cancer Res. 2011, 1, 98–110. [Google Scholar]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Fais, S.; Logozzi, M.; Lugini, L.; Federici, C.; Azzarito, T.; Zarovni, N.; Chiesi, A. Exosomes: The Ideal Nanovectors for Biodelivery. Biol. Chem. 2013, 394, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Properzi, F.; Logozzi, M.; Fais, S. Exosomes: The Future of Biomarkers in Medicine. Biomark. Med. 2013, 7, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; De Milito, A.; Lugini, L.; Borghi, M.; Calabrò, L.; Spada, M.; Perdicchio, M.; Marino, M.L.; Federici, C.; Iessi, E.; et al. High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients. PLoS ONE 2009, 4, e5219. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Chen, X.; Ji, J.; Xu, Y.; He, X.; Zhang, H.; Mo, Z.; Wang, F. Urinary Exosomal Prostate-specific Antigen Is a Noninvasive Biomarker to Detect Prostate Cancer: Not Only Old Wine in New Bottles. Int. J. Cancer 2023, 152, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yi, M.; Dong, B.; Tan, X.; Luo, S.; Wu, K. The Role of Exosomes in Liquid Biopsy for Cancer Diagnosis and Prognosis Prediction. Int. J. Cancer 2021, 148, 2640–2651. [Google Scholar] [CrossRef] [PubMed]
- Cossetti, C.; Lugini, L.; Astrologo, L.; Saggio, I.; Fais, S.; Spadafora, C. Soma-to-Germline Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by Exosomes. PLoS ONE 2014, 9, e101629. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Guo, X.; Zhou, L.; Jia, Z.; Peng, Z.; Tang, Y.; Liu, W.; Zhu, B.; Wang, L.; et al. GPC1 Exosome and Its Regulatory MiRNAs Are Specific Markers for the Detection and Target Therapy of Colorectal Cancer. J. Cell. Mol. Med. 2017, 21, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in Cancer Diagnostics. Cancers 2017, 9, 8. [Google Scholar] [CrossRef]
- Zocco, D.; Ferruzzi, P.; Cappello, F.; Kuo, W.P.; Fais, S. Extracellular Vesicles as Shuttles of Tumor Biomarkers and Anti-Tumor Drugs. Front. Oncol. 2014, 4, 267. [Google Scholar] [CrossRef]
- Campanella, C.; Caruso Bavisotto, C.; Logozzi, M.; Marino Gammazza, A.; Mizzoni, D.; Cappello, F.; Fais, S. On the Choice of the Extracellular Vesicles for Therapeutic Purposes. Int. J. Mol. Sci. 2019, 20, 236. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Deng, C.-X. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int. J. Biol. Sci. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Hölttä, M.; Skantze, P.; Johansson, S.; Sundqvist, M.; et al. Linkage between Endosomal Escape of LNP-MRNA and Loading into EVs for Transport to Other Cells. Nat. Commun. 2019, 10, 4333. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Sun, J.; Wang, X.; Hu, T.; Ma, Y.; Kong, C.; Piao, H.; Yu, T.; Zhang, G. Exosomes: A Promising Avenue for the Diagnosis of Breast Cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033818821421. [Google Scholar] [CrossRef]
- Sumrin, A.; Moazzam, S.; Khan, A.A.; Ramzan, I.; Batool, Z.; Kaleem, S.; Ali, M.; Bashir, H.; Bilal, M. Exosomes as Biomarker of Cancer. Braz. Arch. Biol. Technol. 2018, 61. [Google Scholar] [CrossRef]
- Cappello, F.; Logozzi, M.; Campanella, C.; Bavisotto, C.C.; Marcilla, A.; Properzi, F.; Fais, S. Exosome Levels in Human Body Fluids: A Tumor Marker by Themselves? Eur. J. Pharm. Sci. 2017, 96, 93–98. [Google Scholar] [CrossRef]
- Caruso Bavisotto, C.; Cappello, F.; Macario, A.J.L.; Conway de Macario, E.; Logozzi, M.; Fais, S.; Campanella, C. Exosomal HSP60: A Potentially Useful Biomarker for Diagnosis, Assessing Prognosis, and Monitoring Response to Treatment. Expert Rev. Mol. Diagn. 2017, 17, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Campanella, C.; Rappa, F.; Sciumè, C.; Marino Gammazza, A.; Barone, R.; Bucchieri, F.; David, S.; Curcurù, G.; Caruso Bavisotto, C.; Pitruzzella, A.; et al. Heat Shock Protein 60 Levels in Tissue and Circulating Exosomes in Human Large Bowel Cancer before and after Ablative Surgery. Cancer 2015, 121, 3230–3239. [Google Scholar] [CrossRef]
- Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and Opportunities in Exosome Research-Perspectives from Biology, Engineering, and Cancer Therapy. APL Bioeng. 2019, 3, 011503. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.; Whiteside, T.L.; Reichert, T.E. Challenges in Exosome Isolation and Analysis in Health and Disease. Int. J. Mol. Sci. 2019, 20, 4684. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Giuliani, A.; Maggi, M.; Sciarra, A.; Fais, S. Plasmatic Exosome Number and Size Distinguish Prostate Cancer Patients from Healthy Individuals: A Prospective Clinical Study. Front. Oncol. 2021, 11, 727317. [Google Scholar] [CrossRef] [PubMed]
- Osti, D.; Del Bene, M.; Rappa, G.; Santos, M.; Matafora, V.; Richichi, C.; Faletti, S.; Beznoussenko, G.V.; Mironov, A.; Bachi, A.; et al. Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients. Clin. Cancer Res. 2019, 25, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Zorrilla, S.; Pérez-Sayans, M.; Fais, S.; Logozzi, M.; Gallas Torreira, M.; García García, A. A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. Cancers 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Angelini, D.F.; Giuliani, A.; Mizzoni, D.; Di Raimo, R.; Maggi, M.; Gentilucci, A.; Marzio, V.; Salciccia, S.; Borsellino, G.; et al. Increased Plasmatic Levels of PSA-Expressing Exosomes Distinguish Prostate Cancer Patients from Benign Prostatic Hyperplasia: A Prospective Study. Cancers 2019, 11, 1449. [Google Scholar] [CrossRef]
- Huber, V.; Fais, S.; Iero, M.; Lugini, L.; Canese, P.; Squarcina, P.; Zaccheddu, A.; Colone, M.; Arancia, G.; Gentile, M.; et al. Human Colorectal Cancer Cells Induce T-Cell Death through Release of Proapoptotic Microvesicles: Role in Immune Escape. Gastroenterology 2005, 128, 1796–1804. [Google Scholar] [CrossRef]
- Logozzi, M.; Capasso, C.; Di Raimo, R.; Del Prete, S.; Mizzoni, D.; Falchi, M.; Supuran, C.T.; Fais, S. Prostate Cancer Cells and Exosomes in Acidic Condition Show Increased Carbonic Anhydrase IX Expression and Activity. J. Enzym. Inhib. Med. Chem. 2019, 34, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Mizzoni, D.; Capasso, C.; Del Prete, S.; Di Raimo, R.; Falchi, M.; Angelini, D.F.; Sciarra, A.; Maggi, M.; Supuran, C.T.; et al. Plasmatic Exosomes from Prostate Cancer Patients Show Increased Carbonic Anhydrase IX Expression and Activity and Low PH. J. Enzym. Inhib. Med. Chem. 2020, 35, 280–288. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.-H.; Jeyaraj, M.; Qasim, M.; Kim, J.-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. [Google Scholar] [CrossRef]
- Szatanek, R.; Baj-Krzyworzeka, M.; Zimoch, J.; Lekka, M.; Siedlar, M.; Baran, J. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. IJMS 2017, 18, 1153. [Google Scholar] [CrossRef]
- Biggs, C.N.; Siddiqui, K.M.; Al-Zahrani, A.A.; Pardhan, S.; Brett, S.I.; Guo, Q.Q.; Yang, J.; Wolf, P.; Power, N.E.; Durfee, P.N.; et al. Prostate Extracellular Vesicles in Patient Plasma as a Liquid Biopsy Platform for Prostate Cancer Using Nanoscale Flow Cytometry. Oncotarget 2016, 7, 8839–8849. [Google Scholar] [CrossRef]
- Chandler, W.L.; Yeung, W.; Tait, J.F. A New Microparticle Size Calibration Standard for Use in Measuring Smaller Microparticles Using a New Flow Cytometer. J. Thromb. Haemost. 2011, 9, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Morales-Kastresana, A.; Telford, B.; Musich, T.A.; McKinnon, K.; Clayborne, C.; Braig, Z.; Rosner, A.; Demberg, T.; Watson, D.C.; Karpova, T.S.; et al. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry. Sci. Rep. 2017, 7, 1878. [Google Scholar] [CrossRef]
- Logozzi, M.; Angelini, D.F.; Iessi, E.; Mizzoni, D.; Di Raimo, R.; Federici, C.; Lugini, L.; Borsellino, G.; Gentilucci, A.; Pierella, F.; et al. Increased PSA Expression on Prostate Cancer Exosomes in in Vitro Condition and in Cancer Patients. Cancer Lett. 2017, 403, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-L.; Zhu, J.; Liu, J.-X.; Jiang, F.; Ni, W.-K.; Qu, L.-S.; Ni, R.-Z.; Lu, C.-H.; Xiao, M.-B. A Comparison of Traditional and Novel Methods for the Separation of Exosomes from Human Samples. BioMed Res. Int. 2018, 2018, 3634563. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. Immunocapture-Based ELISA to Characterize and Quantify Exosomes in Both Cell Culture Supernatants and Body Fluids. Methods Enzymol. 2020, 645, 155–180. [Google Scholar] [CrossRef] [PubMed]
- Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.; et al. Glypican-1 Identifies Cancer Exosomes and Detects Early Pancreatic Cancer. Nature 2015, 523, 177–182. [Google Scholar] [CrossRef]
- Peinado, H.; Zhang, H.; Matei, I.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.; Bromberg, J.F.; Kang, Y.; et al. Pre-Metastatic Niches: Organ-Specific Homes for Metastases. Nat. Rev. Cancer 2017, 17, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Lugini, L.; Valtieri, M.; Federici, C.; Cecchetti, S.; Meschini, S.; Condello, M.; Signore, M.; Fais, S. Exosomes from Human Colorectal Cancer Induce a Tumor-like Behavior in Colonic Mesenchymal Stromal Cells. Oncotarget 2016, 7, 50086–50098. [Google Scholar] [CrossRef] [PubMed]
- Federici, C.; Petrucci, F.; Caimi, S.; Cesolini, A.; Logozzi, M.; Borghi, M.; D’Ilio, S.; Lugini, L.; Violante, N.; Azzarito, T.; et al. Exosome Release and Low PH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin. PLoS ONE 2014, 9, e88193. [Google Scholar] [CrossRef]
- Buscail, E.; Chauvet, A.; Quincy, P.; Degrandi, O.; Buscail, C.; Lamrissi, I.; Moranvillier, I.; Caumont, C.; Verdon, S.; Brisson, A.; et al. CD63-GPC1-Positive Exosomes Coupled with CA19-9 Offer Good Diagnostic Potential for Resectable Pancreatic Ductal Adenocarcinoma. Transl. Oncol. 2019, 12, 1395–1403. [Google Scholar] [CrossRef]
- Parolini, I.; Federici, C.; Raggi, C.; Lugini, L.; Palleschi, S.; De Milito, A.; Coscia, C.; Iessi, E.; Logozzi, M.; Molinari, A.; et al. Microenvironmental PH Is a Key Factor for Exosome Traffic in Tumor Cells. J. Biol. Chem. 2009, 284, 34211–34222. [Google Scholar] [CrossRef]
- O’Driscoll, L.; Stoorvogel, W.; Théry, C.; Buzas, E.; Nazarenko, I.; Siljander, P.; Yáñez-Mó, M.; Fais, S.; Giebel, B.; Yliperttula, M. European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD). Eur. J. Pharm. Sci. 2017, 98, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; del Portillo, H.A.; et al. Applying Extracellular Vesicles Based Therapeutics in Clinical Trials—An ISEV Position Paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Lapitz, A.; Arbelaiz, A.; O’Rourke, C.J.; Lavin, J.L.; Casta, A.L.; Ibarra, C.; Jimeno, J.P.; Santos-Laso, A.; Izquierdo-Sanchez, L.; Krawczyk, M.; et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- Mateescu, B.; Kowal, E.J.K.; van Balkom, B.W.M.; Bartel, S.; Bhattacharyya, S.N.; Buzás, E.I.; Buck, A.H.; de Candia, P.; Chow, F.W.N.; Das, S.; et al. Obstacles and Opportunities in the Functional Analysis of Extracellular Vesicle RNA—An ISEV Position Paper. J. Extracell. Vesicles 2017, 6, 1286095. [Google Scholar] [CrossRef]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, C.; Deng, H.; Qing, C.; Liu, R.; Liu, S.; Xue, X. Exosomal PiRNA Profiling Revealed Unique Circulating PiRNA Signatures of Cholangiocarcinoma and Gallbladder Carcinoma. Acta Biochim. Biophys. Sin. 2020, 52, 475–484. [Google Scholar] [CrossRef]
- Kitagawa, T.; Taniuchi, K.; Tsuboi, M.; Sakaguchi, M.; Kohsaki, T.; Okabayashi, T.; Saibara, T. Circulating Pancreatic Cancer Exosomal RNAs for Detection of Pancreatic Cancer. Mol. Oncol. 2019, 13, 212–227. [Google Scholar] [CrossRef]
- Pan, C.; Stevic, I.; Müller, V.; Ni, Q.; Oliveira-Ferrer, L.; Pantel, K.; Schwarzenbach, H. Exosomal MicroRNAs as Tumor Markers in Epithelial Ovarian Cancer. Mol. Oncol. 2018, 12, 1935–1948. [Google Scholar] [CrossRef]
- Shi, M.; Jiang, Y.; Yang, L.; Yan, S.; Wang, Y.-G.; Lu, X.-J. Decreased Levels of Serum Exosomal MiR-638 Predict Poor Prognosis in Hepatocellular Carcinoma. J. Cell. Biochem. 2018, 119, 4711–4716. [Google Scholar] [CrossRef]
- Kahlert, C.; Melo, S.A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; et al. Identification of Double-Stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and P53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer. J. Biol. Chem. 2014, 289, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, E.; Bozbeyoglu, N.; Gursel, I.; Korkusuz, F.; Bakan Misirlioglu, F.; Korkusuz, P. Comparative Analysis of Magnetically Activated Cell Sorting and Ultracentrifugation Methods for Exosome Isolation. PLoS ONE 2023, 18, e0282238. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, D.; Sola, L.; Ferretti, A.M.; Chiodi, E.; Zarovni, N.; Fortunato, D.; Criscuoli, M.; Dolo, V.; Giusti, I.; Murdica, V.; et al. EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles. Anal. Chem. 2021, 93, 5476–5483. [Google Scholar] [CrossRef] [PubMed]
- Pallares-Rusiñol, A.; Bernuz, M.; Moura, S.L.; Fernández-Senac, C.; Rossi, R.; Martí, M.; Pividori, M.I. Advances in Exosome Analysis. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; Volume 112, pp. 69–117. ISBN 978-0-443-19284-5. [Google Scholar]
- Wen, X.; Pu, H.; Liu, Q.; Guo, Z.; Luo, D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers 2022, 14, 6025. [Google Scholar] [CrossRef]
- Soltész, B.; Pös, O.; Wlachovska, Z.; Budis, J.; Hekel, R.; Strieskova, L.; Liptak, J.B.; Krampl, W.; Styk, J.; Németh, N.; et al. Mitochondrial DNA Copy Number Changes, Heteroplasmy, and Mutations in Plasma-Derived Exosomes and Brain Tissue of Glioblastoma Patients. Mol. Cell. Probes 2022, 66, 101875. [Google Scholar] [CrossRef]
- Choi, J.; Cho, H.Y.; Jeon, J.; Kim, K.-A.; Han, Y.D.; Ahn, J.B.; Wortzel, I.; Lyden, D.; Kim, H.S. Detection of Circulating KRAS Mutant DNA in Extracellular Vesicles Using Droplet Digital PCR in Patients with Colon Cancer. Front. Oncol. 2022, 12, 1067210. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, H.; Jiang, M.; Zhang, X. Aberrant Circulating Tumor DNA Methylation and Exosomal MicroRNA Biomarkers for Early Detection of Colorectal Cancer. Mol. Biol. Rep. 2023, 50, 2743–2750. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Liu, J.; Kong, X.; Yin, Y.; Jia, Z.; Zhang, X.; Peng, B.; Ji, M.; Pan, W. Exosomal HBV-DNA for Diagnosis and Treatment Monitoring of Chronic Hepatitis B. Open Life Sci. 2023, 18, 20220585. [Google Scholar] [CrossRef]
- Sakaue, T.; Koga, H.; Iwamoto, H.; Nakamura, T.; Ikezono, Y.; Abe, M.; Wada, F.; Masuda, A.; Tanaka, T.; Fukahori, M.; et al. Glycosylation of Ascites-Derived Exosomal CD133: A Potential Prognostic Biomarker in Patients with Advanced Pancreatic Cancer. Med. Mol. Morphol. 2019, 52, 198–208. [Google Scholar] [CrossRef]
- García-Flores, M.; Sánchez-López, C.M.; Ramírez-Calvo, M.; Fernández-Serra, A.; Marcilla, A.; López-Guerrero, J.A. Isolation and Characterization of Urine Microvesicles from Prostate Cancer Patients: Different Approaches, Different Visions. BMC Urol. 2021, 21, 137. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, J.; Yu, M.; Jiang, Y.; Xu, H.; Huang, Y.; Gao, Y.; Wang, H.; Li, G.; Wang, Z.; et al. Urinary Exosomes Diagnosis of Urological Tumors: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 734587. [Google Scholar] [CrossRef]
- Hiltbrunner, S.; Mints, M.; Eldh, M.; Rosenblatt, R.; Holmström, B.; Alamdari, F.; Johansson, M.; Veerman, R.E.; Winqvist, O.; Sherif, A.; et al. Urinary Exosomes from Bladder Cancer Patients Show a Residual Cancer Phenotype despite Complete Pathological Downstaging. Sci. Rep. 2020, 10, 5960. [Google Scholar] [CrossRef]
- Eichelser, C.; Stückrath, I.; Müller, V.; Milde-Langosch, K.; Wikman, H.; Pantel, K.; Schwarzenbach, H. Increased Serum Levels of Circulating Exosomal MicroRNA-373 in Receptor-Negative Breast Cancer Patients. Oncotarget 2014, 5, 9650–9663. [Google Scholar] [CrossRef] [PubMed]
- Hannafon, B.N.; Trigoso, Y.D.; Calloway, C.L.; Zhao, Y.D.; Lum, D.H.; Welm, A.L.; Zhao, Z.J.; Blick, K.E.; Dooley, W.C.; Ding, W.Q. Plasma Exosome MicroRNAs Are Indicative of Breast Cancer. Breast Cancer Res. 2016, 18, 90. [Google Scholar] [CrossRef]
- Silva, J.; Garcia, V.; Rodriguez, M.; Compte, M.; Cisneros, E.; Veguillas, P.; Garcia, J.M.; Dominguez, G.; Campos-Martin, Y.; Cuevas, J.; et al. Analysis of Exosome Release and Its Prognostic Value in Human Colorectal Cancer. Genes Chromosomes Cancer 2012, 51, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S.; Takeuchi, A.; Yamaguchi, S.; Mitani, Y.; Watanabe, T.; Matsuda, K.; Hotta, T.; Shively, J.E.; Yamaue, H. Clinical Implications of Carcinoembryonic Antigen Distribution in Serum Exosomal Fraction-Measurement by ELISA. PLoS ONE 2017, 12, e0183337. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, Y.; Kosaka, N.; Konishi, Y.; Ohta, H.; Okamoto, H.; Sonoda, H.; Nonaka, R.; Yamamoto, H.; Ishii, H.; Mori, M.; et al. Ultra-Sensitive Liquid Biopsy of Circulating Extracellular Vesicles Using ExoScreen. Nat. Commun. 2014, 5, 3591. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ma, L.; Gong, M.; Su, G.; Zhu, S.; Zhang, W.; Wang, S.; Li, Z.; Chen, C.; Li, L.; et al. Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry. ACS Nano. 2018, 12, 671–680. [Google Scholar] [CrossRef]
- Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; et al. Circulating Exosomal MicroRNAs as Biomarkers of Colon Cancer. PLoS ONE 2014, 9, e92921. [Google Scholar] [CrossRef]
- Matsumura, T.; Sugimachi, K.; Iinuma, H.; Takahashi, Y.; Kurashige, J.; Sawada, G.; Ueda, M.; Uchi, R.; Ueo, H.; Takano, Y.; et al. Exosomal MicroRNA in Serum Is a Novel Biomarker of Recurrence in Human Colorectal Cancer. Br. J. Cancer 2015, 113, 275–281. [Google Scholar] [CrossRef]
- Liu, C.; Eng, C.; Shen, J.; Lu, Y.; Takata, Y.; Mehdizadeh, A.; Chang, G.J.; Rodriguez-Bigas, M.A.; Li, Y.; Chang, P.; et al. Serum Exosomal MiR-4772-3p Is a Predictor of Tumor Recurrence in Stage II and III Colon Cancer. Oncotarget 2016, 7, 76250–76260. [Google Scholar] [CrossRef]
- Tsukamoto, M.; Iinuma, H.; Yagi, T.; Matsuda, K.; Hashiguchi, Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology 2017, 92, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Meng, T.; Yang, X.-H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.-J. Prognostic and Predictive Value of Long Non-Coding RNA GAS5 and MircoRNA-221 in Colorectal Cancer and Their Effects on Colorectal Cancer Cell Proliferation, Migration and Invasion. Cancer Biomark. 2018, 22, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kamohara, H.; Kinoshita, K.; Kurashige, J.; Ishimoto, T.; Iwatsuki, M.; Watanabe, M.; Baba, H. Clinical Impact of Serum Exosomal MicroRNA-21 as a Clinical Biomarker in Human Esophageal Squamous Cell Carcinoma. Cancer 2013, 119, 1159–1167. [Google Scholar] [CrossRef]
- Yoon, J.H.; Ham, I.-H.; Kim, O.; Ashktorab, H.; Smoot, D.T.; Nam, S.W.; Lee, J.Y.; Hur, H.; Park, W.S. Gastrokine 1 Protein Is a Potential Theragnostic Target for Gastric Cancer. Gastric Cancer 2018, 21, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Kalniņa, Z.; Meistere, I.; Kikuste, I.; Tolmanis, I.; Zayakin, P.; Linē, A. Emerging Blood-Based Biomarkers for Detection of Gastric Cancer. World J. Gastroenterol. 2015, 21, 11636–11653. [Google Scholar] [CrossRef] [PubMed]
- Yan, I.K.; Berdah, V.X.; Patel, T. Isolation of Extracellular RNA from Bile. Methods Mol. Biol. 2018, 1740, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, H.; Wang, B.; Zhang, X.; Mao, J.; Li, X.; Wang, M.; Sun, Z.; Qian, H.; Xu, W. Exosomal MiR-423-5p Targets SUFU to Promote Cancer Growth and Metastasis and Serves as a Novel Marker for Gastric Cancer. Mol. Carcinog. 2018, 57, 1223–1236. [Google Scholar] [CrossRef]
- Caivano, A.; Laurenzana, I.; De Luca, L.; La Rocca, F.; Simeon, V.; Trino, S.; D’Auria, F.; Traficante, A.; Maietti, M.; Izzo, T.; et al. High Serum Levels of Extracellular Vesicles Expressing Malignancy-Related Markers Are Released in Patients with Various Types of Hematological Neoplastic Disorders. Tumour. Biol. 2015, 36, 9739–9752. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.; Kang, S.H.; Yang, S.R.; Cho, J.-Y.; Cho, H.C.; Shim, S.G.; Paik, Y.-H. Serum Exosomal MicroRNAs as Novel Biomarkers for Hepatocellular Carcinoma. Exp. Mol. Med. 2015, 47, e184. [Google Scholar] [CrossRef]
- Sugimachi, K.; Matsumura, T.; Hirata, H.; Uchi, R.; Ueda, M.; Ueo, H.; Shinden, Y.; Iguchi, T.; Eguchi, H.; Shirabe, K.; et al. Identification of a Bona Fide MicroRNA Biomarker in Serum Exosomes That Predicts Hepatocellular Carcinoma Recurrence after Liver Transplantation. Br. J. Cancer 2015, 112, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, Y.; Lu, J.; Sun, Y.; Xiao, H.; Liu, M.; Tian, L. Combined Detection of Serum Exosomal MiR-21 and HOTAIR as Diagnostic and Prognostic Biomarkers for Laryngeal Squamous Cell Carcinoma. Med. Oncol. 2014, 31, 148. [Google Scholar] [CrossRef] [PubMed]
- Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Bæk, R.; Jakobsen, K.R.; Meldgaard, P.; Folkersen, B.H.; Rasmussen, T.R.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal Proteins as Prognostic Biomarkers in Non-Small Cell Lung Cancer. Mol. Oncol. 2016, 10, 1595–1602. [Google Scholar] [CrossRef]
- Wang, R.-J.; Zheng, Y.-H.; Wang, P.; Zhang, J.-Z. Serum MiR-125a-5p, MiR-145 and MiR-146a as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 765–771. [Google Scholar]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. MicroRNAs Derived from Circulating Exosomes as Noninvasive Biomarkers for Screening and Diagnosing Lung Cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef]
- Meng, X.; Müller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and Prognostic Relevance of Circulating Exosomal MiR-373, MiR-200a, MiR-200b and MiR-200c in Patients with Epithelial Ovarian Cancer. Oncotarget 2016, 7, 16923–16935. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, B.; Yue, S.; Galli, U.; Rana, S.; Gross, W.; Müller, M.; Giese, N.A.; Kalthoff, H.; Becker, T.; Büchler, M.W.; et al. Combined Evaluation of a Panel of Protein and MiRNA Serum-Exosome Biomarkers for Pancreatic Cancer Diagnosis Increases Sensitivity and Specificity. Int. J. Cancer 2015, 136, 2616–2627. [Google Scholar] [CrossRef]
- Lai, X.; Wang, M.; McElyea, S.D.; Sherman, S.; House, M.; Korc, M. A MicroRNA Signature in Circulating Exosomes Is Superior to Exosomal Glypican-1 Levels for Diagnosing Pancreatic Cancer. Cancer Lett. 2017, 393, 86–93. [Google Scholar] [CrossRef]
- Goto, T.; Fujiya, M.; Konishi, H.; Sasajima, J.; Fujibayashi, S.; Hayashi, A.; Utsumi, T.; Sato, H.; Iwama, T.; Ijiri, M.; et al. An Elevated Expression of Serum Exosomal MicroRNA-191, - 21, -451a of Pancreatic Neoplasm Is Considered to Be Efficient Diagnostic Marker. BMC Cancer 2018, 18, 116. [Google Scholar] [CrossRef]
- Takahasi, K.; Iinuma, H.; Wada, K.; Minezaki, S.; Kawamura, S.; Kainuma, M.; Ikeda, Y.; Shibuya, M.; Miura, F.; Sano, K. Usefulness of Exosome-Encapsulated MicroRNA-451a as a Minimally Invasive Biomarker for Prediction of Recurrence and Prognosis in Pancreatic Ductal Adenocarcinoma. J. Hepato-Biliary-Pancreat. Sci. 2018, 25, 155–161. [Google Scholar] [CrossRef]
- Logozzi, M.; Di Raimo, R.; Properzi, F.; Barca, S.; Angelini, D.F.; Mizzoni, D.; Falchi, M.; Battistini, L.; Fais, S. Nanovesicles Released by OKT3 Hybridoma Express Fully Active Antibodies. J. Enzym. Inhib. Med. Chem. 2021, 36, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Zhu, Y.; Chen, Z.; Qi, X.; Jin, L.; Jin, J.; Hua, D.; Ma, X. Breast Cancer Resistance Protein (BCRP)-Containing Circulating Microvesicles Contribute to Chemoresistance in Breast Cancer. Oncol. Lett. 2015, 10, 3742–3748. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Tian, H.; Li, X.; Jin, D.; Li, X.; Kong, J.; Yang, C.; Yang, X.; Lu, Y.; Luo, Y.; et al. Clinical Application of a Microfluidic Chip for Immunocapture and Quantification of Circulating Exosomes to Assist Breast Cancer Diagnosis and Molecular Classification. PLoS ONE 2017, 12, e0175050. [Google Scholar] [CrossRef] [PubMed]
- Ciravolo, V.; Huber, V.; Ghedini, G.C.; Venturelli, E.; Bianchi, F.; Campiglio, M.; Morelli, D.; Villa, A.; Della Mina, P.; Menard, S.; et al. Potential Role of HER2-Overexpressing Exosomes in Countering Trastuzumab-Based Therapy. J. Cell. Physiol. 2012, 227, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Moon, P.-G.; Lee, J.-E.; Cho, Y.-E.; Lee, S.J.; Chae, Y.S.; Jung, J.H.; Kim, I.-S.; Park, H.Y.; Baek, M.-C. Fibronectin on Circulating Extracellular Vesicles as a Liquid Biopsy to Detect Breast Cancer. Oncotarget 2016, 7, 40189–40199. [Google Scholar] [CrossRef]
- Vardaki, I.; Ceder, S.; Rutishauser, D.; Baltatzis, G.; Foukakis, T.; Panaretakis, T. Periostin Is Identified as a Putative Metastatic Marker in Breast Cancer-Derived Exosomes. Oncotarget 2016, 7, 74966–74978. [Google Scholar] [CrossRef]
- Moon, P.-G.; Lee, J.-E.; Cho, Y.-E.; Lee, S.J.; Jung, J.H.; Chae, Y.S.; Bae, H.-I.; Kim, Y.-B.; Kim, I.-S.; Park, H.Y.; et al. Identification of Developmental Endothelial Locus-1 on Circulating Extracellular Vesicles as a Novel Biomarker for Early Breast Cancer Detection. Clin. Cancer Res. 2016, 22, 1757–1766. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.; Jung, J.H.; Park, H.Y.; Moon, P.-G.; Chae, Y.S.; Baek, M.-C. Exosomal Del-1 as a Potent Diagnostic Marker for Breast Cancer: Prospective Cohort Study. Clin. Breast Cancer 2021, 21, e748–e756. [Google Scholar] [CrossRef]
- Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; et al. Melanoma Exosomes Educate Bone Marrow Progenitor Cells toward a Pro-Metastatic Phenotype through MET. Nat. Med. 2012, 18, 883–891. [Google Scholar] [CrossRef]
- Alegre, E.; Zubiri, L.; Perez-Gracia, J.L.; González-Cao, M.; Soria, L.; Martín-Algarra, S.; González, A. Circulating Melanoma Exosomes as Diagnostic and Prognosis Biomarkers. Clin. Chim. Acta 2016, 454, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A Microfluidic ExoSearch Chip for Multiplexed Exosome Detection towards Blood-Based Ovarian Cancer Diagnosis. Lab. Chip 2016, 16, 489–496. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Qin, S.; Xu, Y.; Tang, Y.; Huang, Y.; Situ, B.; Inal, J.M.; Zheng, L. Exosomes Serve as Tumour Markers for Personalized Diagnostics Owing to Their Important Role in Cancer Metastasis. J. Extracell. Vesicles 2015, 4, 27522. [Google Scholar] [CrossRef] [PubMed]
- Beach, A.; Zhang, H.-G.; Ratajczak, M.Z.; Kakar, S.S. Exosomes: An Overview of Biogenesis, Composition and Role in Ovarian Cancer. J. Ovarian Res. 2014, 7, 14. [Google Scholar] [CrossRef]
- Magdalena Derbis, M.S. Exosomes in Plasma of Patients with Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to Therapy. Gynecol. Obstet. 2012, 4, 003. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA Signatures of Tumor-Derived Exosomes as Diagnostic Biomarkers of Ovarian Cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef]
- Que, R.; Ding, G.; Chen, J.; Cao, L. Analysis of Serum Exosomal MicroRNAs and Clinicopathologic Features of Patients with Pancreatic Adenocarcinoma. World J. Surg. Onc. 2013, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Jutzy, J.M.S.; Valenzuela, M.M.A.; Turay, D.; Aspe, J.R.; Ashok, A.; Mirshahidi, S.; Mercola, D.; Lilly, M.B.; Wall, N.R. Plasma-Derived Exosomal Survivin, a Plausible Biomarker for Early Detection of Prostate Cancer. PLoS ONE 2012, 7, e46737. [Google Scholar] [CrossRef]
- Gabriel, K.; Ingram, A.; Austin, R.; Kapoor, A.; Tang, D.; Majeed, F.; Qureshi, T.; Al-Nedawi, K. Regulation of the Tumor Suppressor PTEN through Exosomes: A Diagnostic Potential for Prostate Cancer. PLoS ONE 2013, 8, e70047. [Google Scholar] [CrossRef]
- Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in Circulating MicroRNA Levels Associated with Prostate Cancer. Br. J. Cancer 2012, 106, 768–774. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, T.; Liang, M.; Du, M.; Xia, S.; Dittmar, R.; Wang, D.; See, W.; Costello, B.A.; Quevedo, F.; et al. Exosomal MiR-1290 and MiR-375 as Prognostic Markers in Castration-Resistant Prostate Cancer. Eur. Urol. 2015, 67, 33–41. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.-Y.; Wang, J.; Zeng, X.-F.; Li, R.; Kang, W.; Hao, X.-K. Exosomal MicroRNA-141 Is Upregulated in the Serum of Prostate Cancer Patients. Onco Targets Ther. 2016, 9, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Exosome Diagnostics, Inc. A Prospective, Randomized Blinded, Shared Decision Impact Trial of the ExoDx Prostate (IntelliScore), EPI Test, in Men Presenting for Initial Biopsy. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Oscar Lambret. Benefit of Analyzing Exosomes in the Cerebrospinal Fluid During the Medical Care of Breast Cancer Patients with Suspicion of Leptomeningeal Metastasis. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Oscar Lambret. Feasibility of Exosome Analysis in Cerebrospinal Fluid During the Diagnostic Workup of Metastatic Meningitis from Breast Cancer. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Ospedale Policlinico San Martino. Development of a Horizontal Data Integration Classifier for Noninvasive Early Diagnosis of Breast Cancer. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Georges Francois Leclerc. Pilot Study with the Aim to Quantify a Stress Protein in the Blood and in the Urine for Early Diagnosis of Malgnant Solid Tumors. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Poitiers University Hospital. Interest of Circulating Tumor DNA in Digestive and Gynecologic/Breast Cancer. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Im, Y.-H. Genetic Characteristics of Metastatic Breast Cancer Patients. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- University Hospital. Montpellier Early Detection of Prostate Cancer by Liquid Biopsy. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Dillhoff, M. Imaging and Detection of Micrometer Sized Early Stage Pancreatic Cancer by Using Endoscopic Ultra-High Resolution Optical Coherence Tomography (OCT) Using Resected Pancreatic Specimen, a Pilot Study. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- David, A. Phase I Study in Humans Evaluating the Safety of Rectus Sheath Implantation of Diffusion Chambers Encapsulating Autologous Malignant Glioma Cells Treated with Insulin-like Growth Factor Receptor-1 Antisense Oligodeoxynucleotide (IGF-1R/AS ODN) in 32 Patients with Newly Diagnosed Malignant Glioma. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Gu, A. Exosomes Detection for the Prediction of the Efficacy and Adverse Reactions of Anlotinib in Patients with Advanced NSCLC. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Wang, J. Study on the Prediction of Immunotherapeutic Effect of Advanced Non-Small Cell Lung Cancer by Detection of Plasma Exosomes. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Cheng, B. Diagnostic and Prognostic Values of EUS-FNA Specimens and Circulating Exosomal Small RNA in Patients with Pancreatic Cancer. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Gong, J. Combined Diagnosis of CT and Exosome in Early Lung Cancer. 2018. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Kim, H.K. Multicenter Clinical Research for Early Diagnosis of Lung Cancer Using Blood Plasma. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Lv, Y. Acquisition of Portal Venous Circulating Tumor Cells and Exosomes from Patients with Pancreatic Cancer by Endoscopic Ultrasound: A Prospective Study. 2019. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Jin, Y. Serum Exosomal Long Noncoding RNAs as Potential Biomarkers for Lung Cancer Diagnosis. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- De Reims, C. Identification of New Diagnostic Protein Markers for Colorectal Cancer in Circulating Tumor Exosomes. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- miR Scientific LLC. Establishment of the Performance of the MiR SentinelTM BCa Test in Men and Women Presenting for Initial Diagnosis of Bladder Cancer and the MiR SentinelTM BCR Test to Identify Recurrent Bladder Cancer. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Susan, E.; Leo, W. A Pilot Study of Tumor-Derived Exosomes as Diagnostic and Prognostic Markers in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. 2017. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Kim, H.K. A Retrospective Study to Compare Biomarker Expression of Exosomes Derived from Peripheral Blood and Primary Lung Cancer Drainage Pulmonary Blood in Lung Cancer Patients. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Sun, Y.-S. Memorial Hospital of Sun Yat-Sen University a Prospective, Multicenter Cohort Study of Urinary Exosome LncRNAs for Preoperative Diagnosis of Lymphatic Metastasis in Patients with Bladder Cancer. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- University Hospital. Bordeaux Diagnostic Accuracy of Circulating Tumor Cells (CTCs) and Onco-Exosome Quantification in the Diagnosis of Pancreatic Cancer-PANC-CTC. 2018. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. Clinical Validation of a Urinary Exosome Gene Signature in Men Presenting for Suspicion of Prostate Cancer. 2016. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Hospitalier Universitaire Dijon. Contents of Circulating Extracellular Vesicles: Biomarkers in Colorectal Cancer Patients. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Hackensack Meridian Health. Quantification and Purification of Circulating Prostasomes as Diagnostic Tool for Prostate Cancer Detection. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- miR Scientific LLC. Evaluation of the Training Plan and Impact on Acceptance of the SentinelTM Prostate Cancer Classifier Platform (SentinelTM PCC4 Assay) and Determination of Assay Performance Characteristics of Clinical Utility in a Puerto Rican Population. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Memorial Sloan Kettering Cancer Center. Interrogation of Exosome-Mediated Intercellular Signaling in Patients with Pancreatic Cancer. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Pazo-Cid, R.A. Circulating Exosomes as Potential Prognostic and Predictive Biomarkers in Advanced Gastric Cancer Patients: A Prospective Observational Study (“EXO-PPP Study”). 2015. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Alameldin, S. Cell Free Circulating Nucleic Acids as New Tumor Diagnostics from Human Plasma Samples. 2019. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. Detection of ARv7 in the Plasma of Men with Advanced Metastatic Castrate Resistant Prostate Cancer (MCRP). 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- King’s College London. Lung Cancer Detection Using Blood Exosomes and HRCT- Improving the Early Detection of Lung Cancer by Combining Exosomal Analysis of Hypoxia with Standard of Care Imaging. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- University Hospital. Limoges Analyse Du Profil Moléculaire des Exosomes de La Veine Pulmonaire Dans Le Cancer Bronchique de Stade Précoce. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- King’s College London. HERdi PREDICT: A Pilot Study to Measure the Expression of the HER2-HER3 Dimer in Samples from Patients with HER2 Positive Breast Cancer Receiving HER2 Targeted Therapies. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Hoover, A. Exosomal as Correlative Biomarker in Clinical Outcomes in Patients Undergoing Neoadjuvant Chemoradiation Therapy for Rectal Cancer. 2019. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Li, L. Non-Coding RNA in the Exosome of the Epithelia Ovarian Cancer. 2018. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. Clinical Evaluation of ExoDxTM Prostate (IntelliScore) in Men Presenting for Initial Prostate Biopsy. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Ruijin Hospital. Construction and Clinical Application of Microfluidic Exosome Chip for Early Diagnosis of Pulmonary Metastasis of Osteosarcoma. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Istituto Clinico Humanitas. Circulating and Imaging Biomarkers to Improve Lung Cancer Management and Early Detection. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- MD, G.G. Identification and Characterization of Predictive Factors of Onset of Bone Metastases in Cancer Patients. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. Clinical Evaluation of the “ExoDx Prostate IntelliScore” in Men Presenting for Initial Biopsy; Additional Confirmation Study Including Impact on Decision-Making and Health Economics. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Fai, C. To Investigate the Diagnostic Accuracy of Exosomal MicroRNA in Predicting the Aggressiveness of Prostate Cancer in Chinese Patients. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. ExoDx Prostate Evaluation in Active Surveillance Patient Population. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Istituto Clinico Humanitas. Validation of Multiparametric Models and Circulating and Imaging Biomarkers to Improve Lung Cancer EARLY Detection. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Exosome Diagnostics, Inc. Clinical Evaluation of ExoDxTM Prostate (IntelliScore) in Men with Prior Negative Prostate Biopsy Presenting for a Repeat Biopsy. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- miR Scientific LLC. Validating the MiR Scientific SentinelTM Platform (Sentinel PCC4 Assay) in Men Undergoing Core Needle Biopsy Due to Suspicion of Prostate Cancer for Distinguishing Between No Cancer, Low-, Intermediate- and High-Risk Prostate Cancer. 2021. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- National Taiwan University Hospital. Correlation Between Various Urinary Exosomal Protein Biomarkers and Pathological Manifestation in Thyroid Follicular Neoplasm: Early and Pre-Operative Diagnosis of Follicular Thyroid Cancer. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Oscar Lambret. Omic Technologies to Track Resistance to Palbociclib in Metastatic Breast Cancer (OMERIC): A Cohort Study. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- New Mexico Cancer Care Alliance. An Observational, Single-Institution Pilot/Feasibility Study of Exosome Testing as a Screening Modality for Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Memorial Sloan Kettering Cancer Center. Development of Novel Imaging and Laboratory Biomarkers to Monitor the Liver Pre-Metastatic Niche and Guide Treatment of Colon Cancer: A Pilot Study. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Chen, L. Use of Circulating Exosomal LncRNA-GC1 as Blood Biomarker for Early Detection and Monitoring Gastric Cancer. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- University Hospital. Angers Exosomes Implication in PD1-PD-L1 Pathway Activation in Obstructive Sleep Apnea Syndrome. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Shen, Y. A Pilot Study of Circulating Exosome RNA as Diagnostic and Prognostic Markers in Lung Metastases of Primary High-Grade Osteosarcoma. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Liu, Y. The Study of Exosome EML4-ALK Fusion in NSCLC Clinical Diagnosis and Dynamic Monitoring. 2020. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Sun, J. Clinical Study of CtDNA and Exosome Combined Detection to Identify Benign and Malignant Pulmonary Nodules. 2019. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Bansal, A. Evaluation of MicroRNA Expression in Blood and Cytology Specimens as a Novel Method for Detecting Barrett’s Esophagus. 2015. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Dhani, H. Exoluminate Study: Observational Registry Study to Assess Exo-PDAC Assay Performance for Detection of Pancreatic Adenocarcinoma (PDAC) in High-Risk or Clinically Suspicious Patients. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Liu, Y. A Study of Circulating Exosome Proteomics in Gallbladder Carcinoma Patients. 2018. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- The Second Hospital of Nanjing Medical University. Exosomes-Derived NcRNAs as Biomarkers in Cholangiocarcinoma Patients. 2017. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- An, Z. A Companion Diagnostic Study to Develop Circulating Exosomes as Predictive Biomarkers for the Response to Immunotherapy in Renal Cell Carcinoma. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Memorial Sloan Kettering Cancer Center. Development of Biomarkers for the Early Detection, Surveillance and Monitoring of Pancreatic Ductal Adenocarcinoma. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Georges Francois Leclerc. Study of Exosomes in Monitoring Patients with Sarcoma (EXOSARC). 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Hospitalier Universitaire de Besancon. Analysis of Circulating Exosomes in Melanoma Patients. 2023. Available online: clinicaltrials.gov (accessed on 5 April 2023).
- Centre Hospitalier Universitaire de Saint Etienne. Evaluation of Urinary Exosomes Presence from Clear Cell Renal Cell Carcinoma. 2022. Available online: clinicaltrials.gov (accessed on 5 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logozzi, M.; Orefice, N.S.; Di Raimo, R.; Mizzoni, D.; Fais, S. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers 2023, 15, 2878. https://doi.org/10.3390/cancers15112878
Logozzi M, Orefice NS, Di Raimo R, Mizzoni D, Fais S. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers. 2023; 15(11):2878. https://doi.org/10.3390/cancers15112878
Chicago/Turabian StyleLogozzi, Mariantonia, Nicola Salvatore Orefice, Rossella Di Raimo, Davide Mizzoni, and Stefano Fais. 2023. "The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients" Cancers 15, no. 11: 2878. https://doi.org/10.3390/cancers15112878
APA StyleLogozzi, M., Orefice, N. S., Di Raimo, R., Mizzoni, D., & Fais, S. (2023). The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers, 15(11), 2878. https://doi.org/10.3390/cancers15112878