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Simple Summary: A bottleneck in oncology is the translation of results from preclinical models to the
clinics. The rate of anticancer drugs that are effective in preclinical studies but fail in clinical trials is
more than 95%. In order to test new immunotherapies and to identify the most effective combination
of anticancer drugs, next-generation mouse models have been developed. These “humanized mouse
models” support the growth of patient-derived tumors and the development of a human immune
system. This review provides an overview of next-generation humanized mouse models and how
they can be used to advance precision cancer medicine and immuno-oncology clinical trial design.

Abstract: Cancer immunotherapy has brought significant clinical benefits to numerous patients with
malignant disease. However, only a fraction of patients experiences complete and durable responses
to currently available immunotherapies. This highlights the need for more effective immunotherapies,
combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor
heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis
and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice
that support the engraftment of patient-derived tumors and recapitulate the human tumor immune
microenvironment of patients represent a promising preclinical model to address fundamental
questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an
overview of next-generation humanized mouse models suitable for the establishment and study of
patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the
tumor immune microenvironment and testing a variety of immunotherapeutic approaches using
human immune system mouse models.

Keywords: humanized mice; immuno-oncology; precision oncology; metastasis; PDX; avatar;
immune checkpoint blockade; chimeric antigen receptor (CAR); colorectal cancer

1. Introduction

Humanized mice are powerful models for studying human biology, disease and ther-
apeutic interventions. By definition, humanized mice are animals that have either been
xenografted with human cells or genetically modified to express human genes. Humanized
mouse models aim to more faithfully recapitulate important features of human biology and
disease, and therefore represent an important pillar of translational biomedical research and
precision medicine-based approaches. In the past 20 years, humanized mice have been used
to study the human immune system and infectious diseases (e.g., human immunodeficiency
virus (HIV) [1,2], coronavirus disease 2019 (COVID-19) [3,4], hepatitis B and C viruses [5,6],
Epstein-Barr virus (EBV) [7] and dengue virus [8]), human erythropoiesis and sickle
cell disease [9], malignant diseases (e.g., leukemia [10–12], lymphoma [13,14], multiple
myeloma [15,16], myelodysplastic syndrome [17], melanoma [18,19]), as well as therapeutic
interventions, including cancer immunotherapy [20] and chimeric antigen receptor (CAR)
T cell therapy [21].
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Although immunotherapy is becoming a cornerstone of modern oncology, complete
and durable responses are only observed in a small fraction of cancer patients. For example,
results from clinical trials using anti-PD-1 and anti-CTLA-4 checkpoint inhibitors indicate
that clinical benefit is limited to only 5% of metastatic colorectal cancer (mCRC) patients
who have heavily mutated tumors and tumor-infiltrating T cells [22]. In contrast, 95%
of mCRC patients who have a mismatch-repair-proficient, microsatellite instability-low
(pMMR/MSI-L) phenotype did not show any clinical benefit. To make matters worse,
the success rate of anticancer drugs, i.e., drugs that are effective in preclinical studies as
well as clinical trials, is estimated at only 3.4% compared to 20.9% for drugs in all other
therapeutic areas of medicine [23]. Hence, there is not only a need for new immunotherapies
and more predictive biomarkers, but also preclinical models that accurately reflect the
patient’s tumor heterogeneity and tumor immune microenvironment (TIME) [24]. In view
of the recent development of a plethora of new immunotherapeutic drugs, it will become
more difficult to recruit sufficient numbers of patients to validate all potentially effective
combination immunotherapies in clinical trials. Next-generation patient-derived tumor
xenograft (PDX) humanized mouse models could be used for preclinical evaluation of
the efficacy of combination (immuno)therapies and treatment regimens, for identifying
biomarkers of responsiveness, and to stratify cancer patients for clinical trials.

Immunocompromised mice are widely used for human tumor xenotransplantation.
In 1966, nude mice that lack the majority of mouse T cells were generated [25]. In 1983,
BALB/c-Ighb (C.B-17) mice with a spontaneous mutation in the Prkdc gene (Prkdcscid) were
discovered [26]. These mice lacked mouse T and B cells and were called severe combined
immunodeficiency (SCID) mice. Backcrossing SCID mice onto a non-obese diabetic (NOD)
background (NOD-SCID) resulted in an impaired function of mouse natural killer (NK)
cells and a mutation in signal regulatory protein alpha (SIRPA), which conferred high
affinity to human CD47 and therefore protected human immune cells from phagocytosis
by mouse myeloid cells [27]. However, NOD-SCID mice showed residual NK cell activity
and developed lymphomas in old age. To improve PDX engraftment and human immune
cell development, NOD-SCID mice with a knockout of the common gamma chain (IL2rg)
were generated in 2002 (NSG) [28,29]. Since then, similar highly immunodeficient first-
generation humanized mouse strains have been developed, such as NOG [30], BRG [7]
and NRG [31] (Figure 1). Similar to the Prkdcscid mutation, knock-out of Rag1 (NRG)
or Rag2 (BRG) led to a loss of T and B cells [32]. However, humanized mice on a NOD
background (NSG, NOG, NRG) allowed better hematopoietic engraftment compared to
other strains, such as C57BL/6 (B6RG) or BALB/c (BRG). This was due to a polymorphism
in SIRPA, since SIRPANOD demonstrated enhanced binding to the human CD47 ligand [33].
The expression of human SIRPA (SRG) or SIRPANOD (BRGS) (Figure 1) was required
to prevent phagocytosis of human cells by mouse macrophages and thereby improved
human immune cell reconstitution and long-term survival of human immune cell lineages.
Providing this “do not eat me signal” in SRG and BRGS mice resulted in human immune
system engraftment comparable to that in NSG and NRG mice [14,34,35].

The highly immunodeficient mouse strains NSG, NOG, NRG, BRGS and SRG support
the growth of PDXs as well as the development of a human immune system following en-
graftment with human CD34+ hematopoietic stem and progenitor cells (HSPCs). To further
improve HSPC and/or PDX engraftment in these mice, numerous genetic modifications
have been added to first-generation humanized mouse strains. A genealogical tree of these
novel humanized mouse strains is shown in Figure 1. These next-generation humanized
mouse models may (1) be more immunodeficient, as they not only lack mouse T, B and
NK cells but also have defects in mouse myeloid cell development (e.g., NRG-F, BRGS-F,
MISTRG and NOG-GCSF) and/or (2) express human genes in order to promote the growth
of PDXs or to improve the development of a diverse and functional human immune system
(e.g., MISTRG, NSG-SGM3, NRG-SGM3, NOG-EXL and BRGS-T) [36]. Next-generation
humanized mice have been generated to further improve the development and function of
human immune cell lineages, thereby enabling preclinical testing of different immunother-
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apeutic agents. Technological advances, such as CRISPR/Cas9-mediated genome engi-
neering, have facilitated the development of novel next-generation humanized mouse
strains, including targeted genomic humanization of mice, so called “knock-in” humanized
mice [37,38]. To support human T cell development, humanized mice have been developed
that express (1) human cytokines, such as interleukin (IL)-7 (NSG-W41-IL7 [39], NSG-IL7-
IL15 [40]), IL-15 (SRG-15 [14], NSG-IL15 [41], NSG-IL7-IL15 [40], NOG-IL15 [42]) or thymic
stromal lymphopoietin (TSLP; BRGST mice) [43]) or (2) HLA class I and II molecules,
such as HLA-A2 (NSG-A2 [44], NOG-A2 [45], NRG-A2/DR4 [46], BRGS-F-A2 [47], BRGS-
A2/DR2 [48]), HLA-DR1 (NSG-A2/DR1) [49], HLA-DR2 (BRGS-A2/DR2) [48], HLA-DR4
(NRG-A2/DR4 [46], NOG-DR4 [50]) and HLA-DQ8 (NSG-DQ8) [51] (Figure 1).
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Figure 1. Humanized mouse models for translational cancer research and immunotherapy. The
scheme illustrates the genealogical tree of different humanized mouse strains. Details on the char-
acteristics of the individual strains and their usability for generating PDXs and for testing cancer
immunotherapies can be found in the text and are summarized in Tables 1 and 2. Humanized
mouse strains that are not commonly used or that are commercial regenerations of established mouse
models (e.g., NCG, B-NDG) have not been included in this figure. NRG-A2/DR4 mice are also called
“DRAGA” mice. Abbreviations: B6RG, C57BL/6 Rag2-/- Il2rg-/-; BRG, BALB/c Rag2-/- Il2rg-/-; NOD,
non-obese diabetic; NOG, NOD SCID Il2rgnull; NRG, NOD Rag1-/- Il2rg-/-; NSG, NOD SCID Il2rg-/-;
KI, knock-in; SCID, severe combined immunodeficiency; SRG, SIRPA Rag2-/- Il2rg-/-; MISTRG,
M-CSF IL3/GM-CSF SIRPA TPO Rag2-/- Il2rg-/-; Tg, transgene.
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This review summarizes next-generation humanized mouse models used to establish
PDXs of various cancer types and discusses their utility for preclinical testing of different
immunotherapeutic strategies and combination treatments to guide clinical trial design.

2. Establishing and Modeling Patient-Derived Tumors in Humanized Mice

Cell line-derived xenograft (CDX) models using tumor cells immortalized in vitro
from patient tissues have been widely used for preclinical drug development. Tumor cell
lines provide an infinite source of biological material, the underlying genetic abnormalities
are usually well characterized, and they can be easily cultured and genetically manipulated.
However, CDX models often do not accurately mimic tumor heterogeneity and are poorly
predictive of efficacy in phase III clinical trials, as evidenced by the high rates of drug
attrition in cancer [23,52,53]. Because of the low success rate in establishing cancer cell
lines, i.e., only ~10% for colorectal cancer (CRC) [54] or pancreatic cancer [55], the field
of oncology has relied on a very limited number of human CDXs per cancer type for
preclinical testing of anticancer drugs.

PDXs are generated by transplantation of patient tumors (single cell suspension or tis-
sue fragment) into immunodeficient mice and in vivo propagation for at least
3–5 passages (Figure 2A). PDX models are considered to better recapitulate the histo-
logical features, molecular characteristics and intratumor heterogeneity of human cancers,
thereby overcoming some of the limitations of CDX models [17,56–59]. However, estab-
lishing PDXs can take anywhere from several months to more than a year, and depends on
a variety of factors, such as the cancer (sub)type, the quantity and quality of the tumor sam-
ple, the implantation technique, the implantation site, the immunodeficient mouse strain as
well as supplementation of human factors (e.g., hormones for hormone receptor-positive
cancers) (Figure 2B) [60–62]. In general, metastases engraft better than primary tumors [63]
and the more immunodeficient the mouse strain, the greater the likelihood that the patient
tumor will engraft and reach stable tumor growth after 5 in vivo passages [64–66]. Yet,
successful establishment of PDXs has also been achieved when using nude mice that have a
lower level of immunodeficiency compared to NSG mice [61,67,68]. Because the mouse host
may affect tumor evolution during PDX engraftment and propagation, several studies have
extensively analyzed copy number alterations (CNAs) in different PDX models. Guillen
and colleagues showed that common driver mutations in breast cancer PDXs were retained
in early and late passages with minimal CNAs [69]. By comparing a larger collection of
1127 PDX samples and their originating 324 patient tumors, Woo et al. demonstrated that
CNA profiles were conserved during engraftment and passaging of PDXs using CNA
inferences based on DNA sequencing [70]. Some CNAs can, however, occur over long-term
passaging (e.g., ≥18 passages), and large CNA discordances have even been observed in
early passage PDXs, although only in 2.44% of samples [70]. The rare occurrence of large
CNA changes suggests that variations observed in PDXs are mostly due to spontaneous
selection of tumor clones, rather than a systematic selection pressure by the mouse environ-
ment. Another aspect of serial transplantation is the exchange of human stroma by mouse
stroma in late passage PDXs, which can affect tumor growth and drug distribution. For
instance, increased growth of late versus early passage PDXs has been reported, which may
be due in part to the loss of human stroma cells in late passage PDXs [60]. Overcoming
these limitations by minimizing passage numbers (a maximum of 5–7 passages has been
recommended) [63,71], monitoring CNAs and clonal tumor heterogeneity as well as con-
firming expected molecular targets is critical to the reproducibility and translatability of
preclinical drug screens in PDX mouse models.
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Figure 2. Modeling patient-derived tumors in immunodeficient mice. (A) Patient-derived tumor
xenograft (PDX) models are established by implanting patient tumor into immunodeficient mice. The
PDXs are expanded in vivo by serial passages to establish a PDX biobank. (B) Factors that impact
the successful establishment of PDXs (initial growth and in vivo propagation for at least 5 passages).
(C) Immunodeficient mouse models have unique characteristics (e.g., expression of human cytokines)
and therefore differently support the engraftment of various cancer types. Abbreviations: AML,
acute myeloid leukemia; APL, acute promyelocytic leukemia; CAR, chimeric antigen receptor; CNA,
copy number alteration; HR+, hormone receptor-positive; IL-6, interleukin 6; M-CSF, macrophage
colony-stimulating factor; MDS, myelodysplastic syndrome; MM, multiple myeloma.

Academic and industry institutions (e.g., EurOPDX, PDXNet, PRoXe, NCI-PDMR,
PIVOT, COG xenograft repository, LIMORE, MURAL, NIBR PDXE) have established and
characterized thousands of PDX models generated from a variety of cancer types, includ-
ing CRC [61,63,72,73], breast cancer [56,69,74,75], esophagus carcinoma [73], hepatocellular
carcinoma [57,62], melanoma [63,76], lung cancer [63,77], prostate cancer [78], gastric can-
cers [63], and leukemia and lymphoma [79] (Table 1). The success rate of establishing
PDXs varies greatly between different tumor types. For example, high success rates of
establishing PDXs have been reported for CRC (52–91%), pancreatic cancer (54–100%)
and skin melanoma (62–90%) [63,76] whereas lower engraftment rates have been reported
for breast cancer (4–86%) and prostate cancer (20.6%) [63,69,78]. In particular, hormone-
dependent cancers such as breast and prostate cancers have been shown to have a very low
engraftment rate. Accordingly, the huge variability in breast cancer engraftment rate was
due to the different types of breast cancer. Engraftment rate for primary estrogen receptor
positive (ER+) breast cancers was only 4–20% [63] whereas the engraftment rate for primary
triple-negative breast cancer (TNBC) was 30–34% when transplanted subcutaneously, and
60–86% when transplanted orthotopically [63]. In general, orthotopic transplantation of
patient tumors yielded higher engraftment rates compared to subcutaneous transplanta-
tion [63,80], and primary tumors showed a lower engraftment rate (CRC: 52–75%; TNBC:
30–34%) compared to metastases (CRC: 73–91%; TNBC: 60%) [63]. Of note, the human IL-2
in NOG-IL2 mice may activate tumor-resident T cells in transplanted tumor pieces and
reduce the engraftment rate of PDXs in NOG-IL2 compared to NOG mice [81].
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Several types of cancer rely on human factors for their growth. For instance, ER+
breast cancers have a very low rate of engraftment and expansion, which is enhanced
when estradiol supplementation is provided [74,82,83]. By analyzing 62 TNBCs, Petrosyan
et al. found that immunologically “cold” TNBCs engraft at a higher rate than immune
cell-enriched “hot” TNBCs [84]. Thus, tumor-infiltrating human immune cells may af-
fect the engraftment rate of some patient-derived tumors, although the mechanisms still
need to be experimentally validated. Some human hematological neoplasms, i.e., certain
types of leukemia and multiple myeloma, also show low engraftment in immunodefi-
cient mice. For example, the reproducible generation of human acute myeloid leukemia
(AML) xenografts is primarily limited to very aggressive “high-risk” cases. Less aggressive,
so-called “favorable-risk” AML, which constitute approximately 40% of all AML cases,
engraft poorly in immunodeficient mice [85]. Among those favorable-risk AML cases,
inv(16) and isolated nucleophosmin mutation (NPM1mut) AMLs engrafted with high effi-
cacy in MISTRG but not NSG mice [11] (Figure 2C). Human cytokines, in particular human
macrophage colony-stimulating factor (M-CSF), are required for the efficient engraftment
of inv(16) AML. NSG-SGM3 mice, also called NSGS mice, express human stem cell factor
(SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3
(IL-3), and improve the engraftment rate of AMLs from 50% in NSG to 82% in NSG-SGM3
mice [86]. This allowed the identification of different patterns of relapse of AML caused by
leukemia stem cells [87]. Improved engraftment of leukemic human hematopoietic cells,
acute promyelocytic leukemia (APL) and myelofibrosis samples was achieved by using
a humanized bone marrow ossicle xenotransplantation model [88]. Another hematologic
malignancy, myelodysplastic syndromes (MDS), has been difficult to engraft in NSG mice,
but CD34+ HSPCs from MDS patients engrafted well in MISTRG mice [17] (Table 1). Al-
though transient engraftment was observed in NSG-SGM3 mice when HSPCs from MDS
patients were co-injected with mesenchymal stromal cells [89], sustained engraftment of
MDS in NSG-SGM3 was not observed when using MDS samples from 45 patients [86,90].
This is not surprising, since hematopoietic stem cell maintenance has been shown to be
impaired in NSG-SGM3 mice [91,92]. It remains to be seen whether NSG-Quad mice, which
are NSG-SGM3 mice that additionally express human M-CSF, will be as suitable a model
as MISTRG (Figure 1) [93]. Multiple myeloma (MM) is a hematological neoplasia origi-
nating from malignant plasma cells in the bone marrow. Because these malignant plasma
cells depend on human IL-6, high engraftment of MM has been achieved in MISTRG-6
humanized mice [16]. Clonal heterogeneity and evolution have major implications for
disease progression and relapse in hematologic malignancies. Thus, it will be of great
importance to choose humanized mouse models that produce the human factors relevant
for the respective PDX entity to avoid animal model-driven changes in tumor clonality and
thus biases in preclinical drug development [94,95].

Table 1. A selection of immunodeficient mouse models used to generate PDXs.

Mouse Model Type of PDX Number of
Patients

PDX
Engraftment Rate References

Nude CRC 85 63.5% [61]

NOD-SCID, nude CRC 48 71–74% [96]

SCID Uveal melanoma 90 28% [97]

NOD-SCID

Cervical cancer 22 30.7% [98]
CRC (metastatic) 85 87% [99]

Esophageal squamous cell carcinoma 25 13.3% [100]
Gastric cancer 185 34.1% [101]

Leukemia (T-ALL) 19 52% [102]
Liposarcoma 56 44.6% [103]

NSCLC 75 49% [104]
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Table 1. Cont.

Mouse Model Type of PDX Number of
Patients

PDX
Engraftment Rate References

NOD-SCID,
NSG, NRG

CRC 10 46% (NOD-SCID)
90–91% (NSG, NRG) [105]

Ovarian cancer (high-grade serous) 43 76.7% [106]

NOD-SCID, NSG PDAC 35 90% (NSG)
40% (NOD-SCID) [66]

NSG

16 tumor types, such as bladder cancer,
breast cancer, CRC, gastric cancer,
glioblastoma, HCC, HNSCC, lung
cancer, melanoma, ovarian cancer,

PDAC, RCC, sarcoma

324 PDXs [70]

Breast cancer 83 - [56]
CRC 50 54% [107]

HNSCC 115 45.2% [108]
Nasopharyngeal carcinoma 37 18.9% [109]

Testicular cancer 8 38% [110]
Melanoma 694 62% [76]

Leukemia, lymphoma 138 PDXs 67.5% (B-ALL), 46.7%
(T-ALL), 23.2% (AML) [79]

NSG, NRG Breast cancer 102

25% (P), 36% (M); 9%
(ER+ P), 16% (ER+ M);
25% (HER2+ P), 33%

(HER2+ M); 29%
(TNBC P)

[69]

NSG, NOG Prostate cancer 48 0% [111]

NOG

10 tumor types, such as breast cancer,
CRC, lung cancer, PDAC and RCC 116 53% [112]

Gastric cancer 62 24.2% [113]
CLL 7 PDXs - [114]
ALL 60 93.3% [115]

NOG, NOG-IL2 Metastatic melanoma 21
95% (lower

engraftment in
NOG-IL2)

[81]

NOG-EXL AML 26 62% [116]

NSG,
NSG-SGM3

AML 77 82% (NSG-SGM3)
50% (NSG) [86]

AML 8 62.5% (NSG-SGM3)
37.5% (NSG) [117]

NSG,
MISTRG

Favorable-risk AML 9 68% (MISTRG)
0–20% (NSG) [11]

MDS 31 Higher engraftment
in MISTRG [17]

SRG-6, MISTRG-6 MM 30 Higher engraftment
in MISTRG-6 [16]

Abbreviations: ACC, adrenocortical carcinoma; ALL, acute lymphoblastic leukemia; AML, acute myeloid
leukemia; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; ER, estrogen receptor; HCC, hepato-
cellular carcinoma; HER2, human epidermal growth factor receptor 2; HNSCC, head and neck squamous cell
carcinoma; M, metastatic tumor; MDS, myelodysplastic syndromes; MM, multiple myeloma; NSCLC, non-
small-cell lung cancer; P, primary tumor; PCa, prostate cancer; PCNA, proliferating cell nuclear antigen; PDAC,
pancreatic ductal carcinoma; PD-1, programmed cell death protein 1; PDX, patient-derived xenograft; RCC, renal
cell carcinoma; SCLC, small-cell lung cancer; TNBC, triple-negative breast cancer. Abbreviations of humanized
mouse strains are listed in the legend of Figure 1.
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Numerous studies have demonstrated that PDX models can accurately predict the
response to targeted therapies and identify actionable targets in patient subgroups [99,118].
Preclinical investigations can also be conducted in parallel or sequentially in “avatar” mod-
els, when the PDX is established from the tumors of clinical trial participants [63,68,119,120].
Such co-clinical trials showed comparable response rates between PDX models (without
a human immune system) and patients, including patients with breast cancer, lung can-
cer, pancreatic cancer and sarcoma [74,121–124]. A co-clinical trial of combined MEK
and CDK4/6 inhibition in RAS mutant CRC demonstrated therapeutic efficacy, identified
biomarkers of response, and revealed mechanisms of resistance in PDXs [125]. In another
case, a PDX was generated from a metastatic breast cancer patient who became resistant
to treatment with a phosphatidylinositol-3-kinase alpha (PI3Kα) inhibitor [126]. PI3Kα

inhibitor therapy led to a loss of PTEN and resistance. By using a PDX nude mouse model,
the authors showed that resistance could be avoided by simultaneous blockade of PI3Kα

and PI3K p110β. In another case study, eribulin was identified to be effective in an avatar
model and was successfully applied to a patient who was initially diagnosed with stage IIA
TNBC but experienced metastatic recurrence in the liver [69]. Although the patient’s liver
metastases and ascites regressed completely on eribulin, there was isolated progression in
bone five months later. In summary, drug screening in avatar models is an innovative but
time-consuming and expensive approach that can identify effective treatment options for
cancer patients with recurrent disease.

Numerous studies show the benefit of using PDX models, even without a human
immune system, to identify determinants of response or resistance to therapies. For
example, a collection of 85 PDXs from mCRC patients was established in NOD-SCID mice
and used to discover the determinants of resistance following therapy with cetuximab, an
anti-epidermal growth factor receptor (EGFR) antibody [99]. The authors identified HER2
as an effective therapeutic target in cetuximab-resistant CRC. Rehman et al. used CRC
PDXs and standard-of-care chemotherapy treatment to study CRC cells that become drug-
tolerant persisters (DTPs) in NOD-SCID mice [127]. They showed that CRC cells possessed
an equipotent capacity to enter a DTP state, and they identified therapeutic opportunities
to target DTPs. Additional examples of clinically approved first- and second-generation
anticancer drugs that have been successfully tested in preclinical xenograft models has
been summarized by Ocana et al. and Byrne et al. [63,128].

In summary, PDX models represent a valuable resource for preclinical drug testing,
biomarker validation/discovery, translational research and precision oncology [71,129].
Using PDX models to identify biomarkers of response to therapies has the potential to
inform patient enrollment in clinical trials, thereby reducing the cost and time required to
study responses in thousands of patients with different (sub)types of cancer.

3. Human Immune System Development and Function in Next-Generation
Humanized Mice

PDX models represent a useful in vivo platform that accurately predicts the response
of therapies that target tumor cells. However, PDX models do not allow study of the
interaction of human tumor cells with the human immune system and assessment of the
effectiveness of immune cell-targeting cancer therapies. Immunodeficient mice such as
NSG, NOG, NRG, B6RGS, BRGS and SRG mice not only support the growth of PDXs, but
are also capable of developing a diverse human immune system after transplantation of
human CD34+ HSPCs [7,28,31,34].

Humanized PDX mouse models, which we define here as PDX mice with a human
immune system, represent a promising in vivo platform for translational immuno-oncology
research, testing cancer immunotherapies, and studying tumor immune escape and im-
mune cell-driven tumor evolution and metastasis [130–132]. There is a large variety of
humanized mouse strains available and 47 of the most prominent models are shown in
Figure 1 using a genealogical tree scheme. Based on the basic immunodeficient models,
next-generation humanized mice have been developed that express human cytokines,
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human leukocyte antigen (HLA) molecules or have other genetic modifications to support
human immune cell development and function. Depending on the nature of the preclinical
study, the appropriate humanized mouse model should be selected.

The development of a diverse and functional human immune system in humanized
mice depends on three key principles: (1) preventing rejection of human cells (e.g., human
tumor cells or human immune cells), (2) enabling of human CD34+ HSPC engraftment
in the mouse bone marrow niche, and (3) supporting the development and function of
human immune cell lineages [133]. An immunodeficient mouse model that lacks mouse T,
B and NK cells and that provides phagocytic tolerance (e.g., via SIRPANOD, human SIRPA
transgene (SIRPATg), human SIRPA knock-in (SIRPAKI) or mouse CD47−/−) is necessary to
prevent rejection of transplanted human immune and tumor cells [33]. The corresponding
humanized mouse models that fulfill these basic criteria are NSG [28], NOG [30], NRG [31],
SRG [14,34], BRGS [134], B6RGSNOD [35], B6RGS [135] and B6RG-CD47 mice [136]. In
addition, conditioning of the mouse bone marrow niche is necessary to support long-term
engraftment of human CD34+ HSPCs. This is accomplished by sublethal irradiation or, less
commonly, treatment with myeloablative drugs, such as busulfan [137]. Conditioning of the
mouse bone marrow by sublethal irradiation or drug treatment can be avoided by genetic
engineering of humanized mice. Introduction of the KitW41 [138,139] or KitWv mutation
(B6RGSNOD-K [140]) or by expression of human thrombopoietin (THPO) in MISTRG mice
using a knock-in (human THPO)/knock-out (mouse THPO) strategy [18] (Figure 1) renders
the mouse bone marrow niche susceptible to long-term engraftment of HSPCs without the
need for sublethal irradiation. However, a higher proportion of non-irradiated MISTRG
humanized mice show poor human immune cell reconstitution (less than 10% of human
CD45+ cells among all CD45+ cells in the blood) compared to irradiated MISTRG mice [18].

Human CD34+ cells can be obtained from umbilical cord, fetal liver, bone marrow
or mobilized peripheral blood and different CD34+ HSPC engraftment procedures and
kinetics have been described [130,141,142]. However, adult CD34+ cells have a 3- to
10-fold lower rate of human immune cell reconstitution compared to fetal/neonatal CD34+

cells [18,143]. The limited availability of CD34+ cells from cancer patients, together with
the significantly lower immune cell reconstitution capacity of adult CD34+ cells, represents
a major obstacle to the generation of PDX mice with an autologous human immune system.
Human peripheral blood mononuclear cells (PBMCs) are more readily available from cancer
patients than CD34+ HSPCs. However, the caveat of engrafting humanized mice with
human PBMCs (hu-PBL) is the development of graft-versus-host disease (GVHD), because
the transferred mature human T cells have not been educated in the mouse environment.
To delay the onset of GVHD, humanized mice that lack mouse major histocompatibility
complex MHC class I and/or II molecules (e.g., NSG-B2Mnull IA/IEnull, NOG-B2Mnull

IAnull) [144,145] and/or that express HLAs have been generated (e.g., Rag2−/− Il2rg−/−

Prf1−/− B2M−/− HLA-A2/DR1+ called “HUMAMICE”) [146]. A delayed onset of GVHD
has also been observed in hu-PBL B6RG-CD47 mice, which lack mouse CD47 [147]. Another
imitation of hu-PBL mouse models is the low number of human B cells and the absence
of human myeloid and NK cells one week post PBMC engraftment, due to the lack of de
novo generation of human immune cells (Figure 3). Improved human thymopoiesis and
T cell responses have been observed in HSPC-engrafted mice that express human HLA
class I and II molecules, such as NSG-A2 [148], NOG-DR4 [50], BRGS-A2/DR2 [48] and
“HUMAMICE”, with a B6RG background [146] (Figure 1).
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with human PBMCs [144]. Abbreviations: cGy, centigray; G-CSF, granulocyte colony-stimulating 
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Figure 3. Establishment of human immune system (HIS) mouse models. (A) Immunodeficient mice
can be reconstituted with a human immune system. For this purpose, newborn mice (1–5 days
old) are preconditioned (e.g., sublethal irradiation, busulfan treatment). Some humanized mouse
strains, such as NSG-W41, NRG-W41, B6RGSNOD-K, MISTRG and MISTRG-6 mice, do not need
to be preconditioned. Human HSPCs are injected into the liver of newborn mice, which leads to
the development of a human immune system. (B) The bar graph illustrates the composition of the
human immune system in five different humanized mouse models 10–14 weeks post-engraftment
with fetal/neonatal HSPCs [14,149,150]. The development, composition and function of the human
immune system depends on the humanized mouse model and the source of HSPCs. Fetal and
neonatal HSPCs (fetal liver, umbilical cord blood) engraft ≥ 3-fold better than adult HSPCs (bone
marrow, G-CSF-mobilized blood) [18,143]. (C) MHC-deficient humanized mice can be preconditioned
and intravenously engrafted with human PBMCs. (D) The bar graph illustrates the composition of
human immune system in NSG and MHC-deficient NSG mice 4 weeks post-engraftment with human
PBMCs [144]. Abbreviations: cGy, centigray; G-CSF, granulocyte colony-stimulating factor; HSPC,
hematopoietic stem and progenitor cell; Hu-PBL, human peripheral blood lymphocyte; MHC, major
histocompatibility complex; NK cell, natural killer cell; PBMC, peripheral blood mononuclear cells.

Cytokines (e.g., IL-6 and IL-7) and B cell-activating factor (BAFF) have been suggested
to be important for human B cell development and/or survival in humanized mice [142].
Indeed, SRG-6 mice that express human IL-6 show not only enhanced thymopoiesis and
peripheral T cell engraftment, but also increased class-switched memory B cells and serum
immunoglobulin G levels [151]. The effect of human IL-6 on B cells in NSG-IL6 mice
remains to be determined [152]. However, replacing mouse BAFF with human BAFF did not
improve B cell maturation [153]. In 2014, complete humanization of mouse immunoglobulin
loci was achieved, which enables efficient therapeutic antibody discovery [154].

IL-15 is essential for the development, maturation and function of NK cells and
promotes the survival of memory CD8+ T cells, including tissue-resident CD8+ T cells [155].
Although CD56bright CD16– and CD56dim CD16+ NK cell subsets develop in NSG and
SRG mice [14], functional NK cells that mediate antibody-dependent cellular cytotoxicity
(ADCC), lyse HLA class I negative tumor cells or produce interferon gamma (IFN-γ) upon
infection have only been observed in humanized mice that express human IL-2 (NOG-
IL2 [156]), human IL-15 (SRG-15 [14], NOG-IL15 [42], NSG-IL15 [41], NSG-IL7-IL15 [40]) or
in MISTRG mice, where functional IL-15-expressing human macrophages develop [18].

Myeloid cells, such as monocytes, macrophages, dendritic cells and neutrophils, are
dependent on several factors for their proper development, survival and function. In par-
ticular IL-3, GM-CSF, granulocyte colony-stimulating factor (G-CSF), M-CSF and FMS-like
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tyrosine kinase 3 (Flt3) ligand have been shown to be important for myeloid cells, and
these murine cytokines share less than 80% of their amino acid sequence compared to their
human cytokine counterparts [142]. In order to improve the human myeloid compartment,
mouse models that express a select combination of these human cytokines have been gen-
erated, such as MISTRG [18], NSG-SGM3 [117,149], NRG-SGM3 [157], NOG-EXL [150] and
NSG-Quad mice [158]. MISTRG (SRG mice with human M-CSF, IL-3/GM-CSF and THPO)
show high engraftment of HSPCs without irradiation, increased development and function
of human myeloid cells and NK cells [142], and support engraftment of hematological
neoplasms as mentioned in chapter two. NOG-EXL mice (NOG mice with human IL-3 and
GM-CSF) show improved development of mature human basophils and mast cells, and en-
able the study of human allergic responses [150]. NSG-SGM3 mice (NSG mice with human
SCF, IL-3 and GM-CSF) show increased human myelopoiesis and functional mast cells, but
also an exhaustion of HSPCs [92,149,159]. The BRGF/BRGSF mouse model [160,161] lacks
mouse Flt3 and therefore has decreased murine myelopoiesis. Exogeneous supplementa-
tion of human Flt3 ligand improved human dendritic cell development. This mouse model
could thus be used to test dendritic cell-targeted therapies. In addition, MISTRG-GR [162]
and NOG-GCSF mice [163] have been developed, which express human G-CSF and lack
mouse G-CSF receptor (G-CSFR), and therefore support human granulocyte development
and function.

In summary, a variety of next-generation humanized mouse models have been devel-
oped that should enable more authentic reconstruction of the human TIME and preclinical
testing of combination (immuno)therapies. A feasible alternative to using human cytokine
transgenic or knock-in mouse models is hydrodynamic injection of plasmids encoding
human cytokines into immunodeficient mice [133,164].

4. Humanized PDX Mouse Models for Preclinical Testing of Cancer Immunotherapies

Currently, there are around 1500 clinical trials assessing different types of cancer
immunotherapies, such as immune checkpoint inhibitors (ICIs), antibody-based thera-
peutics, immunomodulatory drugs and cytokines, CAR cells, therapeutic cancer vaccines
and oncolytic viruses (ClinicalTrials.gov; 20 January 2023). Faithful modeling of patient
tumor-immune cell interactions and responsiveness/resistance to immunotherapies in
humanized PDX mouse models could thus provide critical information on the efficacy of
new immunotherapeutic drugs for different cancer types and identify predictive biomark-
ers. With the development of a large number of new immunotherapeutics, preclinical
screening of highly effective combination treatments and prevention of cross-resistance
to therapies for specific cancer types will be keys to guide clinical trial design and ensure
enrollment of suitable cancer patients. For example, acquired resistance to anti-MAPK
therapy has been shown to confer an immune evasive tumor microenvironment and cross-
resistance to immunotherapy in melanoma [165,166]. This highlights the need to test for
cross-resistance between unrelated therapies and provides a rationale for treating patients
with immunotherapy before they acquire resistance to anti-MAPK therapy. Preclinical
testing in PDX mouse models has already led to important advancements in cancer therapy
and clinical approval of immunotherapeutic agents. For example, anti-CD19 CAR-T cells
successfully eradicated CD19+ B cell leukemia in PDX NSG mice [167]. The development
of next-generation humanized mouse models expressing a variety of human genes that
support human immune cell development and function will enable more faithful model-
ing of human tumor-immune cell interactions and immunotherapies that target different
immune cell lineages.

ClinicalTrials.gov
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Table 2. Humanized PDX mouse models used to test immunotherapeutic approaches.

Mouse Model Type of PDX Type of
Immunotherapy

Human Immune
System Reconstitution References

NOD-SCID NSCLC Non-autologous PBMCs + anti-PD-L1 PBMCs [104]

NSG

ALL Anti-CD19 antibody;
anti-CD19-TRAIL fusion antibody No [168,169]

Bladder cancer, NSCLC,
sarcoma, TNBC

Partially HLA-matched HSPCs
+ anti-PD-1 antibody HSPCs [170]

CLL Autologous PBMCs + anti-CD38 antibody PBMCs [171]
Dedifferentiated

liposarcoma Anti-PD-1 antibody HSPCs [172]
Gastric cancer Mesothelin-specific CAR NK cells No [173]

HCC Partially HLA-A/B-matched HSPCs
+ anti-PD-1 or anti-CTLA-4 HSPCs [174]

HNSCC Adoptive transfer of NK cells
+ anti-PCNA antibody No [175]

Nasopharyngeal
carcinoma Anti-PD-1, anti-CTLA-4 HSPCs [109]

Neuroblastoma Adoptive transfer of activated NK cells
+ anti-GD2 antibody No [176]

Ovarian cancer Autologous TILs + anti-PD-1 antibody TILs [177]
TNBC ACT (cytokine-induced killer cells) No [178]

NRG HNSCC
Radio-immunotherapy:

anti-EGFR Ab labeled with 177Lu
No [179]

BRG Osteosarcoma GD2- or HER2-targeting BiTE antibody
± anti-PD-1 or anti-PD-L1 antibody No [180]

BRGS

ACC, CRC, melanoma,
PDAC, SCLC, TNBC

Anti-PD-1 therapy ± TKIs/WNTi/
VEGFi/HDACi HSPCs [132]

CRC Anti-PD-1 ± cabozantinib,
anti-PD-L1 + cobimetinib HSPCs [181]

CRC Anti-PD-1 antibody HSPCs [182]
ACC Anti-PD-1 antibody HSPCs [183]

NOG-IL2 Metastatic melanoma ACT Patient TILs [184]

NOG, NOG-IL2 Metastatic melanoma ACT, anti-PD-1 antibody Patient TILs [81]

NOG-IL2 Uveal melanoma Anti-HER2 CAR T cells No [185]

NOG-EXL AML Co-clinical trial with BETi mivebresib No [116]

NOG-EXL,
NSG-SGM3 Breast cancer TLR7/8 agonist activates

tumor-infiltrating pDCs HSPCs [186]

NSG-SGM3 B-ALL Anti-PD-1 +
anti-CD19 bi-specific T cell engager HSPCs [187]

MISTRG

Melanoma (CDX) Anti-VEGF antibody [18]
AML Anti-CD117 CAR T cells HSPCs [188]

AML Adoptive transfer of
CBFB-MYH11-specific T cells No [189]

HLA-deficient
neuroblastoma Anti-GD2 antibody HSPCs [190]

MISTRG-6 DLBCL Anti-IL-6R antibody HSPCs [191]

Abbreviations: Ab, antibody; ACC, adrenocortical carcinoma; ACT, adoptive cell therapy; ALL, acute lymphoblas-
tic leukemia; AML, acute myeloid leukemia; B-ALL, B cell acute lymphoblastic leukemia; BETi, BET inhibitor; BiTE,
bispecific T cell engager; CAR, chimeric antigen receptor; CC, cervical cancer; CDX, cell line-derived xenograft;
CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; CTLA-4, cytotoxic T lymphocyte-associated pro-
tein 4; DC, dendritic cell; DLBCL, diffuse large B cell lymphoma; GC, gastric cancer; GD2, disialoganglioside;
GVHD, graft-versus-host disease; HDACi, histone deacetylase inhibitor; HNSCC, head and neck squamous cell
carcinoma; HSPC, hematopoietic stem and progenitor cell; Ig, immunoglobulin; IL-6R, interleukin 6 receptor;
mAb, monoclonal antibody; MDS, myelodysplastic syndromes; MM, multiple myeloma; NK, natural killer;
NPC, nasopharyngeal carcinoma; NSCLC, non-small-cell lung cancer; OC, ovarian cancer; PBMC, peripheral
blood mononuclear cell; PCa, prostate cancer; PCNA, proliferating cell nuclear antigen; PDAC, pancreatic ductal
carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; pDC, plasmacytoid
dendritic cells; PDX, patient-derived xenograft; RCC, renal cell carcinoma; SCLC, small-cell lung cancer; siRNA,
small interfering RNA; TCR, T cell receptor; TIL, tumor-infiltrating lymphocyte; TKIs, tyrosine kinase inhibitors;
TNBC, triple-negative breast cancer; VEGF, vascular endothelial growth factor; VEGFi, VEGF inhibitor; WNTi,
Wnt signaling pathway inhibitor. Abbreviations of humanized mouse strains are listed in the legend of Figure 1.
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In the past decade, tumor-infiltrating myeloid cells, including tumor-associated
macrophages (TAMs), have emerged as critical regulators of the TIME [192,193]. They pro-
mote metastasis and therapy resistance, and M2 TAMs and polymorphonuclear myeloid-
derived suppressor cells (PMN MDSCs) are associated with poor clinical prognosis in
many cancer types [194,195]. TAMs can also produce immunosuppressive molecules,
such as IL-10, transforming growth factor (TGF)-β, inhibitory checkpoint molecules like
programmed-death ligand 1 (PD-L1) as well as angiogenic factors, such as vascular endothe-
lial growth factor (VEGF) [196,197]. Efficient development of human myeloid cell lineages
in humanized mice is therefore important to faithfully model an immunosuppressive tumor
microenvironment, angiogenesis and metastasis.

Using a humanized CDX mouse model, human macrophages were shown to infil-
trate melanoma CDXs in humanized MISTRG mice and promote tumor growth [18] and
metastasis [19]. Increased tumor growth was dependent on human VEGF produced by
tumor-infiltrating human macrophages. Treatment with the anti-human VEGF antibody be-
vacizumab or depletion of human phagocytic cells with clodronate reversed the increased
tumor growth in MISTRG humanized mice (Table 2, Figure 4). However, the development
of functional human macrophages in HSPC-engrafted MISTRG mice also caused anemia
and loss of reconstitution over time, which limits the time available to perform experiments
and evaluate the efficacy of therapies [18]. Human KIT+ myeloid cells were shown to facili-
tate metastasis in melanoma CDX NSG-SGM3 but not NSG humanized mice, which lack
human factors that promote efficient human myeloid cell development [92,198]. In both,
MISTRG and NSG-SGM3 humanized mouse models, the melanoma-infiltrating myeloid
cells were transcriptionally similar to myeloid cells found in melanoma patients [19,198].
Using a NOD/SCID humanized mouse model, Su et al. demonstrated that CCL18 usually
produced by TAMs contributes to epithelial-mesenchymal transition (EMT) and metastasis
in a breast cancer CDX model [199]. However, when analyzing tumor-infiltrating plasma-
cytoid dendritic cells (pDCs), the intratumoral frequency of pDCs was dependent on the
tumor type rather than on the humanized mouse model (NOG vs. NOG-EXL) [186]. NOG
and NOG-EXL humanized mice equally supported human myeloid cell infiltration into
three different human ovarian and breast cancer CDXs.

In humanized PDX mouse models, the frequency of human CD45+ cell infiltration
into tumors was dependent on the individual PDX, as only 6 of 11 microsatellite stable
(MSS) CRC PDXs showed an infiltration with human CD45+ cells of greater than 0.1% [132].
TNBC PDXs in NSG humanized mice showed infiltration of human T cells and CD68+

myeloid cells and generated lung metastases similar to those of TNBC patients [200]. In
a study by Scherer et al., human ER+ breast cancer PDX NSG-SGM3 humanized mice
could recapitulate the lymphocyte-excluded and myeloid-rich TIME of ER+ breast cancer
patients [83]. Similarly, more CD33+ myeloid cells infiltrated a melanoma PDX in hu-
manized NSG-SGM3 compared to NSG mice [201], and a neuroblastoma PDX MISTRG
humanized mouse model recapitulated the lack of activated human NK cells observed
in neuroblastoma patients [190]. Interestingly, even NSG mice without a human immune
system partially recapitulated patient melanoma genotype-associated histopathological
features [202] and allowed the analysis of metastasis-associated features of orthotopically
engrafted CRC PDXs [203]. Proper development of human myeloid cells will pave the way
for testing myeloid-specific phagocytosis checkpoint inhibitors. For example, blockade of
the phagocytosis checkpoint SIRPA, which binds to CD47 that is upregulated on tumor
cells [204], has been shown to enhance myeloid cell-dependent killing of Burkitt’s lym-
phoma through antibody-dependent cellular phagocytosis in SRG mice [205]. Together,
these studies indicate that humanized PDX mouse models are able to recapitulate features
of the patient’s TIME and may therefore be useful for preclinical testing of the efficacy of
immune-based therapies and the discovery of predictive biomarkers.
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ment of human immune cell lineages depends on the humanized mouse model. This also influences
the composition of the TIME and the suitability of investigating different types of immunothera-
pies [14,18,83]. Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-
dependent cellular phagocytosis; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; HIS, human
immune system; KIT (also known as c-kit, CD117 or stem cell factor receptor); NK, natural killer;
PD-1, programmed cell death protein 1; TAM, tumor-associated macrophage; TIME, tumor immune
microenvironment; VEGF, vascular endothelial growth factor.

Immunotherapy in humanized PDX mouse models includes anti-PD-1 therapy of blad-
der cancer [170], hepatocellular carcinoma (HCC) [174], melanoma [206], non-small-cell
lung cancer (NSCLC) [170,207,208], autologous renal cell carcinoma (RCC) [209], sar-
coma [170,172] and TNBC [200] in humanized NSG mice, as well as adrenocortical car-
cinoma [183], microsatellite instable (MSI) and MSS CRC [132,182], melanoma [132] and
TNBC [132] in humanized BRGS mice (Table 2). Anti-PD-1 therapy in these models reduced
tumor growth in approximately 75% of PDXs and led to changes in tumor-infiltrating
lymphocytes and IFN-γ-related genes. In the case of TNBC PDXs, therapy responsiveness
seemed to correlate with PD-L1 expression on tumor cells [200]. By using TNBC CDX
BRGS humanized mice, Tentler et al. showed that RX-5902, a novel β-catenin modulator,
improved the responsiveness to PD-1 or CTLA-4 inhibitor therapy [210]. Using NSG mice,
HLA-A-matched CD34+ cells, fetal thymus and DNA-based vectors to provide human cy-
tokines, Somasundaram et al. demonstrated that co-recruitment of mast cells and forkhead
box P3 (FoxP3)+ regulatory T cells into melanomas was associated with resistance to anti-
PD-1 therapy [211]. Combination of anti-PD-1 therapy with the tyrosine kinase inhibitors
sunitinib or imatinib led to the depletion of mast cells and complete regression of tumors.
By using MSI CRC patient-derived organoids orthotopically injected into NSG humanized
mice, Kücükköse et al. showed that anti-PD-1 or anti-CTLA-4 therapy reduced primary
CRC size and eradicated liver metastases but had no effect on peritoneal metastases [212].
This humanized PDX mouse model enabled multiorgan metastasis and suggested that high
levels of immunosuppressive cytokines in ascites might promote resistance of peritoneal
metastases to ICI therapy.

A major challenge for immuno-oncology in the coming years will be to identify the
most effective combination immunotherapies for each cancer type and to identify treatment
regimens that prevent cross-resistance between different therapies. So far, combination
therapy of the CD19-directed bi-specific T cell engager blinatumomab and anti-PD-1 anti-
body pembrolizumab has shown improved survival in B-cell acute lymphoblastic leukemia
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PDX NSG-SGM3 mice [187]. Combination of anti-PD-1 antibody with histone deacetylase
inhibitors has also shown successful treatment outcomes in breast cancers [182]. Cabozan-
tinib, a multi-tyrosine kinase inhibitor, sensitized MSS CRC PDXs to anti-PD-1 therapy by
increasing the frequency of cytotoxic and IFN-γ+ T cells in BRGS humanized mice [181].
This treatment also decreased the expression of T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3), which is an inhibitor immune checkpoint and a marker of exhaustion
on CD8+ T cells [213,214].

Another critical component of the TME are cancer-associated fibroblasts (CAFs), which
can facilitate metastasis, therapeutic resistance and dormancy [215]. CAFs consist of
different subpopulations with distinct phenotypes, functions and origins. Because the
interaction of CAFs with tumor and immune cells critically shapes the TME and response
to (immuno)therapies, it is important to properly model CAFs in humanized PDX mice.
However, human CAFs that are present in the primary tumor graft are gradually replaced
by mouse fibroblasts during in vivo passaging [105,216]. In a proof-of-principle study,
Weinberg and colleagues used NOD-SCID mice to demonstrate that mesenchymal stromal
cells (MSCs) promote breast cancer metastasis via the chemokine CCL5 [217]. Human CAFs
were also shown to drive tumor progression in NSCLC-PDX NOD-SCID mice [218], and
CAF subsets have been associated with (chemo)therapy resistance in TNBC and NSCLC
PDX mouse models [104,219]. Of note, it may be challenging to support the long-term
survival of transferred human MSCs [90], although co-injection of patient tumors and
MSCs into 3D scaffolds improves the maintenance of transferred human MSCs.

Taken together, these studies demonstrate the usefulness of humanized PDX mouse
models for preclinical screening of the efficacy of immunotherapies in different cancer
types and subtypes.

5. Conclusions and Future Perspectives

In the past decade, numerous next-generation humanized mouse models have been
generated, each with distinct improvements to enable the development of a more diverse
and functional adaptive or innate immune system, or to facilitate the generation of PDXs
from a wider variety of cancer types. This will ultimately accelerate preclinical screening of
new immunotherapies and the discovery of biomarkers and effective treatment regimens
and combination therapies. However, the unique properties (improvements and shortcom-
ings) of each humanized mouse model must be considered in order to faithfully reconstruct
the patient’s TIME and to obtain meaningful results that can be transferred to the clinic
(Table 2). For example, CAR-T cell, CAR-NK cell or tumor-infiltrating lymphocytes (TILs)
therapies should be performed in humanized mouse models expressing human cytokines
that support T or NK cell survival and function, such as IL-2 or IL-15 [184]. In addition,
adoptive T cell therapy (e.g., CAR-T cells, TILs) is routinely being performed in mice devoid
of a diverse, endogenous human immune system, therefore underestimating the impact of
the immunosuppressive tumor microenvironment on the function and persistence of the
adoptively transferred T cells, or the ability of these T cells to infiltrate PDXs.

Despite advances in the field, some challenges and limitations remain regarding the
translational value of next-generation humanized mice, such as HLA class I and II incom-
patibility between PDX and HSPC, and the expensive and time-consuming generation
of humanized PDX mouse models. Nonetheless, the research studies highlighted in this
review demonstrate the potential of humanized PDX mouse models to address key ques-
tions in precision immuno-oncology and to assist in identifying effective combination
(immuno)therapies and treatment regimens for different cancer types and subtypes.
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