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Simple Summary: The landscape of non-small cell lung cancer has changed dramatically over the
past decade. This is largely due to the introduction of immunotherapy, and in particular, immune
checkpoint blockade inhibitors. Anti-PD-1 immunotherapy is now standard treatment for patients
with non-small cell lung cancer. However, not all patients respond to immunotherapy, and few
patients achieve long-term survival. Moreover, some patients experience adverse effects from the
treatment. In this review, we explain the modes of actions of common immunotherapy strategies,
summarise the clinical trials that have led to the widespread use of immunotherapy and present
some current challenges in the field of immunotherapy.

Abstract: Immunotherapy has revolutionised anti-cancer treatment in solid organ malignancies.
Specifically, the discovery of CTLA-4 followed by PD-1 in the early 2000s led to the practice-changing
clinical development of immune checkpoint inhibitors (ICI). Patients with lung cancer, including
both small cell (SCLC) and non-small cell lung cancer (NSCLC), benefit from the most commonly
used form of immunotherapy in immune checkpoint inhibitors (ICI), resulting in increased survival
and quality of life. In NSCLC, the benefit of ICIs has now extended from advanced NSCLC to earlier
stages of disease, resulting in durable benefits and the even the emergence of the word ‘cure’ in long
term responders. However, not all patients respond to immunotherapy, and few patients achieve
long-term survival. Patients may also develop immune-related toxicity, a small percentage of which
is associated with significant mortality and morbidity. This review article highlights the various types
of immunotherapeutic strategies, their modes of action, and the practice-changing clinical trials that
have led to the widespread use of immunotherapy, with a focus on ICIs in NSCLC and the current
challenges associated with advancing the field of immunotherapy.

Keywords: non-small cell lung cancer; clinical trials; immune checkpoint inhibitors; immune-related
adverse events; biomarkers

1. Modes of Action for Immunotherapies
1.1. Immune Checkpoint Blockade Inhibitors (ICIs)

The development of immune checkpoint inhibitors (ICIs) has earned much interest in
the field of immuno-oncology due to their significant success, in particular with improved
survival in patients with difficult-to-treat cancers such as NSCLC [1].

A key function of the immune system is to distinguish self from nonself. This is
achieved by the detection and binding of a T cell receptor (TCR) to an antigen displayed by
the major histocompatibility complex (MHC) on the surface of an antigen-presenting cell
(APC) [2]. T cell activation is regulated by several immune checkpoint pathways during
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the immune response, a process called peripheral tolerance [2]. At the centre of this process
are the cytotoxic T-lymphocytes-associated antigen 4 (CTLA-4) and programmed death
1 (PD-1) immune checkpoint pathways. Cancer cells have the ability to avoid immune
suppression by expressing checkpoint molecules such as PD-1, CTLA4 and programmed
death ligand 1 (PD-L1) [3].

PD-1 is a member of the CD28 family of negative costimulatory receptors expressed
on activated lymphocytes and monocytes. It modifies T cell activation by binding to its
ligands presented on APCs, i.e., PD-L1 and programmed death 2 (PD-L2). PD-1 plays an
immunoregulatory role by reducing initial T cell activation, modifying T cell differentiation
and effector functions, and supporting the development of immunological memory [2]. PD-
L1 is expressed on tumour cells, and when it binds to PD-1 on the T cell, T cell-associated ki-
nases are inhibited, preventing the development of cytotoxic T cell response to tumours [4],
thus stopping T cells from identifying and eradicating tumour cells (Figure 1). Moreover,
binding to PD-L1 can inhibit the proliferation of T lymphocytes and the production of
cytokines such as IL-2 and IFN-Y, thus inhibiting the proliferation of B lymphocytes [4].
This results in an overall weakening of the immune response. High expression of PD-
L1 is observed in 24–60% of patients with non-small cell lung cancer (NSCLC) [5], and
this high expression of PD-L1 has been shown to result in a shorter survival and a poor
prognosis for patients [4]. The expression of PD-L1 is controlled by a number of factors
such as transcriptional regulation [6–8], epigenetic regulation [9,10], post-translational
modifications [11–13] and metabolic reprogramming [14–16]. Monoclonal antibodies which
bind and block PD-1 receptors signals can reactivate the tumour-infiltering lymphocytes,
allowing the recognition and elimination of malignant cells [17].
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Figure 1. Mechanisms of action of immune checkpoint inhibitors. T cells recognize tumour antigens
at the MHC on antigen presenting cells (APC) by T cell receptors (TCR) displayed on T cells. The
interaction between CD80/CD86 (also known as B7-1 or B7-2) on APC and CD28 mediates a T cell
co-stimulation in conjugation with TCR signals emitted by the T cell. CTLA-4 on activated T cells
interacts with either CD80 or CD86 ligands (with a higher affinity for CD28), thus stopping the T cell
from sending inhibitory signal to a T cells. Monoclonal antibodies, anti-CTLA-4 (e.g., ipilimumab)
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block this inhibitory pathway, thereby restoring T cell activity and amplifying an immune response.
Cytotoxic CD8+ specific T cells recognise tumour antigens at the MHC of the APC using TCR. PD-1
is expressed on activated T cells, and the binding of PD-L1 on APC to PD-1 results in an adaptive
expression. The interaction between PD-1 and PD-L1 negatively regulates the anti-tumour T cell
response and causes immunosuppression. Anti-PD-1 (e.g., pembrolizumab) and anti-PD-L1 mAbs
(e.g., atezoliumab) block this inhibitory pathway, thereby restoring T cell activity and relieving the
immunosuppression.

CTLA-4 is a receptor on T cells that causes the inhibition of T cell priming, activation,
and migration [18]. CTLA-4 is highly expressed on activated T cells where it competes
with CD28 for binding to CD80 and CD86 expressed on APC (Figure 1) [19]. Consequently,
the overexpression of CTLA-4 in the tumour micro-environment can act as a biomarker
for prognosis and treatment of NSCLC [20]. Targeting CTLA-4 can prevent the immuno-
suppressive CTLA-4 binding mechanisms by diminishing the co-stimulatory binding of
CD28. This allows for the activation and proliferation of T cells at early stages prior to
complementary ligand binding, leading to stimulatory signals which attack cancer cells [2].

Currently six mAb targeting PD-1/PD-L1 and one mAb targeting CTLA4 have been
approved by the FDA for the treatment of NSCLC (Table 1), which we will discuss in more
depth in subsequent sections.

Table 1. Immune checkpoint inhibitors approved for the treatment of NSCLC.

Name Approval Type of MA Action Usage Reference

Nivolumab March 2015 IgG4 PD-1 Stage III OR IV
metastatic NSCLC. [21]

Pembrolizumab October 2016
Humanized

IgG4-K isotope
antibody.

PD-1 Stage IV metastatic
NSCLC. [22,23]

Atezolizumab October 2016 IgG1 PD-L1 Stage III or IV
metastatic NSCLC. [24,25]

Durvalumab February 2018 IgG1 k PD-L1 Stage III NSCLC [26]

Ipilimumab May 2020 (in combination
with nivolumab) IgG1 CTLA-4 NSCLC [27]

Cemiplimab

November 2022
(in combination with

platinum-based
chemotherapy)

IgG4 PD-L1 Stage III OR IV
metastatic NSCLC [28]

Tremelimumab

November 2022 (in
combination with
durvalumab and
platinum-based
chemotherapy)

IgG2 PD-L1 Stage III OR IV
metastatic NSCLC [29]

There are also several other negative checkpoints emerging that suppress the immune
system through ligand/receptor binding. These include T cell immunoglobulin, mucin-
containing protein-3 (TIM-3), V-domain immunoglobulin suppressor of T cell activation
(VISTA), ITIM domain T cell immunoreceptor (TIGIT), and Lymphocyte activation gene-3
(LAG-3) [30]. TIM-3 is expressed on activated CD4+ T cells (T helper cells) and negatively
induces cytokines (Th1 and Th17). It also attaches to galectin-9, which leads to apoptosis
of cytotoxic cells (CD4+ and CD8+) [31]. Galectin-9 is upregulated in cancer cells and
suppresses an anti-tumour response through ligation with TIM-3 [31]. LAG-3 can also bind
to galactin 3 in the TME, resulting in a reduction in anti-tumour response by inhibiting
CD8+ T cells [32]. TIGIT inhibits the immune system by competing with CD226 to interact
with CD112 and CD155 which would normally activate T cells [33]. VISTA is a member of
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the B7 family of checkpoints that are primarily expressed in hematopoietic cells and naïve
CD4+ and Foxp3+ regulatory T cells. It can act as both a ligand and a receptor in negatively
regulating immune responses [34]. VISTA has been shown to be more complicated than
originally thought and its mechanism of action is not fully understood.

Some new studies have suggested a dual combination of ICIs may prevent resistance
and improve positive outcomes for patients; however, elevated side effects must be consid-
ered [30]. Patients who do respond to ICIs show that tumour load, immunogenicity, and
the extent of immunosuppression in the microenvironment are critical factors that deter-
mine the probability of a positive clinical response [35]. Thus, ICI combination strategies
could be the way forward. Dual regimes including anti-PD-1 in combination with less
successful ICI such as anti-TIGIT and anti-LAG-3 are currently in clinical trials [35]. For
example in the CITYSCAPE trial, atezolizumab (anti-PD-L1) plus tiragolumab (anti-TIGIT)
are being assessed for first-line treatment of NSCLC [36]. Findings from this study have
demonstrated that titragolumab plus atezolizumab improved both the response rate and
progression free survival compared with atezolizumab alone with a safe profile [36]. Other
combination strategies involving ICIs and other forms of immunotherapy include the use
of adoptive cell transfer with ICIs. The most recent of which includes the use of nivolumab
in combination with tumour infiltrating lymphocytes (TIL). A phase 1 clinical trial investi-
gating the benefit of TILs administrated with nivolumab in patients with advanced NSCLC
demonstrated effective T cell expansion in vivo and manageable toxicity to the patient [37],
showing promise for the future.

1.2. CAR-T Cell Therapy

Another type of immunotherapy which has gained some attention in the lung cancer
field is chimeric antigen receptor (CAR) T cells. CAR-T cells are T cells that have been
genetically-modified to express the CAR protein, allowing T cells to recognize cancer
cells, without relying on MHC [38], and trigger a downstream signalling cascade of T cell
activation [39]. CAR-T cell therapy is an approved therapy for haematologic malignancies
such as B-cell leukaemia [40]. Many studies have displayed successful anti-tumour activity
in vitro [41] and in vivo [42] using CAR-T cells specific to NSCLC tumour-associated
antigens such as B7-H3 [41], GD2 [42] and PTK7 [43]. These studies and others have led
to the development of clinical trials of CAR-T cell therapy in NSCLC (Table 2). However,
these trials are still in early phase and are yet to receive FDA approval. Current issues in
using CAR-T cells to treat solid tumours include the harsh tumour microenvironment [44],
resulting in T cell exhaustion and subsequent failure to activate their cytotoxic abilities. T
cells are also unable to detect intracellular antigens [44], and most significantly, there has
yet to be a surface antigen discovered that is as widely expressed as CD19 on B-cells seen
in leukaemia [45].

Table 2. Clinical trials investigating CAR-T cell therapy in NSCLC.

ClinicalTrials.gov
Identifier Status Phase Target Cancer Type

NCT04153799 Unknown Phase I EGFR NSCLC

NCT05060796 Recruiting Early Phase I EGFR NSCLC

NCT03525782 Unknown Phase I/II MUC1 NSCLC

NCT04489862 Unknown Early Phase I MSLN NSCLC

NCT03060343 Unknown Early Phase I PD-L1
CD80/CD86 NSCLC

NCT04556669 Recruiting Phase I CD22 NSCLC

NCT05620342 Not yet recruiting Early Phase I GD2 NSCLC
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Table 2. Cont.

ClinicalTrials.gov
Identifier Status Phase Target Cancer Type

NCT05117138 Not yet recruiting Phase I/II AMT-116 NSCLC

NCT02587689 Unknown Phase I/II MUC1 NSCLC

NCT05274451 Recruiting Phase I ROR1 NSCLC

NCT04981119 Recruiting - HLA negative NSCLC

NCT02706392 Terminated Phase I ROR1 NSCLC

NCT04025216 Active, not recruiting Phase I MUC1 NSCLC

NCT05239143 Recruiting Phase I MUC1 NSCLC

NCT03182816 Unknown Phase I/II CTLA-4/PD-1 Malignant solid
tumours

NCT03932565 Unknown Phase I Nectin4/FAP NSCLC

NCT03638206 Recruiting Phase I/II Multi-target Lung cancer

NCT03740256 Recruiting Phase I HER-2 Lung cancer

NCT03198052 Recruiting Phase I

Multi-target (PSCA,
MUC1, TGFβ, HER2,
Mesothelin, Lewis-Y,
GPC3, AXL, EGFR,

Claudin18.2, or B7-H3)

Lung cancer

NCT03356808 Unknown Phase I/II

Multi-target
(MAGE-A1, MAGE-A4,

MucI, GD2, and
mesothelin, as well as
novel cancer antigens)

Lung cancer

NCT03054298 Recruiting Phase I Mesothelin Lung Adenocarcinoma

NCT03198546 Recruiting Phase I GPC3 and/or TGFβ Squamous Cell Lung
Cancer

NCT02992210 Unknown Phase I/II Solid tumour

NCT02349724 Unknown Phase I CEA Lung cancer

NCT02414269 Active, not recruiting Phase I/II Mesothelin Lung cancer

NCT01869166 Unknown Phase I/II EGFR NSCLC

NCT01583686 Terminated Phase I/II Mesothelin Lung cancer

1.3. Oncolytic Virus Therapy

Oncolytic viruses are genetically modified to promote the targeting and destruction
of specific cancer cells, while leaving self-cells untouched [46]. The genetic modifications
used in oncolytic virus therapy (OVT) remove the adenoviral genes that are used in
normal cells for viral infection, but not in cancer cells [47]. The primary mechanisms of
oncolytic viruses include the lysis of tumour cells, followed by the promotion of anti-
tumour activity [48], and changes in cytokine levels which generate a proinflammatory
tumour microenvironment [49]. Studies have also shown the ability of OVT to promote
expression of PD-L1 on tumour cells, making them better targets for ICIs [50].

OVT was first approved by the FDA as a treatment for unresectable melanoma patients
in 2015 [51], and there are ongoing trials examining the use of OVT in NSCLC patients
(Table 3). A phase I study demonstrated the successful insertion of these oncolytic viruses
into NSCLC cells while avoiding healthy tissue, and no adverse reactions were reported [49].
The study assessed intravenous delivery (IV) of enadenotucirev (ColoAd1) in patients with
resectable colorectal cancer, non-small cell lung cancer, urothelial cell cancer and renal
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cell cancer patients. Immunohistochemistry (IHC) analysis was utilised to investigate
the success of IV delivery of the virus, and successful viral replication was observed,
demonstrating effective delivery of the virus. Positive CD8+ T cell infiltration was also
observed in patients’ tumour samples, indicating viral delivery can induce a successful
immune response without causing any harm to the patient [49]. While the use of OVT
remains very much at its infancy in the NSCLC setting, it will be interesting to see how this
develops in the future.

Table 3. Clinical trials investigating OVT in NSCLC.

ClinicalTrials.gov Identifier Status Phase Virus Cancer Type

NCT03004183 Active, not recruiting Phase II ADV/HSV-tk NSCLC

NCT05076760 Recruiting Phase I MEM-288 NSCLC

NCT02879760 Completed Phase I/II Ad-MAGEA3 and
MG1-MAGEA3 NSCLC

NCT02053220 Completed Phase I Colo-Ad1 NSCLC

NCT05602792 Recruiting Phase I/II T3011 NSCLC

NCT00861627 Completed Phase II REOLYSIN® NSCLC

NCT03767348 Recruiting Phase II RP1 NSCLC

NCT04725331 Recruiting Phase I/II BT-001 NSCLC

2. Immunotherapy for Advanced Stage NSCLC

In 2012, a phase I study was conducted to determine the safety and efficacy of
nivolumab in patients with certain types of cancers. Surprisingly, this trial showed a
response rate of 18% among patients with NSCLC and led to further clinical development
and other anti-PD(L)1 agents in NSCLC [52]. Checkmate-017 was a landmark phase III trial
that examined the safety and efficiency of nivolumab versus docetaxel. The trial showed
significantly improved overall survival (OS), overall response rate (ORR), and progression-
free survival (PFS) with nivolumab over docetaxel in patients who had received one prior
line of therapy [21]. In March 2015, Checkmate-017 together with Checkmate-057, which
had the same study design but was conducted in patients with non-squamous NSCLC [53],
led to the approval by the FDA of nivolumab as the first ICI for the treatment of patients
with advanced NSCLC after platinum-based chemotherapy. The five year outcomes of
pooled data from both these trials revealed that at five years, nivolumab continued to
demonstrate a survival benefit compared with docetaxel, with an OS of 13.4% versus 2.6%,
and a PFS of 8.0% versus 0% [54]. This is a significant and life-changing advance for patients
with NSCLC.

The approval of nivolumab was quickly followed by the approval of subsequent ICIs
(Table 1). In October 2016, results from the KEYNOTE-010 [23] and KEYNOTE-024 [22]
trials led to the approval of the PD-1 inhibitor, pembrolizumab, for the treatment of patients
with metastatic NSCLC. In KEYNOTE-024, pembrolizumab was compared with cytotoxic
chemotherapy as a first-line treatment for patients with advanced NSCLC and a PD-L1
tumour percentage score of 50% or greater. Pembrolizumab was shown to have significantly
longer PS and OS and fewer adverse effects compared with platinum-based chemotherapy
and so became a new standard of care for the first-line treatment of patients with ‘PD-L1
high’ NSCLC [22]. Following positive results from the POPLAR and OAK trials, another
ICI inhibitor, atezolizumab, was approved for second-line treatment for patients with
locally advanced or metastatic NSCLC [24,25]. While anti-PD-(L)1 monotherapy had
demonstrated benefit in a subset of patients with pre-treated NSCLC, it was also postulated
that combination immunotherapy may be a useful strategy in NSCLC.

Ipilimumab and tremelimumab are CTLA-4 inhibitors previously used in metastatic
melanoma. In a phase II trial conducted more than 10 years ago, single agent ipilimumab



Cancers 2023, 15, 2996 7 of 23

combined with chemotherapy demonstrated modest benefit compared with ipilimumab
monotherapy in NSCLC [55]. However, the combination of ipilimumab and nivolumab
had demonstrated deep and durable responses in patients with melanoma [56], and it was
hoped this could be recapitulated in NSCLC. In early phase studies of this combination, it
was clear that the doses used for melanoma resulted in unacceptable toxicity in patients
with NSCLC. After modification of this dose to ipilimumab every 6 weeks, the Checkmate-
227 explored this combination in a complex eight-arm clinical trial. Broadly, this study
demonstrated a significant benefit in PFS and OS as well as durable responses in patients
with both PD-L1 > 1% and PD-L1 < 1% NSCLCs, and is approved as a ‘chemotherapy-free’
option in the first-line treatment for patients with advanced PD-L1 > 1% NSCLC [27].
In addition, a novel regimen from the Checkmate 9LA trial incorporating two doses of
platinum-doublet chemotherapy in addition to ipilimumab and nivolumab also resulted
in both PFS and OS benefits for this combination compared with chemotherapy alone,
and is also an approved treatment option for first-line advanced NSCLC in all-comers for
PD-L1 status [57]. This regimen is thought to potentially provide the ‘neoantigen release’ of
cytotoxic chemotherapy alongside the long-term durable outcomes seen with ipilimumab
and nivolumab.

While the use of ICIs has undoubtably changed the landscape of patient care for
NSCLC, there remains an urgent need to transform more patients from immunotherapy
non-responders to responders. Hence, current research strategies are focused on improving
the response rate of ICIs, and these efforts are mainly centred around creating effective com-
bination regimens with chemotherapy, radiotherapy, and other anti-cancer drugs (Table 4).
In 2018, the FDA approved the use of pembrolizumab in combination with chemotherapy
for first-line treatment of metastatic non-squamous NSCLC, independent of PD-L1 tumour
expression status. This approval was based on the results of the KEYNOTE-189 trial which
demonstrated a longer OS and PFS in patients receiving pembrolizumab in addition to
standard chemotherapy of pemetrexed and a platinum-based drug compared with patients
receiving chemotherapy alone [58]. This combination regimen was also approved for
first-line treatment in metastatic squamous NSCLC following the results of the KEYNOTE-
407 trial, again independent of PD-LI tumour expression status [59]. The positive results
from the Impower150 trial led to the approval of atezolizumab with chemotherapy and
bevacizumab for first-line treatment of metastatic non-squamous NSCLC [60]. Interestingly,
it has been demonstrated that the combination of chemotherapy with bevacizumab induces
proliferation of peripheral CD8 T cells, particularly memory and effector subsets [61], per-
haps offering the rationale for combining chemotherapy and bevacizumab with ICIs. This
is also now an approved option for first-line treatment of advanced NSCLC independent of
PD-L1 status, based on the phase III IMPower150 trial [60].

Table 4. Selected clinical trials investigating combination strategies with approved ICIs in advanced
NSCLC.

Ipilimumab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Chemotherapy Paclitaxel,
Carboplatin NCT01285609 Phase III Completed [62]

Other Radiotherapy NCT02221739 Phase I/II Completed [63]
Erlotinib or
Crizotinib NCT01998126 Phase I Completed [64]
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Table 4. Cont.

Cemiplimab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Chemotherapy Platinum-doublet
chemotherapy NCT03409614

EMPOWER-
Lung

3
Phase III Active, not

recruiting [28]

Other Isatuximab NCT03367819 Phase I/II Terminated [65]

Nivolumab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Chemotherapy Platinum-doublet
chemotherapy NCT01454102 CheckMate 012 Phase I Completed [66]

Ipilimumab plus
chemotherapy NCT03215706 CheckMate 9LA Phase III Active, not

recruiting [67]

Platinum-doublet
chemotherapy NCT02477826 CheckMate 227 Phase II Active, not

recruiting [27]

Veliparib, and
platinum-doublet

chemotherapy
NCT02944396 Phase I Completed [68]

Immune
Checkpoint
Inhibitors

Ipilimumab NCT01454102 CheckMate 012 Phase I Completed [69]

NCT02659059 CheckMate 568 Phase II Completed [70]

NCT02785952 Lung-MAP
S1400I Phase III Active, not

recruiting [71]

NCT02477826 Checkmate 227 Phase III Active, not
recruiting [27]

Vaccines CV301 NCT02840994 Phase I Completed [72]
NEO-PV-01 NCT02897765 Phase I Completed [73]

Durvalumab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Immune
Checkpoint
Inhibitors

Tremelimumab NCT02000947 Phase I Completed [5]

NCT03373760 Phase II Completed [74]
Tremelimumab

+/− chemotherapy NCT03057106 Phase II Active, not
recruiting [75]

Anti-
Angiogenic Ramucirumab NCT02572687 Phase Ia/b Completed [76]

Other Gefitinib NCT02088112 Phase I Completed [77]
LY3022855 NCT02718911 Phase Ia/b Completed [78]

AZD4635 NCT02740985 Phase I Active, not
recruiting [79]

Osimertinib NCT02454933 CAURAL Phase III Active, not
recruiting [80]
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Table 4. Cont.

Atezolizumab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Chemotherapy

Carboplatin and
paclitaxel or

carboplatin and
nab-paclitaxel

NCT02367794 iMpower131 Phase III Completed [81]

Vinorelbine NCT03801304 VinMetAtezo Phase II Completed [82]
Carboplatin and
paclitaxel with
bevacizumab

NCT02366143 iMpower150 Phase III Completed [60]

Carboplatin and
nab-paclitaxel NCT02367781 iMpower130 Phase III Completed [83]

Pemetrexed and
either cisplatin or

carboplatin
NCT02657434 iMpower132 Phase III Completed [84]

Immune
Checkpoint
Inhibitors

Ipilimumab NCT02174172 Phase Ib Completed [85]

Other Navoximod NCT02471846 Phase I Completed [86]

Pembrolizumab

Additional
Treatment Drug Type NCT/EU

Identifier Trial Name Phase Status Reference

Chemotherapy Chemotherapy
agents NCT02039674 KEYNOTE-021 Phase I/II Completed [87]

NCT01840579 KEYNOTE-011 Phase I Completed [88]
Pemetrexed/platinum

chemotherapy NCT02578680 KEYNOTE-189 Phase III Active, not
recruiting [89]

Docetaxel NCT02574598 Phase II Completed [90]

Immune
Checkpoint
Inhibitors

Ipilimumab NCT02039674 KEYNOTE-021 Phase I/II Completed [87]

Anti-
Angiogenic Ramucirumab NCT02443324 Phase I Completed [91]

NCT03971474 Phase II Active, not
recruiting [92]

Lenvatinib NCT02501096 Phase I/II Completed [93]
NCT03006887 Phase I Completed [94]

Other Pegilodecakin NCT02009449 Phase I Active, not
recruiting [95]

Necitimumab NCT02451930 Phase I Completed [96]

Oral Azacitidine NCT02546986 Phase II Active, not
recruiting [97]

Afatinib NCT03157089 LUX-Lung-IO Phase II Completed [98]
Eprenetapopt NCT04383938 Phase I/II Completed [99]

Niraparib NCT04475939 JASPER Phase II Active, not
recruiting [100]

Stereotactic body
radiotherapy (SBRT) NCT02608385 Phase I Active, not

recruiting [101]

Immunotherapy and immunotherapy combination strategies are now an accepted
standard of care, with 5-year survival data supporting these approaches. The future of
immunotherapy research in this disease setting will focus on improving treatment for
subsets for patients with advanced disease, developing approaches for the PD-L1 pre-
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treated setting, and conducting biomarker discovery of the mechanisms of response and
resistance.

3. Immunotherapy in the Treatment of Earlier Stage NSCLC

While immunotherapy has changed the management of advanced NSCLC, its use
in early-stage NSCLC has only begun to emerge. In February 2018, the FDA approved
the use of durvalumab for patients with unresectable stage III NSCLC whose disease had
not progressed following concurrent platinum-based chemotherapy and radiation therapy.
This was the first approval of an immunotherapy agent for the treatment of earlier stage
NSCLC and was based on the results of the phase III PACIFIC trial, which demonstrated
prolonged PFS and OS in patients treated with 1 year of consolidation durvalumab versus
a placebo [26]. In recent years, much effort has also centred around designing effective uses
of immunotherapy for the treatment of resectable NSCLC (Table 5).

In October 2021, the FDA approved atezolizumab for adjuvant treatment following
resection and platinum-based chemotherapy in patients with stage II and IIIA NSCLC
whose tumours have a PD-L1 expression of greater than/equal 1% of tumour cells. This
approval came about following the Impower010 trial which demonstrated a DFS benefit
with atezolizumab versus best supportive care after adjuvant chemotherapy [102]. This
was the first phase III trial to demonstrate a benefit from immunotherapy in patients
with early-stage resectable NSCLC. In 2023, the KEYNOTE-091/PEARLS trial investigated
pembrolizumab for adjuvant treatment of early-stage NSCLC following resection and
optional platinum-based chemotherapy for patients with stage IB-IIIA NSCLC. This is
approved for this indication, independent of tumoural PD-L1 expression [103].

Table 5. Clinical trials investigating ICIs in resectable NSCLC.

Drug Name Additional
Drug/Treatment

NCT/EU
Identifier Status Trial Name Phase Reference

Nivolumab Ipilimumab NCT02259621 Recruiting NA_00092076 Phase II
(neoadjuvant) [104]

Ipilimumab NCT03158129 Active, not
recruiting NEOSTAR Phase II [105]

Platinum based-
Chemotherapy NCT02998528 Active, not

recruiting CheckMate 816 Phase III
(neoadjuvant) [106]

Neoadjuvant
Chemotherapy NCT03081689 Active, not

recruiting
NADIM phase

II trial
Phase II

(neoadjuvant) [107]

Neoadjuvant
Chemotherapy NCT04025879 Active, not

recruiting Checkmate 77T Phase III
(neoadjuvant) [108]

Pembrolizumab NCT03197467 Active, not
recruiting NEOMUN Phase II

(neoadjuvant) [109]

NCT02504372 Active, not
recruiting

KEYNOTE-
091/PEARLS

Phase II
(neoadjuvant) [109]

Ipilimumab Chemotherapy NCT01820754 Completed TOP1201 IPI Phase II
(neoadjuvant) [110]

Durvalumab Neoadjuvant
chemotherapy NCT02572843 Active, not

recruiting SAKK 16/14
Phase II

(adjuvant and
neoadjuvant)

[111]

NCT03030131 Terminated IoNESCO trial Phase II
(neoadjuvant) [112]

Chemotherapy
Oleculumab/

monailiziumab/
danvatirsen

NCT03800134
NCT03794544

Active, not
recruiting

Completed

AEGEAN Trial
NEOCOAST

Phase III
(adjuvant and
neoadjuvant)

Phase II
(Neoadjuvant)

[113]
[114]
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Table 5. Cont.

Drug Name Additional
Drug/Treatment

NCT/EU
Identifier Status Trial Name Phase Reference

Atezolizumab Platinum-based
chemotherapy NCT02486718 Active, not

recruiting Impower010 Phase III
(adjuvant) [102]

NCT02927301 Active, not
recruiting Phase II [115]

We have also recently witnessed the use of immunotherapy in the neoadjuvant setting
for NSCLC. The Checkmate-816 trial was a phase III trial examining the use of nivolumab
plus platinum-based chemotherapy versus chemotherapy alone, followed by resection
in patients with stage IB to IIIA resectable NSCLC; patients were enrolled regardless of
PD-L1 status [112]. The results demonstrated that nivolumab plus chemotherapy resulted
in significantly longer event-free survival and a higher percentage of patients with a
pathological complete response than chemotherapy alone. Similar results have also been
observed in the NADIM trial, for patients with resectable stage IIIA NSCLC [113]. The
trial compares the effect of nivolumab with chemotherapy against chemotherapy as a
monotherapy. While the trial is still ongoing, current results show an improved overall
survival in patients treated with chemo-immunotherapy compared with chemotherapy
alone, with overall survival at 24 months showing 85.3% vs. 64.8%.

In March 2022, the Checkmate-816 data led to the FDA approval of neoadjuvant
nivolumab and platinum-doublet chemotherapy for the treatment of early-stage resectable
NSCLC. The NEOSTAR trial was also performed in the neoadjuvant setting, examining
the effect of nivolumab or nivolumab and ipilimumab followed by surgery in patients
with resectable NSCLC. The data from this trial indicate that neoadjuvant nivolumab and
ipilimumab-based therapy enhances pathological response, tumour immune infiltrates and
immunological memory [111].

For patients with resectable NSCLC, the goal of therapy is cure. In the context of
a curable disease, ICIs are used to reduce the risk of relapse, but it is critical that they
do not interfere with the curative portion of the treatment paradigm, that is, surgery.
This is a particular challenge for patients being treated in the neoadjuvant setting (e.g.,
CHECKMATE-816) in which the use of neoadjuvant therapy could be associated with
delays to surgery. Encouragingly, an increased risk of surgical complications has not
been observed in most neoadjuvant studies involving ICIs and NSCLC. For example, in
the CHECKMATE-816 study, the authors reported surgical complications of 41.6% in the
nivolumab plus chemotherapy arm and 46.7% in the chemotherapy arm [116]. Encourag-
ingly, only 3.4% of patients had delayed surgery in the nivolumab plus chemotherapy arm
and 5.1% in the chemotherapy alone arm.

For patients in the adjuvant setting (e.g., PEARLS/IMPower010), different challenges
emerge compared with the neoadjuvant setting [102,117]. Given that the cancer is already
surgically resected, irAEs will not interfere with patients’ curative procedure. However,
unlike in the metastatic setting, it is our expectation that the majority of these patients
will be cured of their disease. In this regard, the risk of inducing a chronic or multi-organ
toxicity may be associated with significant and long-term impact on patients’ quality-of-life.
The risks and benefits of such adjuvant therapy pose challenges in weighing the low risk of
long-term toxicity versus the survival benefit of disease control. Decisions regarding the
most appropriate treatment option need to be made in a collaborative manner between
patients and the multidisciplinary team.

Adjuvant/neoadjuvant studies in resectable NSCLC have to date demonstrated im-
pressive event-free/disease-free survival for patients, which we hope will translate to an
overall survival benefit. Long-term follow-up and further studies will provide more data on
the efficacy of adjuvant/neoadjuvant ICI and the risks of delays to surgical resection/long-
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term toxicity. We eagerly await the publication of further studies in this field and long-term
follow-up.

4. Challenges Associated with the Use of Immunotherapy
4.1. Immune-Related Adverse Events (irAEs)

Despite the clinical benefit that arises from immunotherapy, more than 20% of patients
experience immune-related adverse events (irAEs) from therapy, and the incidence may
be >50% with combination approaches [118]. Immune-related adverse events can be
described as autoimmune conditions that can affect any organ system in the body after ICI
administration [119]. These toxicities have presented as a challenge for clinical practitioners
and patients because rather than managing familiar side effects such as nausea, anaemia,
and immunosuppression, they are now confronted with unfamiliar side effects, such as
underactive pituitary glands and hepatitis [119]. Immune-related adverse events vary in
terms of their onset time, severity, and underlying biology [120]. They can affect a broad
range of organs and occur at any time during the patient’s treatment course. They most
commonly occur in the first three months of treatment but have also been observed to occur
long after ICI has been stopped [121]. The time of irAEs occurrence gives an indication of
the severity of the effects on the patient. For example, toxicity in the first year of therapy
strongly correlated with long term toxicity beyond 1 year [120]. Many ICI clinical trials
have reported longer-term safety data, but information is still limited about the ongoing
impact of the toxicities [121]. Treatments for irAEs centre around glucocorticoids for acute
irAEs (developed during ICI treatment) specifically, with good effects observed after several
weeks. Although most irAEs resolve, some develop into a chronic state (develop after
ICI treatment has terminated) and lifelong therapy such as hormonal supplementation or
immunosuppression may be required [119].

IrAEs are distinct from those that occur with traditional chemotherapy or other forms
of anti-cancer therapy as they occur as a result of the immunologic mode of action of
ICIs. There are limited data exploring the mechanisms that underpin the development of
irAEs. However, T-cell [122–124], B-cell [125] and macrophage-related mechanisms [123]
have been identified. In a comprehensive clinical and translational study, the cytokine
interleukins-6 (IL-6) was shown to be highly upregulated in the patient cohort after
nivolumab treatment [124]. Moreover, blocking IL-6 in mouse models could potentially
mitigate autoimmunity and maintain, or even possibly boost, the tumour immunity [124].
Recently, it was observed that the use of IL-6 blockade in a patient with ICI-induced
irAEs led to successful mitigation of irAEs symptoms without compromising the ICI treat-
ment [124]. It has been demonstrated that changes in T cell populations occur early after ICI
treatment [122], and these changes can also affect B cells and macrophages directly or indi-
rectly; however, the mechanism for this remains largely unknown [125]. Early changes in B
cells have also correlated with high rates of irAEs, indicating B cells may play an important
role in driving irAEs [125]. The link between T cells, B cells, and macrophages in relation
to irAEs and the modes of actions they employ, is of major interest of the immunotherapy
field at present.

It is critical that effective strategies are developed in the clinic to address the issue of
irAEs associated with ICIs. Clinical experience of ICI toxicity develops local expertise in
managing the diverse range of potential irAEs associated with ICIs. In recent years, there
has been the publication of international guidelines for the management of irAEs to guide
clinicians in the clinical management of these complex cases. These include the National
Comprehensive Cancer Network (NCCN) and the European Society of Medical Oncology
(ESMO) guidelines [126,127]. These provide detailed decision assistance tools regarding
risk stratification, early diagnosis, steroid administration and steroid sparing strategies for
patients experiencing irAEs.

The management of irAEs ideally involves specialist teams involving a medical on-
cologist and an organ specialist (e.g., a respiratory physician in case of pneumonitis). In
some institutions, this has been formalised into a dedicated irAE toxicity team. This form



Cancers 2023, 15, 2996 13 of 23

of multidisciplinary team has demonstrated feasibility and been shown to change patient
management [128].

Critical areas of research include the appropriate risk stratification of patients and the
development of biomarkers for early identification of irAEs. Prior to treatment initiation,
risk stratification of those at high risk of irAEs is a critical step in ensuring patients are
not exposed to an unacceptable level of risk. For example, it has been demonstrated
that patients with a history of interstitial lung disease are at high-risk of developing ICI
associated pneumonitis [129]. In the case of cardiotoxicity, prospective data would suggest
that baseline ECG/troponin can be helpful in identifying those patients most at risk of
toxicity, and these patients may warrant close surveillance. It is likely that the future
of ICI toxicity management will involve a refinement of our strategies to identify those
patients most at risk through clinical studies and biomarker identification in tandem with
improvements in immunosuppressive strategies.

4.2. Biomarkers

The reasons underlying why some patients with NSCLC achieve disease control
from therapy, or develop toxicity, are incompletely understood. Hence, another major
challenge facing the modern era of immunotherapy treatment lies in the development of
efficient biomarkers to optimize patient selection. The expression of PD-L1 on tumour
cells, quantified using IHC, is currently the most widely used and validated biomarker to
guide the selection of patients to receive ICIs. PD-L1 expression has shown predictive value
in many clinical trials in NSCLC, with correlations observed between clinical response
and increased expression of PD-L1 on tumour cells [23,24,130,131]. However, positive
correlation of PD-L1 expression can only partially predict which patients will benefit
from ICIs, and many trials have demonstrated responses irrespective of PD-L1 expression
status [5,21]. This imperfection in the use PD-L1 as a biomarker of response could be
attributed to many factors. For instance, differences exist in the specific types of assays that
are utilized to assess PD-L1 expression in tumour tissues, and even within these assays it
can prove difficult to score the PD-L1 expression consistently and accurately on tumour
cells and immune cells [132]. Moreover, intra-tumour heterogeneity (ITH) exists within
the tumour of patients with NSCLC, and hence, the biopsy samples may not accurately
reflect the expression of PD-L1 throughout the tumour [133,134]. The emerging use of
liquid biopsies to assess the expression of PD-L1 using cytology samples has shown great
promise, and so may help overcome some of these challenges in the future [39].

Tumour mutational burden (TMB) refers to the absolute number of non-synonymous
mutations within a tumour, which leads to the generation of immunogenic neo-peptides
displayed on the surface of tumour cells, and hence, is associated with a greater CD8+ T
cell response following ICI treatment [135]. In June 2020, the FDA approved the use of
pembrolizumab for the treatment of unresectable and metastatic solid tumours with a high
TMB. This approval was based on the results of the KEYNOTE-158 trial which demonstrated
that a high TMB was associated with an increased objective response rate [136]. However,
similar to the use of PD-L1 expression, the predictive value of TMB is limited by the
presence of ITH. A high ITH may result in the neoantigens only being present on a subset of
cells and hence, the immune response may not be effective against the entire tumour [137].
Moreover, sub-clonal neoantigens, which occur as a result of cytotoxic-chemotherapy, give
rise to high TMB and these sub-clonal neoantigens are associated with poor responders.
This is in comparison to an enhanced response to ICI in patients with tumours enriched
for clonal neoantigens [138]. Hence, neoantigen ITH can also contribute to the limited
predictive value of TMB, emphasizing the need for effective diagnostic techniques that
examine the entire tumour.

Another biomarker of response which is currently gaining much attention in the field
of NSCLC is the use of circulating tumour DNA (ctDNA). Cells release small double-
stranded DNA fragments into the bloodstream during apoptosis and necrosis, termed
circulating free DNA (cfDNA), and in cancer patients, small fractions of cfDNA can be
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shed from the tumour in the form of ctDNA [139]. Several studies have demonstrated that
the levels of ctDNA, as detected by a liquid biopsy, can predict response to ICI in patients
with NSCLC [140–142]. Moreover, ctDNA can be used for the detection of point mutations
associated with sensitivity to ICI. For example, several studies have demonstrated that
mutations in STK11 can predict the response to treatment [143], including ICIs [144] in
NSCLC. Other biomarkers assessed by liquid biopsy which may offer potential in predicting
the response to ICI in the future include peripheral blood cytokines [145], circulating non-
coding RNA [146] and the levels of various immune cell populations [147–149].

Finally, biomarkers to predict irAEs are even less characterized. Some research sug-
gests the composition of the gut microbiome in response to ICI can influence the develop-
ment of irAEs [150,151]; however, the mechanism of action remains largely unclear. Other
potential irAEs biomarkers include baseline auto-antibodies [152], germline genetics [153],
T cell and B cell populations [133], and shared T cell antigens [132]. Given the adverse
effects that ICI can have on patients, it is imperative that the field invests research in
developing predictive biomarkers to optimise patient selection and deliver this therapy to
patients most likely to benefit.

5. Future Outlook for the Use of Immunotherapy in NSCLC

ICIs have established efficacy in advanced and early-stage NSCLC, and it is unlikely
that PD-1/PD-L1 monotherapy will improve on the already established benefit for patients.
As mentioned previously in this review, recent interest lies in combining ICIs with novel
combination strategies which could include radiation, novel ICIs or other novel systemic
therapies. For example, neoadjuvant durvalumab was investigated with or without sub-
ablative stereotactic radiotherapy (SBRT) in patients with resectable NSCLC [154]. In
this study patients received two cycles of neoadjuvant durvalumab +/− 3 fractions of
SBRT (8 Gy * 3), followed by surgery. In the NEOCOAST study, the authors investigated
neoadjuvant durvalumab +/− novel agents for resectable stage I–IIIA NSCLC [155]. These
novel agents included the anti-CD73 agent oleclumab, the anti-NKG2A monalizumab or
the anti-STAT3 antisense oligonucleotide danavatirsen. Finally, the inhibition of novel
checkpoints as a monotherapy or in combination with pre-existing ICIs is an emerging
strategy in this field. LAG-3 suppresses T cell activation and cytokine secretion [156].
Inhibitors of LAG-3 have already reached phase II and phase III clinical trials and relatlimab
has been approved in combination with nivolumab for advanced melanoma [157]. In
NSCLC, the RELATIVITY study has commenced accrual and is exploring the combination
of relatlimab and nivolumab and chemotherapy in the advanced setting [158].

Another critical area of research in this field is utilising ‘liquid biopsy’ assays to
identify patients not responding to therapy at an early stage in their treatment paradigm so
that therapy plans can be adapted thereafter. ‘Liquid Biopsy’ generally refers to the use of
blood based (but can use other body fluids, e.g., breath) biomarkers to identify tumour-
based signatures which could include cfDNA, ctDNA, circulating tumour cells (CTCs) and
others [159]. In an investigation of 67 patients with stage IV NSCLC, a ctDNA ‘molecular
response’ in plasma 9 weeks post starting ICI was associated with a durable clinical benefit
(defined as an ongoing response at 6 months post IO, 3.5% vs. 49.4%, p < 0.001). This study
demonstrates the potential for ctDNA dynamics to identify responders to therapy.

In summary, it is likely that the future of ICIs in NSCLC will involve their combination
with other systemic/local therapy but advances in therapeutics will be combined with
novel diagnostics/biomarkers (e.g., liquid biopsy) to improve patient selection for therapy.

6. Conclusions

The introduction of immunotherapy as a treatment option for patients with NSCLC
has offered benefit and hope to selected patients. This is reflected in the survival benefit and
improvements in the quality of life for these patients. However, the subset of patients who
sustain a prolonged anti-tumour response remains relatively low. Continued development
of effective immunotherapy-based combination regimens and expansion into earlier stage
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NSCLC will hopefully increase the proportion of patients who respond to ICIs in the future.
Moreover, a critical gap in the field is to develop predictive biomarkers to identify patients
who will benefit most from ICI or develop toxicity. The identification of such biomarkers
and their integration with clinical care and therapeutic decision-making would continue to
ensure the impact of immunotherapy for NSCLC in the future.
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