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Tumorigenesis is a result of cell-intrinsic epigenomic and genomic changes as well as
cell-extrinsic factors. It has been recognized for some time that cancer cells are not alone,
but coexist alongside a variety of extracellular components in the tumor microenvironment
(TME). When chemotherapy or targeted therapy, respectively, inhibit proliferation or restrict
oncogenic dependence of cancer cells, the TME comprised of, fibroblasts, extracellular
matrix, immune cells, vasculature and exosomes are also impacted. Often, these changes
elicited by the therapy or the tumor response to the therapy contribute to the eventual
development of drug resistance [1–5]. In this Special Issue of Cancers, the focus is on the role
of stromal–epithelial interactions as drivers of tumorigenesis as well as the co-evolution of
the tumor and its microenvironment as contributors of therapy resistance.

Cell extrinsic factors can serve as biomarkers and therapeutic targets. One such source
of biomarkers includes tumor-derived circulating tumor DNA (ctDNA). Emerging data
have shown that ctDNA can be an effective biomarker for the early detection of various
cancers from breast to colon cancer, to predict the likelihood of cancer recurrence and
inform what form of treatment is most effective in improving patient mortality, reviewed
by Gong et al. [6]. CtDNA as well as exosomal cargo of nucleic acids and proteins are
demonstrated robust biomarkers in many cancer types. Borgmann et al. reviewed the
role of immunosurveillance disruption in the development of esophageal adenocarcinoma
(EAC) [7]. Immune tolerance is found to be perpetuated by the chronic inflammatory
environment inherent to Barret’s esophagus. Although the mechanism of immune tolerance
is still being discovered, there are opportunities to use known mediators as biomarkers of
early detection and potentially even as therapeutic targets.

Many metabolites are present in the TME that have dual roles in metabolism and
cell signaling. One such metabolite is glutamine, which has been established as a con-
ditionally essential amino acid in cancer cell metabolism. Thiruvalluvan et al. showed
that prostate cancer tumors express elevated glutamine transporters (e.g., SLC1A5 and
SLC38A1) compared to their benign counterparts [8]. Considering glutaminase inhibitors
have been used before to limited clinical benefit, they hypothesized that directly depleting
glutamine in the extracellular space may be more prudent in reducing tumor growth. To
this end, they introduced L-asparaginase to hydrolyze glutamine into glutamate as a way
to increase radiosensitivity in prostate cancer cells. Previous studies demonstrated that
CAF-derived glutamine contributed hormone therapy resistance [2]. They demonstrated
that removing glutamine in this way potentiates radiation-induced cellular toxicity through
the induction of ER stress. Prostate cancer tissue recombination models non-responsive
to irradiation were sensitized by asparaginase administration [8]. This highlighted the
critical role stromal fibroblasts play in supplying epithelial cells with vital nutrients to
avoid cellular toxicity and that targeting both epithelial and stromal compartments can
lead to better therapeutic outcomes.

Kakarla et al. demonstrated the role of Ephrin ligand expression in epithelia to
transform surrounding stroma in CAFs [9]. Ephrin signaling is a prominent example of
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juxtacrin signaling often disrupted in tumor progression. Fibroblasts gathered from the
peripheral zone of prostate tumors had increased expression of EFNB2 and EFNB3 when
compared to those from the transition zone. Then, they demonstrated that continuous
activation of EFNB1 and EFNB3 in vitro dramatically increased the expression of CAF
markers such as alpha-smooth muscle actin (α-SMA) and tenascin-C (TNC) through the
activation of Src family kinases in stromal cells. The Src-mediated acquisition of CAF
features was a result of elevated EFNB ligands found in prostate cancer TME [9]. An Src
inhibitor, Saracatinib (AZD0530), dramatically lowered the phosphorylation of Src targets
and effectively reduced α-SMA and TNC expression by fibroblasts.

Extracellular vesicles, exosomes, have come to the forefront in the TME vernacular,
recognized in recent years as key mediators of cancer progression and metastasis [10,11].
Patel et al. focused on elucidating the role of microRNAs (miRs), as exosomal cargo, in
the potentiating prostate cancer transdifferentiation to a neuroendocrine phenotype [12].
Numerous studies have shown the transfer of miRs between cells via exosomes as a
means of communication. Neuroendocrine prostate cancer, while a rare event de novo is
a well-described development in response to hormone therapy, contributing to therapy
resistance [13]. Disrupting this signaling axis via miRs may be key to helping patients
with end-stage prostate cancer. In this paper, the authors demonstrated the role of TBX2 in
NEPC, previously established as a transcription factor having a key role in prostate cancer
bone metastasis [14]. TBX2-mediated repression of miR-200c-3p caused an increase in SOX2
and N-MYC, leading to greater phenotypic plasticity. They showed that stable expression
of miR-200c-3p in deficient cell types is enough to reverse numerous NEPC markers as
well as decrease the expression of SOX2 and N-MYC [12]. The work highlighted the impact
that cancer-derived factors can have in an autocrine and paracrine manner to influence the
differentiation state and therapy responsivity of the tumor.
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