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Summary      This Supplemental provides a tutorial on the Bayesian “varying slopes and 
intercepts” model. It is intended to help readers who are unfamiliar with it to form a more intuitive 
understanding of the model. It is not intended to be an in-depth summary on Bayesian modeling. 
Several introductory textbooks provide a more complete coverage on the Bayesian approach to 
hierarchical data.1,2 The book by Kruschke 3 is an accessible tutorial on the basics of Bayesian 
statistics. The “varying slopes and intercepts” concept is not new. Raudenbush and Bryk 4 was 
among the first to introduce social scientists to the idea of modeling varying slopes and intercepts 
in hierarchical data. Below we first illustrate what the “varying intercepts and slopes” are and what 
they represent in the context of this study. Next, we cover the model equations to introduce 
readers to the notation commonly used in Bayesian statistics.1,2 We then describe selected model 
parameters in relation to this paper. The computer code, written in the statistical programming 
language R, can be found online (https://github.com/bayesnp/RandomSlopesIntcpts).   
 
Illustrative examples of “varying intercepts and slopes” 
 
Each study participant was assessed up to 4 times over 24 months. Supplement Figure S1 plots 
the repeated measures of observed APE scores for randomly selected survivors and controls. 
Plotted in blue are regression lines fitted to each participant’s 4 assessments over time. For 
instance, one participant in the control cohort shows an intercept 𝛼 = 0.7 and a slope 𝛽 = 0.04. 
The 𝛼 = 0.7 represents the person’s APE score at month 0 (study enrollment), a standardized 
score of 0.7 above the norm in the first assessment occasion completed by this participant. This 
participant’s slope of 𝛽 = 0.02 represent her average change in APE score per month. Thus, the 
estimated score at 24 months is the intercept 0.7 plus the slope 0.02 multiplied by 24, which yields 
1.18. On the right panel, we identify the intercept of -1.06 and slope of 0.01 for a participant in the 
survivor cohort. She scores 1.06 standard deviation below the norm at the first assessment 
occasion. These person-specific intercepts 𝛼௜ and slopes 𝛽௜ are what we refer to as the “varying 
intercepts and slopes”.  

 
Supplement Figure S1. Examples of random intercepts and slopes fitted to longitudinal measurements of APE scores. 

The person-specific intercepts represent each person’s score at enrollment — the cognitive 
performance at the first assessment occasion. This first assessment is what Salthouse5 
characterizes as the cross-sectional score, while the repeated assessments the longitudinal 



score. This terminology is in part attributed to a well-documented finding in aging research, that 
within-person cognitive changes are affected by repeated test exposure. The typical result is a 
practice effect that cognitive performance improves over repeated test administrations. The 
practice effect is visible above in the mostly slight upward slopes above. By contrast, the first 
assessment is less prone to practice effect, and presumed absent in participants who have never 
encountered the test before. To address this issue, the cross-sectional and longitudinal scores 
are often analyzed separately.5 However, we argue that we do not have to analyze them 
separately. Our Bayesian approach is designed to fit all available data by leveraging the random 
intercepts and slopes. 
 
Bayesian model equations 
 
Consider the current study of 𝑛 participants on cognitive performance 𝑦௜ሾ௧ሿ from the 𝑖th person at 
assessment time 𝑡, where the bracketed index 𝑖ሾ𝑡ሿ denotes that the assessments are nested 
within study participants. The Bayesian “varying intercepts and slopes” model is divided into two-
levels, using the multi-level modeling approach in the literature.4 In level 1, the repeated 
assessments for each person is first distilled into an intercept 𝛼௜ and slope 𝛽௜:  
 Level 1:𝑦௜ሾ௧ሿ ~ 𝑁൫𝛼௜ + 𝛽௜𝑀𝑜𝑛𝑡ℎ𝑠௜ሾ௧ሿ, 𝜎ఢଶ൯,    for 𝑖 = 1, … , 𝑛; 𝑡 = 1, … ,4Level 2:ቀ𝛼௜𝛽௜ ቁ ~ 𝑁 ൭ቆ𝜇̂ఈ೔𝜇̂ఉ೔ ቇ , Ω൱where𝜇̂ఈ೔ = 𝛾଴଴ + 𝛾଴ଵ𝐴𝑔𝑒௜ + 𝛾଴ଶ𝐴𝑔𝑒௜ଶ + 𝛾଴ଷ𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟௜ +𝛾଴ସ𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟௜ ∙ Age௜ + 𝛾଴ହ𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟௜ ∙ 𝐴𝑔𝑒௜ଶ𝜇̂ఉ೔ = 𝛾ଵ଴ + 𝛾ଵଵ𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟௜ + 𝛾ଵଶ𝑎𝑔𝑒4𝑄௜ + 𝛾ଵଷ𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟௜ ∙ 𝑎𝑔𝑒4𝑄௜Ω = ൬𝜎ఈ 00 𝜎ఉ൰ 𝑅 ൬𝜎ఈ 00 𝜎ఉ൰𝑅 ~ LKJCorr(2)𝛾.. ~ 𝑁(0, 2.5)𝜎ఢଶ ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

 

 
The varying intercepts and varying slopes are further analyzed in level 2, where the intercepts 𝛼௜ 
and slopes 𝛽௜  are drawn from a bivariate normal distribution with averages ൬ఓෝഀ೔ఓෝഁ೔൰  and a 2x2 

covariance matrix Ω. Recall that the intercept 𝛼௜ represents the person’s first assessment score 
(practice effect absent) and the slope 𝛽௜  represents the within-person change over months 
(affected by practice effect). The model allows us to incorporate all available data, but in level 2 
of the model we analyze the intercepts and slopes separately to avoid the confounding practice 
effect. 
 
In level 2, 𝜇̂ఈ೔ represents the intercepts from 328 survivors and 158 controls. They are fitted as a 
quadratic function of age. For controls, their quadratic age function has the shape 𝛾଴଴ + 𝛾଴ଵ𝐴𝑔𝑒௜ +𝛾଴ଶ𝐴𝑔𝑒௜ଶ, where 𝛾଴଴ represents the overall intercept, 𝛾଴ଵ the linear age term, and 𝛾଴ଶ the quadratic 
age term. Survivors have a separate quadratic age function, and 𝛾଴ଷ, 𝛾଴ସ, and 𝛾଴ହ, represent 
respectively the differences between survivors and controls in the overall intercept, the linear age 
term, and the quadratic age term. Note that, despite its complex notation, this equation is simply 



a regression on the first assessment scores (practice effect absent) as a function of chronological 
age in quadratic form. Generally, in a quadratic curve, the intercept represents estimated score 
when the x-axis is at 0. In our model, we center age so that the overall intercept represents the 
estimated score at the average age of 72.5 for the entire sample. The linear term represents, 
generally, the overall growth over chronological age; and the quadratic term represents the 
curvature in the curve over chronological age. Figure S1 in the paper plots the chronological age 
trends in controls and survivors. The curve for controls is plotted using  𝛾଴଴ + 𝛾଴ଵ𝐴𝑔𝑒௜ + 𝛾଴ଶ𝐴𝑔𝑒௜ଶ, 
where we plug in 𝛾଴଴ = 0.013 , 𝛾଴ଵ = −0.047, and 𝛾଴ଶ = 0.00001 from Table 2. 
 
Similarly, 𝜇̂ఉ೔  represents the slopes from 328 survivors and 158 controls. They represent the 
estimated within-person change in cognition per month.  They capture the practice effect over 
repeated assessments. They are modeled as a function of 4 age quartiles in the age4Q predictor.  
This effectively fits 8 separate longitudinal effects, 4 for each of the age quartiles in controls and 
4 for survivors. It is possible to model age as a continuous predictor rather than categorical age 
quartiles because the model is flexible. However, we opt for age quartiles because they make the 
interpretation easier, and we can still examine within-person practice effects between the four age 
quartiles (60 to 67; 68 to 71; 72 to 76; and 77 to 90). For instance, in Figure S1, all age groups 
show practice effect over 24 moths except controls in the oldest age group (age 77 to 90). 
 
The last 4 lines of the equation describe the priors in this application. We use the Bayesian 
approach in Sorensen, et al.6 The covariance Ω  for the varying intercepts and slopes is 
constructed by factoring it into separate standard deviations 𝜎ఈ, 𝜎ఉ and a correlation matrix 𝑅.6  
The correlation matrix 𝑅 follows the LKJ prior, 7 which offers advantages over the inverse Wishart 
distribution for a covariance matrix.  The LKJCorr(2) prior with a shape parameter of 2 represents 
a weak concentration of correlations between -0.5 and +0.5.8 The remaining lines express the 
priors for the coefficients 𝛾.., as normal distributions centered at 0 with a 2.5 standard deviation 
for a stretched tail (https://cran.r-project.org/web/packages/rstanarm/vignettes/priors.html).  The 
error standard deviation has a prior of exponential(1). 
 
Finally, an added advantage of taking a Bayesian approach is that it yields useful information 
not available in conventional approaches. Supplement Figure S2 shows an example on how 
Bayesian computation estimates the age effect (𝛾଴ଵ for the control cohort).  
 

 

Supplement Figure S2. Example plots of Bayesian computation. The left plot shows that Bayesian computation draws random 
samples of age effect from the posterior distribution over 1,000 iterations. In this example, 4 independent sampling chains are 
drawn in parallel and combined in the right plot, which plots the model-estimated posterior density of the age effect. The 
shaded area represents the 95% Bayesian credible interval for the age effect. 
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To estimate the model coefficient, the Bayesian computer program draws sample from the 
posterior distribution of the 𝛾଴ଵ coefficient over 1,000 iterations, one value at each iteration. In 
this example, 4 independent chains of 1,000 iterations each are drawn in parallel. The parallel 
chains help the user evaluate convergence between the chains. The user may begin with a 
default number (e.g., 2,000) and increase the number of iterations until a convergence criterion 
is reached. The samples are combined and plotted on the right to show the estimated posterior 
distribution of 𝛾଴ଵ. The Bayesian 95% credible interval for the age effect is the interval that 
covers 95% of the simulated values. 
 
The simulated samples can be used to calculate the chronological age gap between survivors 
and controls on the APE domain (Figure S1a in the paper, subplot on the right). The GitHub 
page for this paper provides the R syntax code to do the calculation. Basically, at each iteration, 
we get a set of coefficients from 𝛾଴଴ through 𝛾଴ହ. Next, we plug them into the model equation to 
generate one predicted value of 𝜇̂ఈ೔ for survivors or controls at a specific chronological age. We 
do this across the entire chronological age range to obtain the estimated average cognitive 
performance for survivors and controls. These are then plotted as the blue and red lines in 
Figure S1. When we repeat this step over 1,000 iterations, we get a distribution of 1,000 
estimated values. The credible interval for this distribution of 1,000 numbers, when plotted over 
chronological age, gives us the shaded areas in Figure S1. 
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