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Simple Summary: Hepatocellular carcinoma is the third most prevalent cancer world-wide. This
study aimed to reveal the metabolic signature of hepatocellular carcinoma compared to adjacent
normal liver cells. To achieve this, metabolites were detected, analyzed, and quantified using
targeted and non-targeted metabolomics. We found distinct metabolite signatures between both
sample types. Targeted metabolomics identified distinct metabolites being specifically altered in
hepatocellular tissue compared to adjacent liver, supporting the concept of metabolic reprogramming
in hepatocellular carcinoma.

Abstract: Background: Hepatocellular carcinoma (HCC) is a major contributor to cancer-related
morbidity and mortality burdens globally. Given the fundamental metabolic activity of hepatocytes
within the liver, hepatocarcinogenesis is bound to be characterized by alterations in metabolite profiles
as a manifestation of metabolic reprogramming. Methods: HCC and adjacent non-tumoral liver spec-
imens were obtained from patients after HCC resection. Global patterns in tissue metabolites were
identified using non-targeted 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy whereas spe-
cific metabolites were quantified using targeted liquid chromatography–mass spectrometry (LC/MS).
Results: Principal component analysis (PCA) within our 1H-NMR dataset identified a principal
component (PC) one of 53.3%, along which the two sample groups were distinctively clustered.
Univariate analysis of tissue specimens identified more than 150 metabolites significantly altered
in HCC compared to non-tumoral liver. For LC/MS, PCA identified a PC1 of 45.2%, along which
samples from HCC tissues and non-tumoral tissues were clearly separated. Supervised analysis
(PLS–DA) identified decreases in tissue glutathione, succinate, glycerol-3-phosphate, alanine, malate,
and AMP as the most important contributors to the metabolomic signature of HCC by LC/MS.
Conclusions: Together, 1H-NMR and LC/MS metabolomics have the capacity to distinguish HCC
from non-tumoral liver. The characterization of such distinct profiles of metabolite abundances
underscores the major metabolic alterations that result from hepatocarcinogenesis.

Keywords: liver; hepatocellular carcinoma; metabolic reprogramming; metabolomics;
liquid chromatography–mass spectrometry; NMR spectroscopy; metabolites

1. Introduction

Cancer is a complex disease characterized by the occurrence of a panoply of cellular
alterations. Indeed, the neoplastic transformation of cells has been described by 10 hall-
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marks, which are attributable to genetic alterations and cellular adaptations to the tumor
environment [1–3]. Metabolic reprogramming has become of major interest in cancer cell
biology. Cancer cells require extensive modifications of cell metabolism to survive and
proliferate in an array of environmental conditions [2]. Metabolic reprogramming has
also been shown to be highly dynamic during carcinogenesis and cancer development,
for example during the epithelial–mesenchymal transition (EMT) within the metastatic
cascade [4,5]. The reprogramming of cell metabolism occurring in cancer cells encompasses
all modifications of biosynthetic and bioenergetic pathways that allow sustained survival,
optimal proliferation, as well as invasion and metastasis. Consequently, the fundamen-
tal implication of cell metabolism in the onset and progression of malignancy questions
whether cancer is a metabolic disease.

Among the most deadly and prevalent malignancies world-wide is hepatocellular
carcinoma (HCC) [6]. HCC is the most frequent primary liver cancer with a median five-
year survival rate of approximately 20% [6]. This results mainly from the lack of strategies
for early detection combined with limited curative therapeutic options, in addition to
its association with chronic liver disease. Since the liver acts as the heart for systemic
metabolism [7,8], it comes as no surprise that metabolic alterations are observed in the
setting of HCC. Indeed, whereas normal hepatocytes are programmed to maintain normal
metabolic homeostasis for the whole body, HCC cells need to maximize the availability of
nutrients and metabolic substrates for their optimal growth and survival.

The Warburg effect is among the most widely accepted and studied metabolic phe-
nomena in cancer cell metabolism. In the 1920s, Otto Warburg observed that cancer cells
metabolized glucose through glycolysis and lactic acid fermentation rather than the mi-
tochondrial pathway [9]. Since then, major studies have demonstrated the importance
of metabolic plasticity and heterogeneity in cancer. For example, the avidity for exoge-
nous glucose in HCC cells has been linked with tumorigenic potential in mice [10]. Lipid
metabolism has also been shown to exhibit major alterations in cancer, where certain tumor
types have enhanced free fatty acid uptake that has in turn been linked to tumor aggressive-
ness [11]. Understanding mitochondrial dysfunction is also of major interest in defining
the deregulation of cancer cell energetics. In HCC, major modifications of the key enzymes
involved in the tricarboxylic acid (TCA) cycle have been reported [12]. Mitochondrial
fission within cancer cells has also been associated with an increase in the expression of
lipogenic genes, with a concomitant decrease in fatty acid oxidation (FAO) genes [13]. Fur-
thermore, alterations in mtDNA due to reactive oxygen species (ROS) accumulation have
been proposed as the cause of mitochondrial dysfunction in hepatocarcinoma cells [14].
Distinct metabolic profiles have also been observed between tumors having high EMT
activity compared to those with low EMT activity [15]. For example, in adrenocortical
carcinoma, high levels of intratumor nucleotides correlate with enhanced EMT activity [15].

The origin of metabolic alterations in cancer cells is thought to arise from genetic
alterations, including those that induce oncogenic signaling, as well as from adaptations to
the cancer cell microenvironment. Hypoxia is a phenomenon not unknown to tumors: the
rapid growth of cells frequently overcomes their vascular network, resulting in limited oxy-
gen and nutrient availability [16]. Hypoxia-inducible factors (HIF) are transcription factors
that respond to oxygen levels and act as major regulators of cell metabolism in addition to
certain signaling pathways, including that of TGF-β through PI3K/Akt/mTOR [11]. The
stabilization of HIF is thought to be key in promoting angiogenesis, invasion, and metas-
tasis [16]. Under hypoxia, HIF1 has been shown to suppress fatty acid oxidation within
mitochondria leading to a decrease in the burden of ROS accumulation from mitochondrial
metabolism [17]. Nutrient availability has also been shown to impact the metabolic pro-
gram of cancer cells: HCC cells have been shown to rewire energy metabolism toward FA
oxidation under glucose deprivation [10]. Interestingly, in murine HCC, obesity has been
linked with a net decrease in FA oxidation within HCC tumors with a resulting increase
in dependence on glucose and glutamine in oxidative phosphorylation [18]. Furthermore,
the downregulation of carnitine palmatoyltransferase II (CPT2) in HCC has been shown to
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limit lipotoxicity from microenvironments characterized by excessive lipids and thus allow
cancer cell growth [18].

Moreover, distinct genetic alterations have distinct consequences on cancer cell metabolism.
For example, p53, a major tumor suppressor often mutated in cancer cells, is an important
regulator of glycolysis and glucose transporters [11]. p53 mutations have been shown to
promote aberrant lipid metabolism by inducing sterol regulatory element binding protein
(SREBP) activity [11]. Mutations of the PTEN tumor suppressor, which is linked to aberrant
Akt activity and thus glucose uptake and metabolism, induce SREBP and subsequent lipid
metabolism in cancer cells [11]. On the other hand, fundamental oncogenes have been as-
sociated with metabolic reprogramming in cancers. Namely, c-Myc, Kras, and mutations of
EGFR have been linked with aberrant glycolysis, glutaminolysis, amino acid metabolism,
and pentose phosphate pathway activities [11]. Oncogenic Ras and Src signaling have also
been shown to promote normoxic activation of HIF1 by inhibiting prolyl hydroxylase do-
main (PHD) proteins, which could at least partially explain the development of anaerobic
metabolism in the presence of oxygen [16]. In HCC, β-catenin mutations have been shown to
drive CPT2 expression and an increase in FAO [17]. Additionally, transcriptomics of HCC
tissues has identified molecular patterns of metabolism-related gene expression, which have
even proposed metabolism-based molecular classifications of HCC [19–21]. Altogether, the
current state of the literature suggests that metabolism is intimately linked with cancer onset
and progression.

Hence, metabolomics has become a compelling novel tool for understanding cancer
cell biology. Metabolomics has major potential in identifying novel clinical biomarkers for
the screening, diagnosis, and monitoring of cancers and could aid in identifying cancer
risk factors as well as developing novel metabolism-focused targeted therapies [22,23].
Indeed, metabolomics generates robust and highly specific metabolic information, which
makes them potentially very useful in the context of personalized cancer medicine [24].
This study aimed to identify the metabolomic signatures of HCC by highlighting key
changes in the metabolism of hepatocarcinoma compared to adjacent non-tumoral liver
tissue as well as calling attention to the pertinence of metabolic reprogramming in HCC.
To achieve this, both targeted and non-targeted metabolomics modalities were used in
order to offer a comprehensive understanding of HCC metabolomics. Whereas 1H-Nuclear
Magnetic Resonance (1H-NMR)-based non-targeted analyses allowed the identification of
global patterns within the metabolite profiles of non-tumoral and neoplastic liver tissues,
liquid chromatography/mass spectrometry (LC/MS)-based targeted analyses enabled the
quantification of a specific set of metabolite alterations.

2. Materials and Methods
2.1. Patients and Sample Collection

Patients (n = 5) undergoing HCC tumor resection were recruited with written informed
consent prior to surgery. For each participant, one specimen of tumoral tissue was collected
and snap-frozen in liquid nitrogen, accompanied by the collection of one specimen of
non-tumoral (normal) liver tissue at distance from the neoplastic foci. The time elapsed
between the collection of samples and their cryopreservation is shown in Table S1. This
research protocol was conducted in accordance with the Declaration of Helsinki and was
approved by the “Comité d’éthique de la recherche du Centre de recherche du CHUM
(CRCHUM)”. All studied HCC tumors presented a trabecular pattern within livers devoid
of underlying cirrhosis. Available clinical data are reported in Table 1.
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Table 1. Clinical data of patients with HCC liver tumors and sample cryopreservation time. Collected
clinical data of patients who participated for metabolomics analyses of HCC and adjacent non-
cirrhotic liver. Time to cryopreservation was observed as the time elapsed between tissue resection
and liquid nitrogen storage.

Sexe Age Tissue Type Grade
(Edmonson-Steiner) Sub-Type Underlying Liver

Condition
Time to Cryopreservation

(m)

Patient 1 F 52 HCC 2 Trabecular Normal liver 25
Non-tumoral 25

Patient 2 M 73 HCC 2 Trabecular Normal liver 30
Non-tumoral 32

Patient 3 F 47 HCC 1 Trabecular Normal liver 28
Non-tumoral 30

Patient 4 M 57 HCC 2 Trabecular Normal liver 28
Non-tumoral 40

Patient 5 M 67 HCC 2 Trabecular Normal liver 45
Non-tumoral 47

2.2. Metabolite Extraction for Targeted LC/MS-Based Metabolomics

Water-soluble metabolites were extracted from tissue specimens using liquid–liquid ex-
traction. Samples were homogenized in ice-cold metabolite extraction buffer (80% methanol,
2 mM ammonium acetate, pH 9.0; 20 µM [13C10,15N5]-AMP as an internal standard) using
a Cryolis-cooled Precellys 24 Dual system (Bertin, France) with CK14 ceramic beads, for
2 × 25 s at 6000 rpm separated by a 15-second rest. Homogenates were centrifuged at
20,000× g for 10 min (4 ◦C); 183 µL of supernatant was transferred to 10 × 75 mm glass
tubes and diluted with 367 µL of extraction buffer. Diluted supernatants were mixed and
incubated on ice for 10 min. Then, 250 µL of water and 880 µL of chloroform:heptane
(3:1) solution were added and samples were mixed thoroughly, followed by a 15-minute
incubation on ice. Sample preparations were then centrifuged for 15 min at 4500× g (4 ◦C)
and 500 µL of the aqueous/upper phase was transferred to polypropylene tubes for the
concentration of extracted metabolites. Organic solvents were removed in a refrigerated
CentriVap (Labconco, Kansas City, MO, USA; 90 min, 10 ◦C) and the remaining liquid
(100 µL) was freeze-dried overnight. Prior to LC/MS processing and analysis, 40 µL
of water was added to each sample followed by rapid 5-minute centrifugation (4 ◦C);
re-suspended concentrated metabolite extracts were transferred to HPLC vials.

2.3. Metabolite Extraction for Non-Targeted 1H-NMR-Based Metabolomics

For 1H-NMR metabolomic profiling, extraction of liver specimen metabolites was
performed by dual-phase methanol:water:chloroform (2:1:2) extraction. Tumor and non-
tumoral specimens were ground and homogenized in 600 µL of extraction buffer (2:1
methanol:water) with ceramic beads in a Precellys Homogenizer (Bertin Technologies,
Montigny-le-Bretonneux, France). Then, 400 µL of chloroform was added to each sam-
ple, followed by a 15-minute incubation (4 ◦C). Samples were centrifuged for 15 min at
15,000× g (4 ◦C). The upper polar phase was collected and dried overnight under nitrogen
flow. Prior to 1H-NMR processing and analysis, dried tissue extracts were dissolved in
600 µL of D2O-prepared phosphate buffer solution (pH 7.4) containing 0.4 mM of sodium
trimethylsilyl-(2,2,3,3-d4)-propionate (TSP) as an internal reference, and re-suspended
samples transferred to 5 mm NMR tubes.

2.4. Targeted LC/MS Metabolite Detection and Data Acquisition

Liver specimen metabolites and standard analyte solutions were separated by liquid
phase chromatography using a Nexera X2 Ultra-High-Performance Liquid Chromatogra-
phy (UHPLC) system (Shimadzu, Kyoto, Japan) at 40 ◦C with 3 µL injections on a Poroshell
120 EC-C18 2.1 mm × 75 mm × 2.7 µm UHPLC column (Agilent Technologies, Santa
Clara, CA, USA) following a Poroshell 120 EC-C18 2.1 mm × 5 mm × 2.7 µm UHPLC
guard column (Agilent Technologies, USA). To perform this, gradient elution with an initial
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mobile phase was used, consisting of 95%: 10 mM tributylamine and 15 mM acetic acid
in water, pH 5.2; 5%: acetonitrile:water (95:5, v/v) fortified with 0.1% formic acid; this
was performed at a flow rate of 0.75 mL/min. Standard and sample metabolites were
detected using negative electrospray ionization on a SCIEX 4000 Qtrap mass spectrometer
(Framingham, MA, USA). MS/MS parameters were optimized for each metabolite and
quantified using SCIEX MultiQuant 3.0.2 (Framingham, USA) according to calibration
curves (0.15 to 12,000 pmol per injection) of pure analytes purchased from Sigma Aldrich
(Oakville, ON, Canada), prepared in water. Values were normalized per mg of tissue.

2.5. Non-Targeted 1H-NMR Metabolite Detection and Data Acquisition

The detection of liver sample metabolites for 1H-NMR analysis was performed on
an Ascend 700 MHz spectrometer (Bruker, Billerica, MA, USA) coupled to an AVANCE
NEO console equipped with a 5-millimeter triple resonance probe (Bruker, USA) at 298 K.
For each sample, a one-dimensional 1H-NMR spectrum was acquired with water peak
suppression using a nuclear Overhauser enhancement spectroscopy (NOESY) presaturation
pulse sequence; 128 scans; 65,000 data points; an acquisition time of 2.4 s; a relaxation delay
of 4 s; a mixing time of 10 milliseconds; and a spectral width of 20 ppm.

2.6. 1H-NMR Spectral Processing and Analysis

After acquisition of 1H-NMR spectra for each specimen, free induction decays were
multiplied by an exponential function equivalent to a 0.3 Hz line-broadening factor before
applying Fourier transform. The spectra were phased and the baseline was corrected and
referenced to the TSP peak (at 0 ppm) using TopSpin 4.0.5 (Bruker, USA). One-dimensional
spectra ranging from 0.5 to 9.5 ppm were binned by intelligent adaptive bucketing and
the corresponding spectral areas were integrated using the NMRProcFlow tool (https:
//www.nmrprocflow.org/; accessed on 18 February 2020). The spectral region from 4.5
to 5 ppm was removed as this corresponded to residual water within samples. Total
spectral areas were calculated using the remaining buckets and followed by constant sum
normalization.

2.7. Statistical Analysis

Various statistical methods were used to analyze metabolomic datasets from LC/MS
and 1H-NMR metabolite profiling modalities. For both datasets, all samples were nor-
malized according to each original specimen’s wet weight, then metabolites/variables
were mean-centered and divided by the square root of their standard deviation (Pareto
scaling) prior to subsequent statistical analysis. To obtain a reduced dimensionality view
of the metabolomic profiles of HCC and non-tumoral liver samples, principal component
analysis (PCA) and partial least squares–discriminate analysis (PLS–DA) were performed
using MetaboAnalyst 5.0 (https://metaboanalyst.ca/; accessed on 2 September 2022). PCA
allowed the identification of global trends in metabolite signatures between study groups
and of clusters and possible outliers within the metabolic data matrices in an unsupervised
analytical manner. As a supervised statistical analysis, PLS–DA allowed the maximization
of the covariance between the observed abundances of metabolites in liver samples and the
sample type (tumoral and non-tumoral samples). In PLS–DA, the number of components
was determined by “Leave One Out Cross-Validation” which yielded goodness-of-fit (R2)
and predictability (Q2) of the regression. Loadings plots obtained from PLS–DA allowed
the identification of metabolites greatly contributing to the metabolomic discrimination of
liver samples between both study groups. The most weighted metabolites in this statistical
classification of the analyzed samples were identified using the variable importance in
projection (VIP) method. Student’s t test was used to measure statistical differences in
specific metabolite concentrations between both sample groups. Statistical differences were
considered significant when p < 0.05.

https://www.nmrprocflow.org/
https://www.nmrprocflow.org/
https://metaboanalyst.ca/
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3. Results

3.1. 1H-NMR Profiling Identifies a Distinct Metabolomic Signature of HCC

To establish the metabolite makeup of HCC, we compared the global metabolomic pro-
file of all liver specimens (tumoral and non-tumoral) using non-targeted 1H-NMR. Through
intelligent processing methodologies, a total of 450 metabolomic features were analyzed and
subsequently compared between all samples. To reduce the dimensionality of the 1H-NMR
dataset and identify major trends in metabolomic feature abundance between samples, an
initial Principal Component Analysis (PCA) was performed (Figure 1A,B). The PCA identi-
fied a primary principal component (PC1) explaining 56.5% of metabolic data variability
within the 10 studied samples and a second principal component (PC2) explaining 22.3% of
data variability (Figure 1A). Interestingly, the identification of individual samples (red: HCC
tumors; blue: non-tumoral livers; shaded area: 95% confidence interval for each group)
within the PCA scores plot revealed a distinct clustering of both groups along the primary
principal component. The PCA loading plot represents all analyzed metabolomic features
and their importance in positioning samples within the scores plot. As seen in Figure 1B, a
select population of features corresponded to those whose abundances were characteristic
of non-tumoral tissue, whereas the abundance of a more important proportion of liver
metabolites was characteristic of HCC tumors. Observations made through PCA were fur-
ther studied using PLS–DA to identify the metabolic discrimination of both sample groups
using their respective metabolomic datasets (Figure 1C,D). PLS–DA cross-validation for
one component revealed validation metrics with a goodness-of-fit of 0.855 and a model
predictability of 0.716 (accuracy = 1.0) and, for two components, revealed a goodness-of-fit
of 0.927 and a model predictability of 0.623 (accuracy = 0.9). In this supervised analysis of
liver specimen metabolomic profiles, which maximizes covariance between the observed
changes in metabolomic features and both study groups, the primary component explained
56.3% of data variability, whereas the second component explained 16.0% (Figure 1C). The
PLS–DA loading plot represents all analyzed metabolomic features and their importance
in positioning samples within the PLS–DA scores plot (Figure 1D). Interestingly, for both
PCA and PLS–DA scores plots, non-tumoral liver samples were circumscribed within a
relatively small region of the scores plots, whereas HCC tumor samples were much sparser
within the plots and their 95% confidence interval region (Figure 1B,D). In Figure 1E, a
volcano scatter plot shows the identified metabolomic features being significantly altered,
either increased (red) or decreased (blue), in HCC compared to non-tumoral samples. Fea-
tures that remained unaltered in hepatocarcinoma samples are identified in gray. For the
visualization of the global metabolomic pattern of each studied sample, Figure 1F depicts
a heatmap of the relative abundance of all 450 analyzed metabolite features. Clearly, this
depiction shows that the identification of the metabolomic signatures of HCC tumors is
completely distinct from those of non-tumoral liver.

3.2. Targeted HCC Metabolomics Identify Altered Amino Acid and TCA Cycle Profiles

Our initial non-targeted analysis of liver tissue metabolomics revealed distinctive
metabolite signatures between HCC and non-tumoral liver tissues. This interesting finding,
which showcased the capacity of liver metabolomics to successfully discriminate between
HCC and non-tumoral liver through metabolite profiling, prompted us to study changes in
the tissue abundance of specific metabolites; hence, 26 metabolites from distinct metabolic
pathways were chosen for targeted screening of liver specimen metabolomics. Firstly,
diverse amino acids were quantified in all samples having been analyzed through 1H-NMR
profiling. The non-essential amino acid arginine, an important intermediate of the urea
cycle, was the only significantly altered amino acid between the two groups. Indeed,
the concentration of arginine was higher in HCC (23.1 ± 4.5 pmol/mgtissue) compared
to non-tumoral specimens (12.5 ± 1.2 pmol/mgtissue) (p < 0.05, Figure 2A). As seen in
Figure 2B–D, no changes in aspartate, alanine, or leucine concentrations were observed in
HCC tissues compared to their paired non-tumoral samples. The amino acid glutamine
was marginally decreased in HCC specimens (Figure 2E), which was accompanied by
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an increase in glutamate abundance in certain tumor samples (Figure 2F), though not
reaching statistical significance. In addition, we quantified lactate, the product of pyru-
vate fermentation following glycolysis: its tissue abundance was unchanged in tumors
compared to control specimens (Figure 2G). Five intermediates of the tricarboxylic acid
(TCA) cycle pathway were also measured in each sample to unveil potential disturbances
in mitochondrial metabolism in hepatocarcinoma. The levels of (iso)citrate (Figure 2H) and
α-ketoglutarate (Figure 2I) remained similar between HCC and non-tumoral tissue samples.
On the other hand, succinate was significantly decreased from 2.29 ± 0.39 nmol/mgtissue
in controls to 0.59 ± 0.15 nmol/mgtissue in HCC samples (p < 0.01, Figure 2J). Fumarate,
another TCA cycle intermediate, was lower in tumors (191.9 ± 18.2 pmol/mgtissue) in
comparison to non-tumoral specimens (346.2 ± 26.7 pmol/mgtissue) (p < 0.01, Figure 2K). A
similar change was observed for malate, the level of which was greatly reduced in HCC
(1.11 ± 0.078 nmol/mgtissue) compared to surrounding liver tissue (0.36 ± 0.097 nmol/mgtissue,
p < 0.001, Figure 2L).
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Figure 1. 1H-NMR profiling of HCC compared to paired non-tumoral liver tissue. Non-targeted
metabolomics was performed by 1H-NMR after metabolite extraction. Processed spectra and binning
with intelligent adaptive bucketing of 450 bins (metabolomic features) were integrated and analyzed
with principal component analysis (PCA): PCA scores plot (A), PCA loadings plot (B). Metabolomic
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450 analyzed spectral features in all samples (red, HCC; blue, non-tumoral liver).
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Figure 2. Targeted identification of amino acids and TCA cycle metabolites in hepatocellular carci-
noma specimens and adjacent normal liver. HCC (red) and non-tumoral liver (blue) specimens were
analyzed through targeted LC/MS metabolomics to characterize the tissue abundances of arginine
(A), aspartate (B), alanine (C), leucine (D), glutamine (E), and glutamate (F) amino acids, as well as
lactate (G), (iso)citrate (H), α-ketoglutarate (αKG, (I)), succinate (J), fumarate (K), and malate (L).
*: p < 0.05, **: p < 0.01, ***: p < 0.001.

3.3. Metabolic Reprogramming of HCC Encompasses Major Changes in Energy Metabolism and
the Glycerol-3-Phosphate/Dihydroxyacetone Phosphate Pathway

We then studied key metabolic intermediates at the crossroad between glycolysis and
lipid metabolism such as dihydroxyacetone phosphate (DHAP) and glycerol-3-phosphate
(glycerol-3P) as well as those involved in energy metabolism, such as ATP and the NADH
cofactor. Interestingly, both DHAP and glycerol-3P were significantly lower in HCC
samples compared to adjacent non-tumoral tissues (Figure 3A,B). Taken together, the
calculated ratio of glycerol-3P-to-DHAP was significantly lower in HCC compared to
non-tumoral samples (24.9 ± 6.7 vs. 71.7 ± 7.3, respectively; p < 0.01, Figure 3C). The
concentration of NADH was found to be 0.18 ± 0.018 nmol/mgtissue in non-tumoral
specimens and 0.048 ± 0.012 nmol/mgtissue in HCC specimens, which represents a 3.75-
fold decrease in HCC samples (p < 0.001, Figure 3D). Though the oxidized form of NADH,
NAD (Figure 3E), was only marginally lower in tumors, the calculated NADH/NAD
ratio (Figure 3F) was significantly lower in HCC (p < 0.05). Given this important change
in NADH, we studied ATP and its metabolites ADP and AMP to further understand
the state of energy storage and metabolism in HCC. As shown in Figure 3G, AMP was
significantly lower in HCC (467.0 ± 168.9 pmol/mgtissue) compared to non-tumoral liver
(1289.5 ± 103.8 pmol/mgtissue, p < 0.01). A similar trend was observed for ADP, which was
nearly three-fold lower (105.6 ± 31.8 pmol/mgtissue) in HCC samples (p < 0.01, Figure 3H).
Importantly, as shown in Figure 3I, ATP could not be detected (0.00 ± 0.00 pmol/mgtissue)
in HCC tumors in opposition to non-tumoral liver specimens (57.5 ± 10.3 pmol/mgtissue)
(p < 0.001). Finally, the calculated energy charge remained similar between both groups
(Figure 3J).
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Figure 3. Metabolites and the glycerol-3-phosphate/dihydroxyacetone phosphate pathway in hep-
atocellular carcinoma specimens and adjacent normal liver. HCC (red) and non-tumoral (blue)
specimens were analyzed through targeted LC/MS metabolomics to characterize the tissue abun-
dances of dihydroxyacetone phosphate (DHAP, (A)), glycerol-3-phosphate (Gro-3P, (B)), and the
resulting Gro-3P/DHAP ratio (C), NADH (D), NAD (E), the NADH/NAD ratio (F), AMP (G), ADP
(H), and ATP (I). The adenylate energy charge was calculated as follows: [ATP + 1/2ADP]/[ATP +
ADP + AMP] (J). *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

3.4. Perturbations of Oxidative-Stress-Related Metabolites Glutathione and NADPH in
Hepatocarcinoma Compared to Adjacent Non-Tumoral Tissue

Oxidative stress is thought to be a key component contributing to tumorigenesis as well
as cancer progression. As such, we quantified glutathione, an important mediator of cellular
redox homeostasis, in all liver specimens. The reduced form of glutathione, GSH, had a
concentration of 3.20 ± 0.66 nmol/mgtissue in non-tumoral specimens and was significantly
depleted in HCC tumors (0.24 ± 0.10 nmol/mgtissue, p < 0.01, Figure 4A). Though the
oxidized form of glutathione, GSSG, was relatively unchanged in HCC (Figure 4B), the
calculated GSH/GSSG ratio plummeted 13.4-fold from 6.69 ± 1.15 in the non-tumoral liver
to 0.50 ± 0.25 in HCC (p < 0.01, Figure 4C). Additionally, as glutathione recycling from
GSSG to GSH requires NADPH, we quantified the abundance of the latter as well as its
oxidized form NADP. NADPH marginally decreased in HCC (Figure 4D) whereas NADP,
as depicted in Figure 4E, was significantly lower in HCC tumors (p < 0.05). Nonetheless, the
NADPH/NADP ratio increased in tumors, though without reaching statistical significance
(Figure 4F). Adenosine, cAMP, and GMP abundances remained similar between both study
groups (Figure 4G–I). Altogether, targeted LC/MS metabolomics allowed the identification
of major changes in the tissue abundance of diverse metabolic intermediates in HCC,
supporting the global metabolite signature of hepatocarcinoma having been identified
using non-targeted 1H-NMR profiling.
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Figure 4. Oxidative stress-related metabolites glutathione and NADPH in hepatocellular carcinoma
specimens and adjacent normal liver. HCC (red) and non-tumoral (blue) specimens were analyzed
through targeted LC/MS metabolomics to characterize the tissue abundances of reduced glutathione
(GSH) (A), oxidized glutathione (GSSG) (B), the GSH/GSSG ratio (C), NADPH (D), NADP (E), the
resulting NADPH/NADP ratio (F), as well as adenosine (G), cyclic AMP (cAMP), (H), and GMP (I).
*: p < 0.05, **: p < 0.01.

3.5. Ability of Targeted LC/MS to Characterize HCC and Metabolites Contributing to the HCC
Metabolomic Signature

Given the identification of significant differences in the abundance of the many metabo-
lites from various metabolic pathways between HCC and non-tumoral tissue, as observed
in Figures 2–4, we analyzed our LC/MS metabolomics dataset using multivariate and
descriptive statistics. The metabolomic profiles of all studied samples were analyzed
through PCA, as shown in the scores plot in Figure 5A. Using the 26 quantified metabo-
lites, unsupervised PCA identified a primary principal component (PC1) that explained
45.2% of metabolite quantification variability between the ten liver specimens; a second
observed principal component (PC2) encompassed 16.8% of metabolomic data variability.
Then, the labeling of positioned samples within the PCA scores plot according to their
respective groups (red: HCC tumors; blue: non-tumoral liver; shaded area: 95% confidence
interval for each group) allowed the identification of two well-segregated clusters along
the primary principal component (PC1) that corresponded to both study groups (HCC
and non-tumoral samples). Further decomposition of the PCA revealed that lactate and
glutamate tended to be more abundant in HCC tumor samples, whereas higher levels
of GSH, succinate, alanine, glycerol-3P, and AMP were rather distinctive of non-tumoral
specimens (Figure 5B). Furthermore, we analyzed our LC/MS dataset using supervised
PLS–DA (Figure 5C–E). PLS–DA cross-validation for one component revealed validation
metrics with a goodness-of-fit of 0.827 and a model predictability of 0.669 (accuracy = 0.9)
and revealed a goodness-of-fit of 0.968 and a model predictability of 0.707 (accuracy = 0.9)
for two components. As shown in the scores plot of Figure 5C, PLS–DA component anal-
ysis revealed a component one explaining 44.6% and a component two explaining 12.3%
of the observed variability of liver metabolomics. Given that PLS–DA is optimized to
maximize the relationship between the observed variance of metabolite quantities and the
descriptor sample group (tumor vs. non-tumoral), samples were clearly separated without
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any overlap between both groups along component one of the scores plot (Figure 5C).
All studied metabolites and calculated metabolite ratios were depicted in a loadings plot
(Figure 5D). In addition, as shown in Figure 5E, PLS–DA attributed variable importance in
projection (VIP) scores to all studied features. Metabolites and ratios having a VIP greater
than 1.000 were considered significant contributors to the metabolomic discrimination of
liver specimens as either belonging to the HCC or the non-tumoral group. Namely, the
decreased abundance of GSH, glycerol-3P, succinate, alanine, malate, and AMP, as well
as the decrease in GSH/GSSG and glycerol-3P/DHAP ratios were the most discriminant
features of the HCC metabolomic signature. The GSH/GSSG ratio had a VIP score of 3.155,
and those of GSH, glycerol-3P, succinate, alanine, malate, the glycerol-3P/DHAP ratio, and
AMP were 2.351, 1.998, 1.795, 1.319, 1.282, 1.281, and 1.236, respectively.
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Figure 5. Ability of targeted LC/MS liver metabolomics to discriminate hepatocellular carcinoma
specimens and adjacent normal liver. Targeted metabolomics of HCC and paired non-tumoral liver
specimens were performed by LC/MS after metabolite extraction for a set of 26 chosen metabo-
lites. Metabolomic profiles of liver specimens were compared using the specific tissue abundance
(nmol/mgtissue) of all metabolites. Metabolomic profiles were analyzed using principal component
analysis (PCA): PCA scores plot (A), PCA scores plot with identification of metabolite positioning
(B). Metabolomic profiles between both sample groups were compared using partial least squares–
discriminate analysis (PLS–DA): PLS–DA scores plot (C), PLS–DA loadings plot (D), and attributed
variable importance in projection (VIP) scores (E) to important metabolites in the PLS–DA model.
Relative abundance of the important metabolites was classified as increased (red) or decreased (blue)
in HCC samples compared to non-tumoral liver tissue.

4. Discussion

The phenomenon of altered metabolism within cancer cells emerged nearly one cen-
tury ago. Nevertheless, much mystery still remains concerning the implication of metabolic
reprogramming in cancer pathophysiology from onset to progression. Indeed, changes in
biosynthetic metabolism and bioenergetics within cancer cells have yet to be demonstrated
effective for cancer management, especially for HCC. From a metabolic point of view, the
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detection and treatment of neoplastic liver lesions are hindered by the important metabolic
function of the normal liver. Targeting metabolism in HCC will need to be specific to
pathways preferentially expressed in liver cancer cells and preferably absent or of low
importance in functional, normal hepatocytes. The quest for discovering such metabolic
targets for anti-neoplastic treatment begins with a better understanding of HCC patho-
physiology. Although some studies have reported metabolomics analyses of fluids from
HCC patients, the metabolomics of HCC tissue itself has yet to be better characterized and
validated [25–27]. Nevertheless, metabolomics has become a crucial tool for characterizing
cancer cell metabolic behavior [22,28]. This study characterized the metabolomic profiles
of human HCC compared to adjacent non-tumoral liver tissue through the identification of
metabolite signatures from liver specimens. To achieve this, complimentary metabolomics
techniques were performed: non-targeted 1H-NMR profiling detected all extracted tissue
metabolites within samples whereas targeted metabolomics, through LC/MS, quantified
the abundance of a specific ensemble of metabolites.

Our initial analysis of liver tissue metabolomics was performed through a non-targeted
approach using five HCC samples and their paired non-tumoral adjacent tissues. The 1H-
NMR dataset enabled the detection of 450 metabolomic features, many of which were
altered in HCC compared to adjacent liver tissue. Indeed, PCA, which aimed to reduce
data dimensionality, revealed a PC1 explaining 56.5% of data variability. Further identifica-
tion of samples in the PCA plot showed that the clusters of both groups, that is HCC or
non-tumoral tissues, were clearly separated along the PC1 axis. This suggests that the main
factor explaining changes in the abundance of all liver tissue metabolites is attributed to the
type of tissue (HCC vs. non-tumoral). Similar observations were made using supervised
PLS–DA statistical analyses. HCC and adjacent non-tumoral tissues also showed distinct
profiles of metabolomic heterogeneity. Whereas non-tumoral liver samples were well
circumscribed within a smaller 95% confidence interval region, samples belonging to the
HCC group were scattered within a large 95% confidence interval region. These findings
highlight the significance of inter-individual heterogeneity in HCC, which seems to be
accordingly much greater than in normal livers [29,30]. Indeed, tumor heterogeneity is
an important concept in cancer biology, and our untargeted metabolomics calls attention
to cell metabolism as a key component of inter-tumoral heterogeneity in HCC; therefore,
untargeted metabolomics has a powerful ability to discriminate whether a given sample is
neoplastic or not. PCA of the targeted metabolomics dataset, which quantified 26 specific
metabolites within the studied samples, revealed in turn a PC1 explaining 45.2% of data
variability. This result is interesting, as specifically measuring only 26 metabolites within
liver tissue, rather than detecting all metabolites, had a discriminative capacity nearly
matching that of 1H-NMR profiling. Indeed, both groups, HCC and adjacent non-tumoral
tissues, were separated along the PC1, confirming with non-targeted metabolomics that
metabolomic variations are a major hallmark of HCC. Distinct clustering of both groups
was also clear along component one of the PLS–DA. Altogether, these findings highlight
that changes in the metabolic program of hepatocytes occurring during hepatocarcino-
genesis are so important that the study of the metabolite landscape within liver tissue is
powerful enough to identify HCC. This discriminative ability of metabolomics has also been
described by various groups in lung cancer compared to chronic obstructive pulmonary
disease and pancreatic cancer compared to pancreatitis [31–33]. Furthermore, Kowalczyk
et al. also discussed the ability of specific metabolites to precisely discriminate between
subtypes of lung cancer [34].

Additionally, the heatmap depiction and volcano scatter plot of the 450 detected
metabolomic features represented in Figure 1 highlight the presence of distinct metabolite
patterns between non-tumoral and HCC tissues; hence, a specific population of metabolites
is abundant in the normal liver whereas a large population of different metabolites tend
to accumulate in HCC. Moreover, according to our targeted metabolomics analysis, the
most significant alterations observed between the two groups were lower levels of specific
metabolites in HCC. This is different to what was observed in 1H-NMR, where many
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detected metabolites had increased levels in tumors: this could be explained by the fact that
the chosen metabolites in the LC/MS targeted approach are indeed those that characterized
the population of metabolomic features that specifically decreased in HCC tumors shown
by 1H-NMR. The important proportion of metabolites that were shown to be increased
in HCC tumors compared to non-tumoral tissues by 1H-NMR could potentially be waste
products and metabolic by-products, which could emerge from rapid and likely inefficient
metabolism in cancer cells [35]. Regarding the identity of the metabolites within this pop-
ulation, the profiling of liver sample metabolomic profiles using an initial non-targeted
1H-NMR approach aimed to establish global changes in metabolite signatures between
the two study groups, that is non-tumoral liver and HCC tumors, rather than specifically
identify the detected metabolites within the dataset. Ulterior identification of such metabo-
lite populations could reveal additional metabolic intermediates that belong to the class of
oncometabolites, that is, metabolites that are either specific to cancer cells or are greater in
abundance within tumoral tissues. An important example of such a phenomenon is the
oncometabolite 2-hydroxyglutarate, which is abundant in isocitrate dehydrogenase-mutant
cancers including glioma and acute myeloid leukemia [22,36].

Furthermore, our targeted metabolomics approach allowed the quantification of spe-
cific metabolites from an array of pathways central to cell and energy metabolism. First,
arginine was the only significantly altered amino acid found in HCC, in which its abun-
dance increased. This could possibly be explained should the urea cycle metabolism be
shown to be decreased within HCC tumors, which is known to be highly functional in the
normal liver [7]. Arginine is the final substrate of the urea cycle, its breakdown by arginase
leading the release of urea and ornithine. As such, decreased urea cycle activity within
HCC cells, in addition to increased arginine consumption, are plausible explanations for
this increase in tissue arginine within tumors compared to adjacent tissue. Interestingly,
contrary to the increase in arginine tissue abundance found in HCC, arginine levels have
been shown to be decreased in the sera of HCC patients [37]. Together with metabolomic
data from Morine et al. and He et al., our findings are complementary in highlighting the
important metabolic changes occurring in HCC from the identification of metabolites in
liver samples [26,27]. Indeed, our study not only shows that HCC metabolomics has a
distinct profile to non-tumoral liver, as suggested in other studies, but 1H-NMR analysis has
also proven that non-cirrhotic liver exhibits very limited metabolomic variability between
individuals, highlighting the importance of studying liver tissue metabolomics in HCC
among other liver diseases.

Concentrations of important metabolic intermediates of the TCA cycle, such as succi-
nate, fumarate, and malate, were found to be significantly lower in HCC samples compared
to adjacent non-tumoral tissue. This finding could be linked with various aspects of hepa-
tocarcinogenesis. Indeed, this decrease could be explained by the increased turnover of
TCA cycle metabolites within HCC cells, namely those exhibiting oxidative metabolism.
This turnover can in turn support biosynthetic demands for the genesis of lipids, pro-
teins, and nucleic acids, as well as cellular energy. Another explanation of this interesting
finding could be that HCC tumors exhibit increased hypoxic features, hypoxia being a
well-known characteristic of cancer. As such, the presence of hypoxia as well as mitochon-
drial dysfunction within HCC cells could yield a decrease in the flux of cytosolic carbons
through mitochondria and the TCA cycle. Though there exists insufficient evidence to
support severe hypoxia in HCC, altered oxygen availability is bound to occur in HCC cells
when tumor expansion surpasses its inherently irregular angiogenetic program [38,39].
Mitochondrial dysfunction, on the other hand, has been suggested to occur in HCC as a
result of mtDNA mutations and copy number variations [14,40]. In a similar perspective,
decreased glycerol-3-phosphate and DHAP could be explained by such a phenomenon.
Indeed, decreased glycerol-3-phosphate shuttle activity and, as such, decreased flux of high
energy electrons toward mitochondria, could be explained by increased tissue hypoxia in
HCC tumors. Additionally, DHAP and glycerol-3-phosphate can be used as important
bioenergetic and biosynthetic precursors, for example, lipid synthesis within cancer cells,
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which could explain their decreased abundance in tumors compared to adjacent liver.
Nevertheless, an important finding of our targeted metabolomic analysis of HCC and
adjacent liver tissues suggests an imbalance in the TCA cycle as a hallmark of the metabolic
landscape of hepatocarcinoma. Interestingly, various studies have suggested succinate
as an oncometabolite in other tumor types such as paraganglioma, pheochromocytoma,
and renal cell carcinoma [41–43]. On the other hand, our current metabolomic analysis
does not identify succinate, another important TCA cycle intermediate, as a significant
oncometabolite in HCC as its abundance statistically decreases within the studied cancer
tissues. In fact, the decrease in the abundance of succinate was among the most important
features of the metabolomic profile of HCC according to the VIP analysis of the LC/MS
dataset. This observation remains to be explained.

Our targeted metabolomic analysis also revealed a major perturbation in energy
metabolites in tumors. Indeed, energy-related metabolites ATP, ADP, and AMP as well as
the NADH cofactor and the resulting NADH/NAD ratio were all consistently decreased
in hepatocarcinoma samples compared to adjacent liver tissue samples. These findings
suggest an unbalanced utilization of energy metabolites by HCC cells, and that bioenergetic
substrates such as ATP become limiting in such tumors. Strikingly, HCC seems devoid of
ATP reserves, which is pertinent in the context of metabolic reprogramming as a response to
rapid cell proliferation, a highly energy-demanding cellular process. Compared to previous
metabolomics analyses performed on murine HCC cells, certain findings within this study
overlap with those from cellular metabolomics, such as decreased glycerol-3P, NADH, NAD,
and NADP [10]. Inversely, in murine HCC tissues, ATP, ADP/AMP, and NADH/NAD
have been previously found to be decreased, opposing the findings within the human
cohort [10]. Indeed, comparisons between cell cultures, murine liver tissue, and actual
human liver tissue remain challenging, given their completely different natures. Murine
hepatocarcinogenesis occurs in a highly regulated and reproductive environment, whereas
HCC in patients is a multi-factorial disease occurring in a much less controlled manner.

Moreover, decreased reductive potential, characterized by a pronounced drop in the
GSH/GSSG ratio, was the most important feature of the metabolomic signature of HCC
tumors per VIP analysis. In fact, GSH was among the most significantly altered metabolites
in HCC, its abundance being markedly lower in tumors than in adjacent non-tumoral tissue.
The oxidized form of NADPH, NADP, was also significantly lower in HCC. Given that
both GSH and NADPH are major agents involved in the control of cellular oxidative stress,
and consequently redox homeostasis, these findings suggest that oxidative stress is likely
exacerbated in HCC and that it surpasses the reductive capacity of HCC cells. Decreased
GSH and NADP have also been reported previously in murine HCC, which only further
highlight the possibility that oxidative stress could be a vulnerability of HCC [10].

Given the important findings of the reported metabolomics analyses of HCC compared
to adjacent normal liver tissues, considered with previous findings of metabolomics in HCC
and cirrhosis, studying paramount changes in metabolism occurring during liver disease
and hepatocarcinogenesis is bound to lead to paramount discoveries for improving the
clinical management of HCC [26,27]. Together with other LC/MS studies of HCC, the main
overlapping metabolites considered as altered pathways in liver tumors include alanine,
arginine, lactate, succinate, NADH, and NADP metabolites [26,27]. Likewise, convincing
evidence of the molecular analysis suggests metabolic reprogramming in HCC [19–21]. As
such, collaboration within the research community on HCC, with a multi-omics approach,
is fundamental in the identification of holistic metabolism-based HCC classifications.

5. Conclusions

In conclusion, this study combining non-targeted and targeted metabolomics has
revealed that the metabolite signatures of HCC and adjacent non-tumoral liver are con-
stitutionally distinct. Through non-targeted 1H-NMR analysis, we identified that HCC
tumors exhibit much greater metabolomic variability than adjacent non-cancerous liver,
which can be likely attributed to the high degree of heterogeneity observed in such cancers.
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Through targeted LC/MS analysis, on the other hand, we specifically identified a number
of metabolic intermediates that are found in lower concentrations in HCC tissues, such as
ATP and GSH. Overall, these findings are paramount for the global objective to delineate
HCC metabolism and pathophysiology. They could ultimately pave the way for the iden-
tification of precision biomarkers of this disease as well as, potentially, novel targets for
HCC therapeutics.
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