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Simple Summary: Pancreatic cancer is a significant problem worldwide. Most cancers are diagnosed
at an advanced stage. Limited knowledge of the pathogenesis of pancreatic tumors results in
limited diagnostic and therapeutic possibilities. Using metabolome analysis, we identified unique
metabolite profiles specific not only for pancreatic ductal adenocarcinoma (PDAC) but also for
neuroendocrine pancreatic tumor (PNET), which may be helpful to understand the pathogenesis of
pancreatic diseases. Additionally, we discovered that disturbed metabolites, mainly acetylcarnitine
C2, serotonin, and glycerophospholipid PC aa C34:1, have potential to be used as biomarkers for
diagnosing and monitoring the progression of pancreatic tumors. Serum-circulating metabolites can
be easily monitored without invasive procedures; they show the current condition of clinical patients
and therefore help with pharmacological treatments or dietary strategies.

Abstract: Background: Pancreatic cancer is the most common pancreatic solid malignancy with
an aggressive clinical course and low survival rate. There are a limited number of reliable prog-
nostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroen-
docrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the
serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET.
Methods: Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with
liquid chromatography–mass spectrometry (LC-MS), we identified changes in metabolite profiles
and disrupted metabolic pathways serum of NET and PDAC patients. Results: The concentration
of six metabolites showed statistically significant differences between the control group and PDAC
patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower
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concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sph-
ingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to
serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin
(FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC,
while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = −1.46 (0.68)) had a higher concentration in
the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC)
curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for
acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86.
Conclusions: The observations presented provide better insight into the metabolism of pancreatic
tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can
be easily monitored without invasive procedures and show the present clinical patients’ condition,
helping with pharmacological treatment or dietary strategies.

Keywords: pancreatic ductal adenocarcinoma (PDAC); neuroendocrine pancreatic tumor (PNET);
pancreas; pancreatic tumor; metabolite; metabolome; Biocrates; glutamine; serotonine; acylcarnitine;
carnitine; acetylcarnitine; C2; AbsoluteIDQ® p180 kit; glicerophospholipids; amino acids

1. Introduction

Pancreatic cancer (PC) is the most common pancreatic solid malignancy, characterized
by an aggressive clinical course and survival rate that does not exceed 5% [1]. Most tumors
are diagnosed at advanced stages [2]. Unfortunately, the therapeutic options for PC are
quite limited due to the relatively late diagnosis and resistant nature of the tumor [3].
The only curative treatment is based on extensive resections that permanently change the
anatomy and physiology of the digestive tract. Moreover, even after the radical surgery,
the disease tends to recur, so long-term survivals are rare. Therapeutic efficacy is also not
satisfactory due to the limited number of reliable prognostic biomarkers and limitation with
knowledge about the pathogenesis of pancreatic tumors [4]. Both cancer and treatment are
associated with metabolic and nutritional disorders: severe malnutrition, type 3c diabetes
and exocrine pancreatic insufficiency [5]. There is no effective screening test for malignancy.
The most frequently measured biomarker in PC is CA19-9 (carbohydrate antigen); however,
due to its low sensitivity (59–64%), it is insufficient to detect the disease at an early stage of
development [6,7].

Pancreatic neuroendocrine tumors (PNETs) originate from the endocrine pancreatic
cells and constitute about 2% of neoplasms of this gland. Contrary to pancreatic cancer,
these tumors have hormonal activity, which in case of so-called functioning tumors can
lead to specific clinical symptoms (e.g., in the case of insulinoma and gastrinoma). Different
tumor biology, origin, overall better prognosis and patient condition at the time of diagnosis
make PNETs cases valuable for comparative analysis.

While changes occurring in the genome, transcriptome, or proteome may determine
the predisposition to specific biological processes, changes in the metabolome reflect the
current physiological state of the cell, tissue, organ, and the whole organism [8]. The
development of cancer cells is associated with disturbed metabolism [9]. The pancreas is
a crucial organ that regulates metabolism. In functional terms, the pancreas consists of
the endocrine part—responsible for the production of hormones, which are linked to the
regulation of carbohydrate metabolism and exocrine–digestive, producing pancreatic juice
containing digestive enzymes, which supports the metabolism of nutrients [10].

Using an AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG) with liquid
chromatography–mass spectrometry (LC-MS), was pivotal to identifying changes in
metabolite profiles and disrupted metabolic pathways for a better understanding of tu-
morigenesis in PNETs and PDACs.

Results obtained in the course of this project present significantly different metabolites,
unique to PDAC and PNET. It creates new opportunities in the search for biomarkers,
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therapeutic targets and the use of metabolic disturbances as prognostic factors in response
to the treatment of PDAC and PNET.

2. Materials and Methods
2.1. Patients and Study Design

This study involved patients with pancreatic ductal adenocarcinomas (PDACs) and
nonfunctioning pancreatic neuroendocrine tumors (PNETs), hospitalized in the Depart-
ment of Gastroenterology, Pomeranian Medical University, and the Department of Gas-
trointestinal Surgery, Medical University of Silesia, Katowice, Poland. The study was ap-
proved by the Bioethics Committee of the Pomeranian Medical University kB-0012/32/14,
dated 17 March 2014, and the Bioethics Committee of the Medical University of Silesia
KNW/0022/KB1/102/II/17/19. Written informed consent was obtained from all patients.

A study was performed with serum samples from patients diagnosed with PDAC
(n = 15, age range 39–84, median 61, male/female—8/7), PNETs (n = 16, age range 29–81,
median 61.5, male/female—8/8) and control group (n = 10, age range 41–83, median 60,
male/female—6/4). The patient characteristics are presented in Table 1. Each patient with
PDAC and PNET underwent staging with abdominal CT and chest X-ray, the diagnosis was
made by a histopathological assessment of the specimen obtained by biopsy (endoscopic
ultrasound guided, percutaneous, or obtained surgically).

Table 1. Characteristics of PDAC and PNET patients. Data are presented as median with interquartile
range.

PDAC PNET

age (years) 66 (58.0–75.5) 62 (42.0–70.5)

weight (kg) 62 (50.0–71.5) 77 (67.5–86.0)

height (cm) 165.0 (158.0–171.0) 176 (171.2–181.0)

tumor size (mm) 40 (35–52.2) 20 (17–30)

stage at diagnosis, no

T1/T2/T3/T4 1/2/1/9 7/2/3/1
N0/N1 10/3 12/1
M0/M1 12/1 9/4

localization:

head 13 6
corpus 1 2
tail 0 6
other/unknown 1 2

metastasis no/%:

yes 6/40% 5/31%
no 9/60% 11/69%

WBC (thou/uL) 7.0 (5.9–9.2) 6.6 (5.8–7.2)

RBC (mil/uL) 4.2 (3.8–4.6) 4.7 (4.5–4.9)

PLT (thou/uL) 228.5 (148.2–276.2) 211.0 (188.2–261.0)

CRP (mg/L) 29.4 (10.8–86.1) 1.8 (1.0–3.2)

CA19-9 (U/mL) 534.5 (165.0–2172.5) 3.3 (3.0–6.9)

The patients with pancreatic cancer and neuroendocrine tumors were recruited retro-
spectively from our computer database. The blood sample was collected in the moment
of disease presentation (first hospital stay due to disease). The patients were in good
clinical condition.

Recruitment criteria.
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We excluded patients with a history of chemotherapy and cancers other than those
analyzed and patients from clinical trials who were taking drugs/placebo (due to the
unknown effect of the experimental treatment used).

We included patients with a diagnosis of adenocarcinoma or pancreatic NETs con-
firmed by histopathological examination and in good general condition with no
significant comorbidities.

In the study group of patients, 8 had arterial hypertension, 3 had ischemic heart
disease, and 1 had a history of epilepsy. In order to obtain a possibly homogeneous study
group, patients with chronic systemic, hematological, and autoimmune diseases; chronic
obstructive pulmonary disease; uncontrolled diabetes; and kidney and thyroid diseases
were excluded from among patients operated on due to adenocarcinoma and PNET.

The characteristics of the PDAC and PNET patients are presented in Table 1.

2.2. Quantification of Serum Metabolites
2.2.1. Chemicals

LC-MS-grade acetonitrile, HPLC-grade ethanol, HPLC-grade methanol, and formic
acid were purchased from J.T. Baker (Phillipsburg, NJ, USA). Pyridine and phenyl isothio-
cyanate (PITC) were obtained from Merck Life Science (Darmstadt, Germany). Ultrapure
water (Milli-Q water) was produced by using a water purification system (Milli-Q, Millipore,
Milford, MA, USA). The AbsoluteIDQ® p180 kit was obtained from Biocrates Life Sciences
AG (Innsbruck, Austria). With the AbsoluteIDQ® p180 kit, we analyzed 188 metabolites:
amino acids (21), biogenic amines (21), monosaccharides (1), lipids (acylcarnitines (40),
glycerophospholipids (90), and sphingomyelins (15)).

2.2.2. Sample Preparation

Metabolites were analyzed according to protocol “User Manual, AbsoluteIDQ® p180
kit—Waters Edition”. Serum samples were stored at −80 ◦C and before analysis were
thawed, centrifuged at 2750× g, 4 ◦C for 5 min, and then mixed at 1200 RPM for 15 min.

A 10 µL of internal standard (IS) and 10 µL of the sample were added to the assigned
well in a 96-well plate. All samples were dried under a nitrogen stream using a Positive
Pressure-96 Processor for 30 min and derivatized for 25 min at room temperature using
50 µL of derivatization mixture. Next, the mixture was dried using a positive pressure
manifold for 60 min, and 300 µL of extraction solvent was added, vortexed at 450 RPM for
30 min, and centrifuged at 500× g for 2 min to elute the metabolites. A 150 µL of the eluted
extract was transferred to a 96-well LC plate, diluted with 150 µL pure water, and 2 µL was
injected. A 10 µL of the mixture was transferred to a 96-well FIA (flow-injection analysis)
plate and diluted with 490 µL of FIA solvent and injected in FIA mode.

2.2.3. LC-MS Analyses

A Waters Acquity Ultra Performance Liquid Chromatograph coupled with a Waters
TQ-S triple-quadrupole mass spectrometer was used during this study. Waters MassL-
ynx software V4.2 SCN1035 was used for the instrument control and data acquisition,
and Waters TargetLynx was used to process the data. Chromatographic separation of
amino acids and biogenic amines was achieved using a Waters BEH C18 column (1.7 µm,
2.1 mm × 50 mm) and Waters BEH C18 guard column (1.7 µm, 2.1 mm × 5 mm). Analysis
was performed in MRM mode with positive electrospray ionization. The FIA extract was
analyzed in positive mode to capture acylcarnitines, glycerophospholipids, and sphin-
golipids, while hexoses were monitored in negative ionization mode. Concentrations of all
analytes were calculated using MetIDQ™ software Oxygen DB110-3005.

2.3. Statistical Analysis

At the beginning of the analysis, metabolite concentration values that were below the
limit of detection (LOD) or the limit of quantification (LOQ) were, respectively, replaced
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by half of the LOD and half of from the LOD to LOQ value. For concentrations above the
upper limit of quantification (ULOQ), the ULOQ values increased by one were assumed.

Statistical analysis was performed in R (version 4.2.2). Significant differences were de-
termined by Wilcoxon signed rank test. Metabolite was considered significant when the
corrected p-value < 0.05. Correlation between metabolites and clinical parameters were as-
sessed by Spearman correlation. To assess the impact of PNETs localization, we performed the
analysis using the Kruskal Wallis test (without correction) to select differentiating metabolites
and then the Wilcoxon test was performed for paired observations (comparing metabolite
concentrations depending on tumor location) with Benjamini Hochberg’s correction.

Figures were prepared using R (version 4.1.0). Violin plots were made using the
ggpubr package (version 0.4.0) and receiver operating characteristic (ROC) curves were
constructed using the pROC package (version 1.18.0).

Metabolite set enrichment analysis (MSEA) and figures presenting the results of these
analyzes were made using the online MetaboAnalyst 5.0 platform. The KEGG database
with 84 metabolite sets based on human metabolic pathways was selected as the metabolite
set library.

3. Results
3.1. Serum Metabolites Concentrations

We analyzed 154 metabolites (20 amino acids, 9 biogenic amines, 1 monosaccharide
25 acylcarnitines, 85 glycerophospholipids, and 14 sphingomyelins) that were detected in
at least 40% of blood serum samples (Supplementary Materials Table S1).

3.2. Analysis of Metabolic Profiles
3.2.1. Control vs. PDAC

The concentration of 23 metabolites showed statistically significant (p-value < 0.05)
differences between the control group and the tested group with PDAC (Table 2). Six were
statistically significant after applying the correction for multiple testing (p.adj < 0.05): Gln,
PC aa C32:0, C2, SM C26:1, Cit, Glu. Glu, C2, and Cit presented a lower concentration
in the serum of PDAC patients, while PC aa C32:0, SM C26:1, and Glu achieved higher
concentrations compared to serum samples from healthy individuals.

3.2.2. Control vs. PNET

We identified nine metabolites whose concentrations were statistically significantly
different (p-value < 0.05) between the healthy and the PNET study groups (Table 3): PC
ae C38:3, SM (OH) C22:1, SDMA, C14:1, PC ae C40:3, lysoPC a C20:3, PC aa C34:2, C14:2,
and Cit. After correction for multiple testing, none of them reached statistical significance
(p.adj < 0.05). All of the above statistically significant metabolites showed lower concen-
trations in tested samples with PNET, except for lysoPC a C20:3, which achieved higher
concentrations for PNETs.

Table 2. Metabolites significantly different (p-value < 0.05) between the serum of healthy individuals
and PDAC patients.

Control vs. PDAC

Class Metabolite Name p-Value p.adj FC Up ↑/Down ↓-
Control/PDAC

Acylcarnitines C2 Acetylcarnitine 6.0 × 104 0.03 8.84 ↑

Amino acids

Asn Asparagine 0.038 0.29 1.50 ↑

Cit Citrulline 1.7 × 103 0.04 2.21 ↑

Gln Glutamine 4.4 × 105 6.7 × 103 8.37 ↑

Glu Glutamic Acid 1.7 × 103 0.04 −1.56 ↓

Phe Phenylalanine 0.013 0.21 −1.32 ↓
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Table 2. Cont.

Control vs. PDAC

Biogenic amines SDMA Symmetric dimethylarginine 0.016 0.25 1.33 ↑

Glycerophospholipids

lysoPC a C16:0 Lysophosphatidylcholine a C16:0 0.020 0.25 −1.37 ↓

lysoPC a C18:1 Lysophosphatidylcholine a C18:1 0.033 0.28 −1.32 ↓

PC aa C32:0 Phosphatidylcholine aa C32:0 2.0 × 104 1.7 × 102 −2.56 ↓

PC aa C34:1 Phosphatidylcholine aa C34:1 0.046 0.32 −1.16 ↓

PC aa C42:0 Phosphatidylcholine aa C42:0 0.026 0.28 1.27 ↑

PC aa C42:1 Phosphatidylcholine aa C42:1 0.019 0.25 1.40 ↑

PC aa C42:2 Phosphatidylcholine aa C42:2 0.048 0.32 1.35 ↑

PC ae C40:1 Phosphatidylcholine ae C40:1 0.026 0.28 1.42 ↑

PC ae C42:2 Phosphatidylcholine ae C42:2 0.035 0.28 1.35 ↑

PC ae C42:3 Phosphatidylcholine ae C42:3 0.043 0.31 1.32 ↑

Sphingolipids

SM (OH) C22:1 Hydroxysphingomyelin C22:1 0.013 0.21 1.32 ↑

SM C16:0 Sphingomyelin C16:0 0.031 0.28 −1.32 ↓

SM C18:0 Sphingomyelin C18:0 0.033 0.28 −1.52 ↓

SM C24:1 Sphingomyelin C24:1 0.004 0.09 −1.35 ↓

SM C26:1 Sphingomyelin C26:1 1.3 × 103 0.04 −1.49 ↓

Monosaccharides H1 Hexoses 0.031 0.28 −1.49 ↓

Table 3. Metabolites significantly different (p-value < 0.05) between the serum of healthy individuals
and PNET patients.

Control vs. PNET

Class Metabolite Name p-Value p.adj FC Up ↑/Down ↓-
Control/PNET

Acylcarnitines
C14:1 Tetradecenoylcarnitine 0.029 0.72 1.21 ↑
C14:2 Tetradecadienylcarnitine 0.048 0.72 1.07 ↑

Amino acids Cit Citrulline 0.048 0.72 1.40 ↑
Biogenic amines SDMA Symmetric dimethylarginine 0.027 0.72 1.15 ↑

Glycerophospholipids

lysoPC a C20:3 Lysophosphatidylcholine a C20:3 0.035 0.72 −1.43 ↓
PC aa C34:2 Phosphatidylcholine aa C34:2 0.040 0.72 1.16 ↑
PC ae C38:3 Phosphatidylcholine ae C38:3 0.020 0.72 1.06 ↑
PC ae C40:3 Phosphatidylcholine ae C40:3 0.029 0.72 1.12 ↑

Sphingolipids SM (OH) C22:1 Hydroxysphingomyelin C22:1 0.023 0.72 1.31 ↑

3.2.3. PNET vs. PDAC

As a result of the analyses, we identified the presence of 40 metabolites whose concen-
trations statistically significantly (p-value < 0.05) differentiate between PNETs and PDACs
(Table 4, Figure 1).

Five of them achieved statistical significance after applying the correction for multiple
testing (p.adj < 0.05): C2, PC aa C34:1, Serotonin, PC aa C32:0, PC ae C42:2. C2, serotonin,
and PC ae C42:2 reached higher concentration values in the PNET serum samples, while
PC aa C34:1 and PC aa C32:0 had a higher concentration in the PDAC samples.
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Table 4. Metabolites significantly different (p-value < 0.05) between the serum of PNET patients and
PDAC patients.

PNET vs. PDAC

Class Metabolite Name p-Value p.adj FC Up/Down-
PNET/PNET

Acylcarnitines

C2 Acetylcarnitine 3.0 × 105 4.6 × 103 8.67 ↑

C3-DC (C4-OH) Malonylcarnitine 0.034 0.16 −1.09 ↓

C14:2 Tetradecadienylcarnitine 0.028 0.14 −1.14 ↓

C16-OH Hydroxyhexadecanoylcarnitine 0.020 0.12 1.19 ↑

C16:2-OH Hydroxyhexadecadienoylcarnitine 0.015 0.11 −1.01 ↓

C18:1 Octadecenoylcarnitine 0.014 0.11 −1.30 ↓

C18:2 Octadecadienylcarnitine 0.034 0.16 −1.01 ↓

Amino acids

Asn Asparagine 0.015 0.11 1.65 ↑

Asp Aspartic acid 0.040 0.17 −1.43 ↓

Gln Glutamine 2.8E−03 0.06 6.09 ↑

Glu Glutamic Acid 0.044 0.18 −1.28 ↓

Phe Phenylalanine 0.013 0.11 −1.33 ↓

Biogenic amines Serotonin Serotonin 8.0 × 104 0.04 2.68 ↑

Glycerophospholipids

lysoPC a C16:0 Lysophosphatidylcholine a C16:0 3.2 × 103 0.06 −1.37 ↓

lysoPC a C17:0 Lysophosphatidylcholine a C17:0 0.012 0.11 −1.19 ↓

lysoPC a C18:0 Lysophosphatidylcholine a C18:0 0.042 0.17 −1.39 ↓

lysoPC a C20:3 Lysophosphatidylcholine a C20:3 0.014 0.11 1.53 ↑

PC aa C32:0 Phosphatidylcholine aa C32:0 1.5 × 103 0.05 −1.12 ↓

PC aa C34:1 Phosphatidylcholine aa C34:1 7.0 × 104 0.04 −1.46 ↓

PC aa C34:2 Phosphatidylcholine aa C34:2 0.028 0.14 −1.20 ↓

PC aa C36:2 Phosphatidylcholine aa C36:2 0.028 0.14 −1.35 ↓

PC aa C36:6 Phosphatidylcholine aa C36:6 8.1 × 103 0.09 1.90 ↑

PC aa C38:5 Phosphatidylcholine aa C38:5 0.046 0.18 1.85 ↑

PC aa C40:1 Phosphatidylcholine aa C40:1 0.049 0.19 1.32 ↑

PC aa C42:0 Phosphatidylcholine aa C42:0 0.031 0.15 1.30 ↑

PC aa C42:1 Phosphatidylcholine aa C42:1 6.4 × 103 0.08 1.46 ↑

PC aa C42:2 Phosphatidylcholine aa C42:2 0.019 0.12 1.36 ↑

PC aa C42:6 Phosphatidylcholine aa C42:6 0.016 0.11 1.45 ↑

PC ae C36:0 Phosphatidylcholine ae C36:0 8.1 × 103 0.09 −1.19 ↓

PC ae C40:1 Phosphatidylcholine ae C40:1 4.7 × 103 0.07 1.51 ↑

PC ae C42:1 Phosphatidylcholine ae C42:1 0.040 0.17 1.34 ↑

PC ae C42:2 Phosphatidylcholine ae C42:2 1.8 × 103 0.05 1.50 ↑

PC ae C42:3 Phosphatidylcholine ae C42:3 4.7 × 103 0.07 1.33 ↑

Sphingolipids

SM C16:0 Sphingomyelin C16:0 0.010 0.10 −1.23 ↓

SM C16:1 Sphingomyelin C16:1 0.026 0.14 −1.22 ↓

SM C18:0 Sphingomyelin C18:0 0.015 0.11 −1.33 ↓

SM C18:1 Sphingomyelin C18:1 0.030 0.15 −1.32 ↓

SM C20:2 Sphingomyelin C20:2 0.024 0.14 −1.43 ↓

SM C24:1 Sphingomyelin C24:1 2.2 × 103 0.06 −1.79 ↓

SM C26:1 Sphingomyelin C26:1 5.6 × 103 0.08 −1.23 ↓
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Figure 1. Violin plots for the selected metabolites significantly (p.adj < 0.05) different between the serum
of pancreatic tumor patients and control serum samples (a) C2, (b) Cit, (c) Gln, (d) Glu, (e) PC aa C32:0,
(f) PC aa C34:1, (g) serotonin, (h) SM C26:1. For each tested group, numeric values are represented as
diamonds, the corresponding probability densities are represented as plain traits, and the mean and
standard error are represented by black circles and segments, respectively (ggplot2 package, R).



Cancers 2023, 15, 3242 9 of 24

3.3. Metabolic Pathway Analysis of Serum Metabolites

MetaboAnalyst was used to perform metabolite set enrichment analysis (MSEA) and
determine pathways significantly enriched in PNETs and PDACs samples using HMDB
numbers as metabolite IDs, without data transformation, using the SMPDB database.

The results of analysis are listed below (Table 5) and shown in Figures 2 and 3.
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Figure 2. Metabolite set enrichment analysis (MSEA) compared between PNET and PDAC serum
samples: (A) Interactive network of different metabolic pathways enriched in serum of tumor
pancreatic patients. (B) The most enriched metabolic pathways in serum of tumor pancreatic patients.
With the increase in color intensity (color close to red), the statistical significance increases, while the
larger the diameter of the dots means a greater impact on the pathway.
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Table 5. (a) The most statistically significant differing metabolic pathways between PNET and PDAC
samples. (b) The most statistically significant differing metabolic pathways between controls and
PDAC samples.

(a)

Metabolic Pathway Total. Cmpd Hits p-Value

Pyrimidine Metabolism 59 1 3.36 × 10−3

Phenylacetate Metabolism 9 1 3.36 × 10−3

Amino Sugar Metabolism 33 2 9.47 × 10−3

Nicotinate and Nicotinamide Metabolism 37 2 9.47 × 10−3

Urea Cycle 29 7 9.58 × 10−3

Aspartate Metabolism 35 6 9.70 × 10−3

Glutamate Metabolism 49 5 1.25 × 10−2

Purine Metabolism 74 4 1.30 × 10−2

Ammonia Recycling 32 7 1.37 × 10−2

Phenylalanine and Tyrosine Metabolism 28 3 3.14 × 10−2

Beta-Alanine Metabolism 34 3 3.26 × 10−2

Malate-Aspartate Shuttle 10 2 3.32 × 10−2

Tyrosine Metabolism 72 3 3.36 × 10−2

Histidine Metabolism 43 2 3.41 × 10−2

Cysteine Metabolism 26 1 3.47 × 10−2

Folate Metabolism 29 1 3.47 × 10−2

Arachidonic Acid Metabolism 69 2 3.47 × 10−2

Lysine Degradation 30 2 3.56 × 10−2

Propanoate Metabolism 42 2 3.72 × 10−2

Valine, Leucine, and Isoleucine Degradation 60 4 4.05 × 10−2

Tryptophan Metabolism 60 5 4.09 × 10−2

Arginine and Proline Metabolism 53 7 4.86 × 10−2

Phospholipid Biosynthesis 29 2 4.94 × 10−2

Glutathione Metabolism 21 3 5.48 × 10−2

Alanine Metabolism 17 3 5.48 × 10−2

(b)

Metabolic Pathway Total. Cmpd Hits p-Value

Pyrimidine Metabolism 59 1 5.06 × 10−6

Phenylacetate Metabolism 9 1 5.06 × 10−6

Aspartate Metabolism 35 6 4.64 × 10−5

Amino Sugar Metabolism 33 2 4.95 × 10−5

Nicotinate and Nicotinamide Metabolism 37 2 4.95 × 10−5

Urea Cycle 29 7 6.06 × 10−5

Purine Metabolism 74 4 6.36 × 10−5

Ammonia Recycling 32 7 6.68 × 10−5

Glutamate Metabolism 49 5 7.95 × 10−5

Lysine Degradation 30 2 6.69 × 10−5

Valine, Leucine, and Isoleucine Degradation 60 4 6.69 × 10−4

Phenylalanine and Tyrosine Metabolism 28 3 6.72 × 10−4

Propanoate Metabolism 42 2 6.79 × 10−4

Histidine Metabolism 43 2 6.93 × 10−4

Beta-Alanine Metabolism 34 3 7.09 × 10−4

Cysteine Metabolism 26 1 7.17 × 10−4

Folate Metabolism 29 1 7.17 × 10−4

Arachidonic Acid Metabolism 69 2 7.17 × 10−4

Malate-Aspartate Shuttle 10 2 7.34 × 10−4

Tyrosine Metabolism 72 3 7.41 × 10−4

Tryptophan Metabolism 60 5 1.07 × 10−3

Arginine and Proline Metabolism 53 7 1.37 × 10−3

Glutathione Metabolism 21 3 1.70 × 10−3

Alanine Metabolism 17 3 1.70 × 10−3

Glycine and Serine Metabolism 59 8 2.29 × 10−3

Phospholipid Biosynthesis 29 2 1.70 × 10−3

In addition, lipid analysis showed that branched chain fatty acid oxidation, beta-
oxidation of very long chain fatty acids, sphingolipid metabolism, phospholipid biosyn-
thetic pathways are significantly (p.adj < 0.05) different between controls and PDAC.
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3.4. Receiver Operating Characteristic Curve Analysis for Specific Metabolites

Receiver operating characteristic (ROC) curves were generated for statistically sig-
nificant metabolites (p.adj < 0.05) (Figure 4). The area under the curve (AUC) of the ROC
curve presenting diagnostic power to discriminate PDAC patients from controls was high-
est for acylcarnitine: C2 with AUC = 0.90, amino acids: Gln with AUC = 0.97, Glu with
AUC = 0.88, and Cit with AUC = 0.88; and lipids: PC aa C32:0 with AUC = 0.95 and SM
C26:1 with AUC = 0.89.
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Figure 4. ROC curves presenting significantly (p.adj < 0.05) different metabolites between the serum
of pancreatic tumor patients and the control serum samples. Controls vs. PDAC (a–f) and PNETs vs.
PDAC (g–i).

Diagnostic power to discriminate PDAC patients from PNET presented very good
value for acylcarnitines: C2 with AUC = 0.93; biogenic amines: Serotonin with AUC = 0.85
and glycerophospholipids: PC aa C34:1 with AUC = 0.86.

3.5. Correlation Analysis

Spearman correlation (rs) was performed for each clinical parameter of PDAC and PNET
patients to discover their correlations with metabolite concentrations (Table 6). Glycerophos-
pholipids were disturbed mainly according to the CA19-9 marker and stage of diagnosis for
PDAC patients, and acylcarnitines; C3-DC C4-OH (rs = 0.54), C4:1 (rs = 0.55), C14:2 (rs = 0.63),
C16-OH (rs = 0.58) according to metastasis; CRP (C18:1 (rs = 0.59); CA 19-9; C16-OH (rs = 0.71);
and stage of diagnosis C14:1 (rs = 0.61).
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For PNET patients, the level of glycerophospholipids significantly correlate with CRP
and stage of diagnosis, and acylcarnitines according to metastasis: C3-DC C4-OH (rs = 0.56),
and also stage of diagnosis C2 (rs = 0.61), C3-DC (C4 OH) (rs = 0.56, C14:2-OH (rs = 0.62).
Additionally, lysoPC a C18:1, PC ae C38:3 are associated with localization of PNETs.

Amino acids were found to affect tumor patients with metastasis: Phe (rs = 0.59) with
PDAC, while Asn (rs = 0,63), Gly (rs = 0.55), for PNET patients.

Additionally, Gly, Ser, Lys, and Leu were found to affect PNET patients according to
localization. Ala (rs =−0.54) and Phe (rs = 0.59) correlated with CRP among PDAC patients
and Asn (rs = 0.69) for PNETs.

Table 6. Analysis of metabolite and clinical parameter correlation.
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Table 6. Cont.
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The levels of several amines we detected in PNET serum were associated: Met SO
(rs = 0.92) with Ca 19-9, t4-OH-Pro (rs = 0.64), and Kynurenine (rs = −0.56) with stage. For
PDAC only t4-OH-Pro (rs = −0.55) was dependent on the CRP marker.
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4. Discussion

PDAC is associated with a high mortality rate. It is frequently diagnosed at an
advanced stage, even with distant metastases. A poor prognosis and low survival rate are
observed. Not only the absence of typical symptoms at an early cancer stage is a significant
problem, but the limited number of biomarkers and ineffectiveness of therapy are also
profound disadvantages.

Understanding of the pancreatic cancer pathogenesis mechanism, related to distur-
bances in metabolism, is crucial to improve the diagnosis and the effectiveness of therapy.
Cancerogenesis and progression of pancreatic cancer are linked to reprogramming observed
in glucose and amino acids, and also in lipid metabolism [11].

The significant changes in the concentration of metabolites that we noticed in our
study were discovered in previously published studies and were related to the malignant
mechanism of pancreatic cancer and connected with cancer progression.

Neuroendocrine neoplasms of the pancreas analyzed in our project are rare tumors
(5% of all cases), but recently more commonly diagnosed. They develop from cells of the
diffuse endocrine system (DES) of the gastrointestinal tract. PNETs are less aggressive,
generally benign, and slow-growing [12]. Early detection of pancreatic lesions and proper
classification following progression and metastases are pivotal.

Chromogranin A (CgA) is a nonspecific biomarker in the NET management. Meta-
analysis of chromogranin A level shows that it can be used to monitor disease, progression,
recurrence, and response to treatment with sensitivity (46–100%) and specificity (68–90%),
and an overall accuracy of 84%. However, it was concluded that circulating CgA is better
for monitoring NET progression rather than its diagnosis [13].

NETest is a recently developed blood biomarker test where the expression profile of
selected gene transcripts characteristic for NETs is analyzed. Comparison of the clinical
utility of NETest and circulating CgA showed a significant advantage of the molecular
biomarkers in the diagnosis and monitoring of NETs [14,15].

During the disease progression, PNETs become more aggressive; what is observed is
an increase in the Ki-67 labeling index for proliferation assessment in biopsy tissue [16].
Additionally, the assessment of the proliferative marker (percentage of Ki67-positive cells)
can therefore help the clinician in the proper diagnosis and sometimes in the selection
of therapy [17,18]. New specific and sensitive biomarkers are needed to differentiate
and classify pancreatic tumors. Notwithstanding the improvement in diagnostics, it is
difficult to explain the mechanism of pathogenesis and discover the pathways implicated
in advanced NENs and responsible for more aggressive biological phenotype. There are
insufficient clinical data or studies to explain these pathological mechanisms implicated in
the progression and presenting more aggressive character of the tumor compared to the
initial stage [16].

Metabolomics, a new high-throughput approach that we adopted for our research is a
strategy that can be used for both the early detection and the progression monitoring of the
pancreatic tumors.

We hope that the metabolite markers will help to improve clinical diagnosis, differen-
tiation of pancreatic tumors, and patient care.

Identifying the metabolite profiles specific and unique to pancreatic tumors (PDAC
and PNET) and understanding the metabolism reprogramming in the pathogenesis process
were significant for us and the aim of this study.

Our results show that metabolites significantly differ among not only serum samples
from pancreatic tumors and healthy individuals, but also represent unique profiles for
PDAC and PNET patients.

Acylcarnitines are one of the analyzed groups of metabolites discovered in our study
that significantly vary among pancreatic patients. Acylcarnitines are fatty acid metabolites
playing an important role in cellular energy metabolism pathways as markers of energy
metabolism, deficits in mitochondrial and peroxisomal β-oxidation activity, and insulin
resistance. They are connected with metabolic disorders, cardiovascular diseases, and
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cancers, or can be disturbed as a result of dietary interventions [19,20]. Alterations in
carnitine concentrations are related to the β-oxidation of fatty acids since carnitine serves
as a shuttle to transport activated fatty acids (Acyl-CoA) from the cytosol into the mito-
chondrial matrix. It was shown that the extensive accumulation of acylcarnitine, present in
obesity-driven HCC tissues, results in hepatocarcinogenesis [21]. Disturbances are seen in
insulin sensitivity and in inflammation [22,23].

Hypocarnitinemia occurs in cachectic patients, pointing out that supplementation
of carnitine deficiency is beneficial for patients [21,24,25]. Carnitines were also found as
decreased in senescent PANC-1 cells and linked with a decrease in energy metabolism and
mitochondrial dysfunction in senescent PANC-1 cells [19]. Nevertheless, there are still few
publications describing the role of carnitines in pancreatic tumors and analysis of their
correlations with clinical parameters of patients as a CRP marker or CA19-9.

Our metabolomic results present a different level of acylcarnitines in pancreatic serum
samples from PDAC and PNET. Seven of them are disturbed in cancer samples, five
(C3-DC (C4-OH), C14:2, C16-OH, C18:1, C18:2) show higher concentration in PDAC and
two (C2, C16-OH) are lower, compared to PNETs and one (C2) to control serum samples.
Acylcarnitine C2 not only differentiates the tumors group with significant fold change 8.84,
but additionally C2 presents very good diagnostic power (0.9). There are limited data that
link pancreatic tumors with carnitines.

We found that acylcarnitines significantly correlate with clinical parameters of PDAC
patients: metastasis (C3-DC(C4-OH), C4:1, C14:2, C16-OH), CRP (C18:1), CA19-9 (C16-
OH) and stage (C14:1), while in PNETs with: metastasis (C3-DC(C4-OH)) and stage (C2,
C3-DC(C4-OH), C14:2-OH).

According to reports in the literature, supplementation with L-carnitine led to an
increase in body mass index and an increase in overall survival in advanced pancreatic
cancer patients [26]. Lower levels of carnitines were found among metabolites significantly
changed during the perioperative period in patients diagnosed with pancreatic (pre-)
malignancy and subjected to elective resection surgery under general anesthesia [27].
Additionally, the dexamethasone treatment results in higher carnitine levels compared to
patients who did not receive dexamethasone [27].

Additionally, we confirmed that amino acids play roles in pancreatic tumor metabolism
as potential markers differentiating pancreatic carcinomas from PNETs and healthy in-
dividuals’ sera. Among five disturbed amino acids (Asn, Cit, Gln, Glu, Phe), glutamine
(p.adj = 0.0067; FC = 8.37) was the most significantly decreased amino acid in cancer sera
compared to the control, thus showing very good diagnostic power to discriminate control
and PDAC sera (AUC = 0.9). The level of glutamine was similarly different between cancer
and PNET serum samples (Gln, p-value = 0.00282; FC = 6.09). Two other amino acids Asn
and Cit, were also discovered as reduced in PDAC compared to controls. However, higher
concentrations of amino acids (Asp, Glu, Phe) were seen in serum of PDAC with analysis
in NETs serum and controls (Glu, Phe). Our results confirm the previously observed amino
acid level abnormalities in the serum of pancreatic patients. The data obtained are related
to disrupted metabolism, which is one of the hallmarks of tumor cells. Glutamine is an
important metabolic substrate in cancer development and tumor metabolism and linked to
abnormally high glutamine flux and overexpressed glutamine transporters [28,29]. Glu-
tamine plays an important role in energy metabolism, inflammatory reactions, and immune
processes in patients with severe acute pancreatitis (SAP) [30]. Additionally, cancer cells
show increased glutamine uptake needed for proliferation, growth, and aerobic glycoly-
sis (Warburg effect) [31–33]. Changes in the concentration of the amino acid (glutamine)
influence and correlate with the severity of the disease [34].

Summarized results from a meta-analysis of 30 randomized controlled trials (RCTs)
and a total of 1201 patients conclude that Gln supplementation is beneficial for SAP patients:
improving the prognosis of patients; decreasing mortality (OR = 0.38, 95% CI: 0.21–0.69,
p = 0.001); shortening total hospital stay; and decreasing adverse symptoms (OR = 0.45,
p < 0.0001). In addition, there is improved liver, kidney, and immune function, compared
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with conventional nutrition [35,36] or with acute pancreatitis [37]. Adding glutamine to
therapy significantly improves the efficacy of imipenem in the treatment of severe acute
pancreatitis with abdominal infection (odds ratio = 0.78, 95% CI 0.71–0.86, p = 0.040) [38].

Oncolometabolic studies showed changes in the concentrations of potential diagnostic
biomarkers. Glutamic acid and histidine were reported in seven studies, and glutamine
and isoleucine in five studies, as correlated with the diagnostic area under the curve
ranging from 0.68 to 1.00 (sensitivity: 0.43–1.00, specificity: 0.73–1.00) [39]. L-glutamine,
and glutamic acid were found among serum metabolites using reversed-phase liquid
chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) as
potential markers to differentiate pancreatic carcinoma from benign disease (BD).

Amino acids (L-glutamine, glutamic acid, L-phenylalanine, L-tryptophan, and L-
arginine) were identified in serum samples, discriminating pancreatic cancer, benign
disease, and normal control, with sensitivity and specificity. They provide a sensitive,
blood-borne diagnostic signature for the presence of cancer or its precursor lesions [40].

Serotonin, the only one of the tested biogenic amines, shows a significantly higher level
(FC = 2.68; p.adj = 0.043) in PNET serum compared PDAC with a very good AUC = 0.854
discrimination among pancreatic tumor patients. The increased serotonin level seen in our
results for PNETs is consistent with other studies and publications. This biogenic amine
(5-HT) is a neurotransmitter identified as related to affecting emotion, behavior, sleep,
health, pain, and cognition [41–43]. Moreover, serotonin is connected with the regulation
of intestinal motility, vasoconstriction, amplification of platelet aggregation, and wound
healing [44]. However, this higher concentration could influence the risk of heart failure
in NET patients. Additionally, relative serotonin level measured with concentration of its
urinary 5-hydroxyindoleacetic acid (u5-HIAA) is predictive of 1-year all-cause mortality
in patients with NETs [45,46]. Serotonin plays a crucial role in tumor development, and
impacts their growth and progression [44]. However, the role of serotonin on tumor growth
is still unclear and complicated, whether it promotes or suppresses tumorigenesis [46].
With dose-dependent influence, it sometimes results in opposing effects on tumor growth;
higher doses result in mitogenic effects and promote proliferation and, at lower doses,
reduce tumor growth action on tumor vasculature. The role of serotonin and 5-HT receptor
subtypes in cell proliferation is connected with angiogenesis, invasion, migration, and
metastasis. Expression of serotonin receptors may be tissue-specific and dysregulated in
human cancers. Serotonin at physiological levels functions as a potent angiokinesis and
regulator of the angiogenesis of tumors. It influences the arterioles feeding the tumor by
interaction with 5-HT1B and 2A receptors on vascular smooth muscles, while serotonin
mediated vasodilation is due to its interaction with the 5-HT2B receptor present on en-
dothelial cells. Serotonin influences and controls the immune system, and affects cytokine
release from macrophages and monocytes. With complex interactions, it plays a role in
inflammation and gut inflammation. Serotonin functions as a neurotransmitter that links
inflammation and cancer development, resulting in the immune response during cancer
progression. Preoperative serotonin correlates with progression-free survival and overall
survival of neuroendocrine tumors [47].

Our results are consistent with available data, exploring the role of lipids in pancreatic
diseases. In our study, we confirmed the dysregulation of glycerophospholipids and
their role in the development of pancreatic cancer [48,49]. Ten glycerophospholipids were
significantly different (two lysoPC): four present higher concentrations in PDAC and six
in controls. Four glycerophospolipids (lysoPC a C20:3; PC aa C34:2; PC ae C38:3; PC ae
C40:3) were lower in PNET serum, compared to control serum. Only lysoPC presented a
higher concentration in PNET serum. Analysis of pancreatic tumor serum profiles revealed
20 different glycerophospolipids: 4 LysoPC, 11 higher in NET serum samples, and 5 in
PDACs serum samples. Analysis of the sphingolipid content reported four (SM C16:0;
SM C18:0; SM C24:1; SM C26:1) to be significantly higher in PDAC than in the control
samples, and SM (OH) C22:1 was higher in serum compared to NETS. PNET and PDAC
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metabolomic profiles analysis revealed seven of the sphingomyelin at higher concentration
in PDAC: SM C16:0, SM C16:1, SM C18:0, SM C18:1, SM C20:2, SM C24:1, and SM C26:1.

It was reported that lipids showed higher differentiating efficacy between PDAC
and chronic pancreatitis (CP) (p-value < 0.0001) with a discriminating power AUC of 0.86
(95% CI 0.81–0.91, p < 0.0001) for all the altered metabolites (n = 88). Pathway enrichment
analysis indicated sphingomyelin metabolism (impact value 0.29, FDR of 0.45) and TCA
cycle (impact value 0.18, FDR of 0.06) to be prominent pathways in differentiating PDAC
from CP in the pathway enrichment analysis [50,51].

One of the hallmarks of pancreatic cancer is a dense desmoplastic stromastroma, which
creates a natural barrier against oxygen, nutrients, and the immune system [52]. Thus, cells
have developed a mechanism that alters canonical metabolic pathways to counteract starva-
tion [53]. Typical for this kind of metabolic modification is a switch to anaerobic glycolysis.
In our data, among the statistically significant pathways, we can observe a high number
of pathways connected with amino acid metabolism and pyrimidine/purine metabolism.
Amino acid metabolism is upregulated in many cancers; additionally, many cancers tend
to be addicted to particular amino acids. Moreover, amino acids promote survival and
proliferation of cancer cells under stress conditions (e.g., oxidative, nutritional) [54]. (3)
Pyrimidine/ purine metabolic pathways are highly conserved among all living organisms.
They are vital in maintaining basic organism functions (e.g., biosynthesis of nucleic acids),
and also dysfunction in that these pathways are related to cancer progression [55]. Our
research shows that there are significant differences between healthy control and PDAC
patients in dysregulated pathways, but what is more interesting is that we found similar
metabolic pathways in our PNET group that also show dysregulation, although achieving
lower significance. This may be connected with different mechanisms responsible for
cancer development and etiology.

Metabolites that we found to differentiate pancreatic tumors were additionally noted in
PubMed database to be linked with other gastrointestinal malignancies: esophageal [56–62],
stomach/gastric (GC) [63–70], liver/ hepatocellular carcinoma (HCC) [71–87], and colon/
colorectal (CRC) [88–101] (Supplement Table S2). We noticed that there is still limited
knowledge concerning metabolism disturbances linked to creatine and phosphatidyl-
choline, especially C2 and PC 34.

A limitation of this study is the small number of samples and patients. In addition,
there is no follow-up information and no data on patient outcome. The presented results
are from a preliminary study that needs to be continued. More studies based on larger
groups of patients should be carried out to reveal the best metabolites (with high specificity
and sensitivity) that can be used for diagnosis and monitoring of tumor progression and
patient outcome.

5. Conclusions

The observations presented provide better insight into the metabolism of pancreatic
tumors and the ways to improve the classification and diagnosis of the tumors. Serum-
circulating metabolites can be easily monitored without invasive procedures; they show the
current condition of clinical patients and therefore help with pharmacological treatments
or dietary strategies.

Patients with pancreatic tumors (PDAC and PNET) face disease progression related to
metabolic disorders. Therefore, the discovery of metabolic biomarkers that monitor disease
progression is of fundamental importance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15123242/s1, Table S1: Metabolites concentrations [µM] for
serum samples; Table S2: Association of metabolites (C2, serotonin, phosphatidylocholine) with other
gastrointestinal malignanices; esophageal, stomach/gastric (GC), liver/ hepatocellular carcinoma
(HCC), colon/colorectal (CRC) PubMed. 2015–2023.
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All authors have read and agreed to the published version of the manuscript.

Funding: This publication was financed by the Institute of Health Sciences, Faculty of Medical
and Health Sciences, Siedlce University of Natural Sciences and Humanities. The equipment used
was sponsored in part by the Center for Preclinical Research and Technology (CePT), a project co-
sponsored by the European Regional Development Fund and Innovative Economy, The National
Cohesion Strategy of Poland. F.A. was funded from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 856620.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Bioethics Committee of the Pomeranian Medical University kB-
0012/32/14, dated 17 March 2014, and the Bioethics Committee of the Medical University of Silesia
KNW/0022/KB1/102/II/17/19.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in this article and
Supplementary Material.

Acknowledgments: This publication is dedicated to Teresa Starzyńska because of her idea, the
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Abbreviations

5-HT 5-hydroxytryptamine
Ala alanine
Asn asparagine
Asp aspartic acid
AUC area under the curves
BD benign disease
C14:1 tetradecenoylcarnitine
C14:2 tetradecadienylcarnitine
C14:2-OH hydroxytetradecadienylcarnitine
C16:2-OH hydroxyhexadecadienoylcarnitine
C16-OH hydroxyhexadecanoylcarnitine
C18:1 octadecenoylcarnitine
C18:2 octadecadienylcarnitine
C2 acetylcarnitine
C3-DC (C4-OH) malonylcarnitine
CgA chromogranin A
Cit citrulline
DES diffuse endocrine system
FIA flow-injection analysis
Gln glutamine
Glu glutamic acid
Gly glycine
H1 hexose
HILIC hydrophilic interaction liquid chromatography
Ile isoleucine
IS internal standard
LC-MS liquid chromatography–mass spectrometry
LOD limit of detection
LOQ limit of quantification
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lysoPC a C16:0 lysophosphatidylcholine a C16:0
lysoPC a C17:0 lysophosphatidylcholine a C17:0
lysoPC a C18:0 lysophosphatidylcholine a C18:0
lysoPC a C18:1 lysophosphatidylcholine a C18:1
lysoPC a C18:2 lysophosphatidylcholine a C18:2
lysoPC a C20:3 lysophosphatidylcholine a C20:3
lysoPC a C24:0 lysophosphatidylcholine a C24:0
lysoPC a C26:0 lysophosphatidylcholine a C26:0
lysoPC a C26:1 lysophosphatidylcholine a C26:1
lysoPC a C28:0 lysophosphatidylcholine a C28:0
lysoPC a C28:1 lysophosphatidylcholine a C28:1
Met SO methionine-sulfoxide
MSEA metabolite set enrichment analysis
NETs neuroendocrine tumors
PA pancreatic cancer
PC aa C24:0 phosphatidylcholine aa C24:0
PC aa C32:0 phosphatidylcholine aa C32:0
PC aa C32:1 phosphatidylcholine aa C32:1
PC aa C32:2 phosphatidylcholine aa C32:2
PC aa C34:1 phosphatidylcholine aa C34:1
PC aa C34:2 phosphatidylcholine aa C34:2
PC aa C34:4 phosphatidylcholine aa C34:4
PC aa C36:0 phosphatidylcholine aa C36:0
PC aa C36:1 phosphatidylcholine aa C36:1
PC aa C36:2 phosphatidylcholine aa C36:2
PC aa C36:5 phosphatidylcholine aa C36:5
PC aa C36:6 phosphatidylcholine aa C36:6
PC aa C38:5 phosphatidylcholine aa C38:5
PC aa C40:1 phosphatidylcholine aa C40:1
PC aa C40:3 phosphatidylcholine aa C40:3
PC aa C40:4 phosphatidylcholine aa C40:4
PC aa C40:5 phosphatidylcholine aa C40:5
PC aa C40:6 phosphatidylcholine aa C40:6
PC aa C42:0 phosphatidylcholine aa C42:0
PC aa C42:1 phosphatidylcholine aa C42:1
PC aa C42:2 phosphatidylcholine aa C42:2
PC aa C42:4 phosphatidylcholine aa C42:4
PC aa C42:6 phosphatidylcholine aa C42:6
PC ae C30:2 phosphatidylcholine ae C30:2
PC ae C34:3 phosphatidylcholine ae C34:3
PC ae C36:0 phosphatidylcholine ae C36:0
PC ae C38:0 phosphatidylcholine ae C38:0
PC ae C38:1 phosphatidylcholine ae C38:1
PC ae C38:2 phosphatidylcholine ae C38:2
PC ae C38:3 phosphatidylcholine ae C38:3
PC ae C40:1 phosphatidylcholine ae C40:1
PC ae C40:3 phosphatidylcholine ae C40:3
PC ae C40:5 phosphatidylcholine ae C40:5
PC ae C42:1 phosphatidylcholine ae C42:1
PC ae C42:2 phosphatidylcholine ae C42:2
PC ae C42:2 phosphatidylcholine ae C42:2
PC ae C42:3 phosphatidylcholine ae C42:3
PC ae C44:3 phosphatidylcholine ae C44:3
PDAC pancreatic ductal adenocarcinoma
Phe phenylalanine
PITC pyridine and phenyl isothiocyanate
PNET neuroendocrine pancreatic tumor
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RCTs randomized controlled trials
ROC receiver operating characteristic
RPLC reversed-phase liquid chromatography
SAP severe acute pancreatitis
SDMA symmetric dimethylarginine
Serotonin serotonin
SM (OH) C14:1 hydroxysphingomyelin C14:1
SM (OH) C16:1 hydroxysphingomyelin C16:1
SM (OH) C22:1 hydroxysphingomyelin C22:1
SM C16:0 sphingomyelin C16:0
SM C16:1 sphingomyelin C16:1
SM C18:0 sphingomyelin C18:0
SM C18:1 sphingomyelin C18:1
SM C20:2 sphingomyelin C20:2
SM C24:0 sphingomyelin C24:0
SM C24:1 sphingomyelin C24:1
SM C26:0 sphingomyelin C26:0
SM C26:1 sphingomyelin C26:1
t4-OH-Pro trans-4-Hydroxyproline
u5-HIAA urinary 5-hydroxyindoleacetic acid
ULOQ upper limit of quantification
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