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Simple Summary: The association between hypoxia, cancer aggressiveness and decreased ther-
apeutic response is well-established. With a significant body of evidence suggesting that tumor
hypoxia is a poor prognostic indicator, it is important to identify and quantify the presence and
magnitude of hypoxia within the tumor microenvironment. In this review, we aim to summarize the
major molecular pathways associated with tumor hypoxia as well as the currently available evidence
regarding the use of positron emission tomography (PET) and magnetic resonance imaging (MRI)
techniques for imaging hypoxia within the context of cancer. We also aim to propose future directions
and discuss the challenges needed to be overcome in order to advance research in this field.

Abstract: Molecular and functional imaging have critical roles in cancer care. Existing evidence
suggests that noninvasive detection of hypoxia within a particular type of cancer can provide
new information regarding the relationship between hypoxia, cancer aggressiveness and altered
therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant
progress in understanding the regulation of hypoxia-induced genes has been made. These advances
have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by
utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of
being developed which will further personalize care for cancer patients. The aim of this review is to
provide an overview of the significance of tumor hypoxia and its relevance in cancer management as
well as to lay out the role of imaging in detecting hypoxia within the context of cancer.

Keywords: hypoxia; magnetic resonance imaging; positron emission tomography; carcinogenesis;
treatment resistance

1. Introduction

Hypoxia is characterized by insufficient oxygen within a tissue to support metabolism.
This phenomenon is commonly seen in carcinogenesis when a tumor outgrows its vascular
supply. Often, cancer cells gradually become hypoxic and adapt by up regulating the
production of proteins promoting cell selection and survival. Therefore, understanding
hypoxia within a particular type of cancer can provide information regarding the rela-
tionship between hypoxia, cancer aggressiveness and altered therapeutic responses. The
consequence of these changes is that patients with hypoxic tumors experience relatively
poor outcomes. This has led the imaging community to develop noninvasive techniques
to study and recognize hypoxia. The aim of this review is to provide an overview of the
significance of tumor hypoxia and its relevance in cancer management; to understand the
metabolic changes and molecular pathways that tumor hypoxia influences; to lay out the
role of imaging, including MRI and PET in detecting hypoxia; and to highlight how these
imaging techniques can influence the clinical management of patients.
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2. Pathophysiology of Hypoxia in Cancer
2.1. Hypoxia and the Cellular Response

Oxygen homeostasis is of paramount importance under normal physiological con-
ditions. Many pathological processes result in sub-physiologic levels of oxygen in the
body (hypoxia), including cancer. Chronic or intermittent hypoxia, also referred to as
cycling hypoxia, results in activation of several adaptive events. One such of these events
is angiogenesis and neovascularization, which is largely mediated by hypoxia inducible
factor 1 (HIF-1) and downstream effectors such as vascular endothelial growth factor
(VEGF) [1,2]. Under normoxic conditions, HIF is inactivated by Von Hippel Landau protein
(VHL) through proteasomal degradation [3]. In the setting of hypoxia, HIF-1 is stabilized
and activates genes that promote angiogenesis, modulate metabolism, and promote cell
survival and proliferation [4,5]. This is a mechanism by which cancer cells can proliferate
and invade surrounding tissues [1,6]. The presence of cycling tumor hypoxia poses a
challenge in the imaging of hypoxia. The pO2 of tumor regions can vary by as much
as 20mmHg in minutes to hours or even days [7–9]. Understanding the dynamic tumor
microenvironment as it relates to hypoxia is of importance when discussing the various
imaging modalities available.

2.2. Hypoxia and Acidosis

Tumor hypoxia is a critical contributor to acidosis in the surrounding extracellular
matrix [1,10–12]. The anaerobic metabolism of glucose results in the production of lactic
acid and accumulation of protons and carbon dioxide which further decreases the pH of
the tumor microenvironment [13,14]. This is a consequence of oncogene activation, loss of
tumor suppressor activity, and the ability of cancer cells to shift glucose metabolism from
oxidative phosphorylation to glycolysis [15].These cells respond to the microenvironmental
change brought on by enhanced glycolytic metabolism by upregulating key regulatory
systems such as carbonic anhydrase 9 (CA-IX) which helps maintain the physiological
intracellular pH that is necessary for cell function [16]. These observations have generated
interest in identifying tumor regions that may be responsive to pH modifying therapies [17].

2.3. Hypoxia and Immune Function

Hypoxic conditions have also been shown to reduce activation of tumor-infiltrating
lymphocytes, resulting in immunosuppression and evasion of immune detection [18]. This
is the rationale behind blocking hypoxia-associated transcription factors [19]. For example,
hypoxia has been shown to inhibit antigen uptake by dendritic cells as well as alter their
chemokine expression, differentiation, adaptation and activation in inflamed tissues such
as cancer [19]. Hypoxia can also affect the migration of CD8+ T cells in the tumor [19]. The
combination of hypoxia and high lactic acid levels has also been shown to suppress the
mTOR pathway, which further leads to impaired T cell function [20]. The mTOR pathway
is critical for triggering autophagy, the removal of damaged cellular materials [21]. These
mechanisms pose a great challenge in the era of immunotherapy as they contribute to
increased expression of the inhibitory protein, programmed cell death-1 (PD-1), which
correlates with T cell exhaustion and non-responsiveness to therapy [22].

2.4. Hypoxia and Treatment Resistance

Several studies have not only implicated hypoxia in tumor aggressiveness and metas-
tasis, but also in resistance to chemotherapy and radiation therapy [23–28]. In general,
conventional cytotoxic chemotherapeutic drugs target rapidly dividing cells, including
cancer cells. However, hypoxia is known to induce a state of cancer cell quiescence and
render these cells resistant to chemotherapy [23]. Additionally, many cytotoxic chemother-
apy agents depend on the formation of free radicals, including active oxygen, which is
limited under hypoxic conditions [23]. Radiation therapy is also partially dependent on
the formation of reactive oxygen species [24]. In the absence of molecular oxygen, the
cell-killing effects of ionizing radiation are dampened [24]. There now exists significant
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interest in developing novel therapies aimed at HIFs and harnessing the hypoxic tumor mi-
croenvironment for its potential therapeutic benefits [29–33]. It has also been hypothesized
that hypoxia has a relevant role in resistance to locoregional therapy such as emboliza-
tion. The current treatment algorithm for intermediate stage hepatocellular carcinoma
(HCC) includes trans-arterial chemoembolization, which combines tumor embolization
with intra-arterial delivery of doxorubicin [34]. Embolization induces hypoxia, generat-
ing hypoxia-adapted cancer cells orchestrated by HIF-1 [35–37], rendering them resistant
to treatment [38–43]. Overall, oxygen-dependent toxicities will be reduced in hypoxic
settings [42–45].

3. Imaging Hypoxia in Cancer

Molecular and functional imaging have critical roles in cancer care. Now that the
relationship of tumor hypoxia and its relevance in cancer management has been established,
understanding the relationship between noninvasive detection methods of hypoxia and
particular types of cancer can provide new information regarding cancer aggressiveness
and therapeutic responses. Several noninvasive clinically relevant imaging modalities
can detect hypoxic areas within the tumor microenvironment. Additional advantages of
imaging include the possibility of visualizing the entirety of the involved tissue. The most
relevant techniques available to image hypoxia can be broadly categorized as molecular
(i.e., positron imaging tomography (PET)) and functional (i.e., magnetic resonance imaging
(MRI) [46,47].

A summary of the most widely used PET and MRI imaging techniques of tumor
hypoxia can be found in Table 1.

Table 1. Summary of the most widely used PET and MRI imaging techniques of tumor hypoxia.

Imaging Cancers Studied Advantages Disadvantages

PET Tracers

PET—18F-FMISO

• Glioma [48]
• Breast [49]
• Head and neck [50,51]
• Lung [52]

Most commonly used PET
tracer for clinical and research

applications [53]

Slow uptake and washout
kinetics [53,54]

Low uptake [55]
5–7 mm resolution [54]

PET—18F-FAZA

• Glioma [56]
• Lymphoma [56]
• Lung [57,58]
• Head and neck [59,60]
• Cervical [61,62]
• Rhabdomyosarcoma [63]
• Rectal [64]

Favorable vascular clearance
and improved

hypoxia–normoxia contrast
when compared with

18F-FMISO [53]

PET—FETNIM
• Esophageal [65]
• Head and neck [66]
• Cervical [67]

Rapid renal clearance and low
liver absorption [68]

Low tumor/non-tumor
uptake ratio [69]

PET—18F-RP-170
• Glioma [70]
• Lung [71]

Favorable time interval before
scanning and hypoxia

contrast [71]

PET—18F-EF5
• Head and neck [72]
• Cervical [73] High plasma half life [74]

PET—18F-HX4

• Lung [75]
• Head and neck [76,77]
• Esophageal [78]
• Pancreatic [78]
• Rhabdomyosarcoma [79]

High maximum
tumor-to-blood ratio [63]

3-h half-life [63]
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Table 1. Cont.

Imaging Cancers Studied Advantages Disadvantages

PET—Cu-ATSM

• Head and neck [80]
• Lung [81]
• Cervical [82]
• Rectal [83]
• Glioma [84]
• Prostate [85,86]

Favorable pharmacokinetic
profile, signal-to-noise ratio,
and is not taken up by the

bladder [85–89]

Unclear mechanism of
hypoxia selectivity [90,91]

Magnetic Resonance Techniques

DCE MRI—most commonly
used with gadolinium-based

contrast agents

• Cervical [92]
• Melanoma
• Pancreatic
• Breast [93]
• Head and neck [94]

Over-time assessment [95] Dependent on perfusion [92]
Limited resolution [96]

TOLD MRI—hyperoxic
inhalation

• Head and neck [97]
• Rectum [98]
• Cervix [99]
• Lung [100]
• Glioma [101]

Maps oxygen delivery in
tissues [102]

Motion artifact
susceptibility [95]

BOLD MRI—optional
hyperoxic inhalation

• Head and neck [103]
• Prostate [104]
• Breast [105]
• Cervical [106]
• Astrocytoma [107]
• Osteosarcoma [108]

qBOLD quantitative O2
mapping [109]

High resolution [95]
Dependent on perfusion [109]

MRI—Fluorine—19F probes

• Breast [110]
• Colon [111]
• Glioma [112,113]
• Prostate [114]
• Lung [115]

Quantitative PO2
measurement [116]

Probe toxicity [117]
Low availability

MRS—endogenous lactate

• Glioma [118]
• Breast [119,120]
• Head and neck [121]
• Prostate [122]
• Lung [123]

Provides quantitative
measurement of metabolic

byproducts of hypoxia
Time consuming

EPRI/ESR—paramagnetic
probe

• Pancreatic [124]
• Glioma [125]
• Colon [126]

Measuring cycling hypoxia [9] Limited sensitivity compared
with OMRI

OMRI—hyperpolarized
paramagnetic contrast

• Squamous cell
• Carcinoma [127]
• Colorectal [128]
• Breast [129]

High image resolution [130]
Rapid image acquisition [130]

Limited equipment Undesired
heating of sample [131]

3.1. Positron Emission Tomography (PET)
3.1.1. Techniques

Both PET and single-photon emission computed tomography (SPECT) utilize gamma
ray photons to produce an image. SPECT employs the use of hypoxia-specific compounds
joined with gamma-emitting radioisotopes, such as 123I and 99mTc, to generate a signal from
hypoxic areas of tumors [132]. SPECT imaging is easy to obtain but PET offers the highest
specificity for the detection of hypoxic tissue and is generally preferred [133]. PET imaging
is based on administering targeted drugs labeled with radioactive isotopes that are referred
to as tracers [134]. By detecting the emitted radiation, the distribution of a given drug can
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be inferred [134]. Positrons are emitted by radioactive isotopes and travel a few millimeters
before colliding with one of the electrons in surrounding tissue [134]. The two particles
will then annihilate and emit two photons which are detected and used to trace their
origin [134]. Several tracers have been developed to target hypoxic areas within tumors,
each with their own set of advantages and practical uses in PET imaging. Observations
that 14C-labeled derivatives of N-alkyl-2-nitroimidazoles may become trapped in hypoxic
cells have formed the basis of the development of 2-nitroimidazoles as hypoxia imaging
agents using radioactive tracers [135]. Modern derivates from this first tracer are referred
as the Nitroimidazole family of compounds.

Currently, 18F-fluromisonidazole (18F-FMISO) is the most widely used PET tracer
derivate for detecting hypoxia in human studies [54]. It is not without its limitations and
has a relatively slow uptake and washout kinetics which limit its hypoxia–normoxia con-
trast [53,54]. These limitations have led to other 18-F-based tracers being developed.
The second-generation tracer 18F-FAZA (1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-
nitroimidazole)) was developed with an improved pharmacokinetic profile, resulting
in increased uptake and improved hypoxia–normoxia contrast [53]. Further fluorine
radiotracers from the nitroimidazole family that are currently being evaluated include 18F-
fluoroetanidazole (18F-FETA), 18F-Fluoroerythronitromidazole (FETNIM), 1-(2-[18F]-fluoro-
1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole (18F-RP-170), 18F-2-nitroimidazol-penta-
fluoropropyl acetamide (18F-EF5) and 18F-flortanidazole (18F-HX4) [69,136]. Copper-based
agents have also been widely studied, such as the Cu complex with diacetyl-bis(N4-
methylthiosemicarbazone) (ATSM) ligand [137–143], but are still limited as they have
an unclear mechanism of hypoxia selectivity [90,91]. 68Ga [144], 124/125/131I [145–147],
and 99mTc [148] have also emerged as radiolabels of interest in the detection of tumor
hypoxia through PET imaging. While these tracers have all been used to detect hypoxia
directly, other measures have targeted endogenous markers that are upregulated in the
setting of hypoxia, such as 89Zr radiolabeled carbonic anhydrase-IX (CA-IX) antibody
G250-F(ab′)2 [149–151]

3.1.2. Clinical Applications

Due to the known association between intra-tumoral hypoxia and treatment resistance,
early utilization of hypoxia imaging has been focused on the identification of sub-regions
of hypoxic tumors and their association with clinical outcomes. 18F-FMISO has successfully
been used to detect hypoxia in glioma [48], breast cancer [49], head and neck tumors [50,51],
and lung cancer [52], and has also been used to stratify patients for radiotherapy [53].
18F-FMISO uptake is associated with tumor grade and expression of biomarkers of hy-
poxia including CA-IX and HIF-1α as well as angiogenesis markers including VEGF in
gliomas [48]. In a study involving patients with estrogen receptor (ER) positive breast can-
cer, 18F-FMISO uptake and clinical outcomes after endocrine therapy consisting of letrozole
had a significant correlation [49]. 18F-FMISO has also been shown to be able to be used as a
prognostic indicator and to stratify patient risk for relapse of head and neck cancers [51].
A similar study also found that the combination of 18F-Fluorodeoxyglucose (18FDG) and
18F-FMISO PET could identify patients with a risk for recurrence of non-small cell lung
cancer [52]. Presurgical tumor hypoxia volume measured on FMISO-PET was significantly
correlated with post-resection disease-free survival and local recurrence in 23 patients with
oral squamous cell carcinoma (SCC) [152] and 25 pancreatic adenocarcinoma patients [153].
Monitoring hypoxia during treatment has also been a subject of interest; one which may
serve as a basis for dynamic treatment modulation. In 50 HNSCC patients undergoing
radiotherapy, mid-treatment hypoxia on FMISO-PET was associated with local progression
and worse overall survival [154].

More recently, its second-generation successor, 18F-FAZA, has also been found to be
useful for patient stratification and response evaluation to hypoxic cytotoxins in head
and neck cancers [59]. Its clinical use has also been demonstrated in hypoxic imaging
of gliomas, rhabdomyosarcomas and lymphoma as well as lung, head, neck, cervical
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and rectal tumors [56–64]. In a study of 23 patients with primary head and neck squa-
mous cell carcinoma (HNSCC) [155] and 38 advanced non-small cell lung cancer patients
(NSCLC) [156], the degree of hypoxia measured by FAZA-PET was correlated with disease
progression while being treated with chemoradiation. A prospective trial (DAHANCA
24, Danish Head and Neck Cancer Study) followed 38 patients with non-metastatic head
and neck SCC for 7.8 years. It demonstrated that a higher pre-treatment tumor-to-muscle
uptake ratio on FAZA-PET imaging resulted in a higher local recurrence rate [157]. The
same group recently initiated a Phase II study (DAHANCA 33, NCT02976051), examining
the feasibility and efficacy of dose escalation based on pre-treatment hypoxic imaging
of FAZA-PET. This emerging evidence is providing a strong case for 18F-FAZA having
more clinical and research use than its first-generation predecessor, 18F-FMISO [53]. This
is largely attributable to its increased hydrophilicity, low lipophilicity, increased vascular
clearance, and resultant improvement in hypoxia–normoxia contrast [53].

Clinical uses of FETNIM have been demonstrated in monitoring tumor hypoxia in
esophageal cancer, head and neck tumors, and cervical cancer [65–67,158]. Despite FETNIM
having a rapid renal clearance and low liver absorption [68], its clinical application is still
questionable due to its relatively low tumor/non-tumor uptake ratio [69]. 18F-RP-170 has
been demonstrated to accumulate in hypoxic areas of glioblastoma [70]. This is supported
by high uptake of 18F-RP-170 in areas with a high HIF-1α index but is somewhat limited
as some findings suggest that there is increased uptake in areas of high proliferative
activity independent of tissue hypoxia [159]. Nonetheless, there is sufficient evidence to
suggest that uptake of 18F-RP-170 is higher in hypoxic regions of gliomas [70] and lung
cancer [71]. Improved hypoxic contrast and shorter time intervals before scanning have
been observed when compared with 18F-FMISO [63]. 18F-EF5 is a unique tracer in that
it has a high cell membrane permeability and plasma half-life due to its higher octanol-
water partition coefficient [74]. One study in head and neck squamous cell carcinoma
(HNSCC) patients concluded that the ability of 18F-EF5 to detect hypoxia in HNSCC was
encouraging [72]. In this study, a higher tumor-to-muscle 18F-EF5 uptake ratio of 1.5 at 3 h
after administration correlated with hypoxia. In preclinical tumor models, it was found that
18F-EF5 was predictive of response to fractionated radiotherapy in mice [160]. 18F-HX4 is a
third generation nitroimidazole tracer [79] with an improved signal-to-noise ratio. There is
evidence to suggest that, compared with 18F-FMISO and 18F-FAZA, 18F-HX4 demonstrates
a higher maximum tumor-to-blood ratio with a half-life of about 3 h [63]. 18F-HX4 has
been shown to preferentially accumulate in tissues with hypoxia as identified through
high concentrations of histological markers for tumor hypoxia such as pimonidazole and
CA-IX [161]. Clear correlations with 18FDG have been observed in non-small cell lung
cancer [75], HNSCC, [76,77] esophageal, and pancreatic cancers [78].

Compared with 18FDG and fluorine-based hypoxic PET tracer, radiolabeled Cu-ATSM
has been demonstrated to accumulate specifically in hypoxic areas of tumors [141]. Cu-
ATSM also has a preferable pharmacokinetic profile and signal-to-noise ratio and is not
taken up by the bladder, limiting interference [85–89]. Cu-ATSM has been successfully
utilized as a PET tracer to map tumor hypoxia for several types of cancers. The results of a
pilot study involving seventeen patients with advanced head and neck cancer suggested
that (62)Cu-ATSM uptake may be a predictive indicator of tumor response to chemora-
diotherapy [80]. Both FAZA PET and (62)Cu-ATSM values were correlated with poor
overall survival, advanced stage, and tumor size of 47 NSCLC patients [81]. Pretreatment
hypoxia on FMISO-PET of stage II/III breast cancer [162] and (60)Cu-ATSM-PET of cervical
cancer [82] was shown to be associated with significantly worse disease-free survival and
overall survival. Cu-ATSM has also been used to study rectal tumors, [83] and gliomas [84]
as well as for the staging and detection of recurrent prostate cancer [85,86].
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3.2. Magnetic Resonance Imaging (MRI)
3.2.1. Techniques

Unlike PET, MRI does not utilize ionizing radiation. Instead, MRI depends on a
magnetic field and a radiofrequency pulse to generate images. The contrast between
tissue types is determined by the magnetic properties of the tissue matter [163]. Several
magnetic resonance methods have been introduced as applicable in the functional imaging
of hypoxia. Dynamic contrast enhanced (DCE) MRI is one such method. DCE-MRI
employs the use of several contrast agents, the most common of which are gadolinium
(Gd) based [164]. DCE-MRI has demonstrated uses in the detection of hypoxia in xenograft
models of cervical carcinoma, melanoma, and PDAC [92]. However, DCE-MRI is limited
as it provides information on perfusion and permeability. Since perfusion is not the
only factor influencing tumor oxygenation, the estimates may not be entirely indicative
of tumor hypoxia [131]. In order to overcome the limitations of DCE-MRI in detecting
tumor hypoxia, other techniques, such as tumor oxygenation level-dependent (TOLD)
MRI and blood oxygenation-dependent (BOLD) MRI can be used to assess hypoxia in the
tumor environment.

Emerging evidence suggests that oxygen-enhanced magnetic resonance imaging
(OE-MRI)—also known as tumor oxygenation level-dependent (TOLD) MRI and blood
oxygenation-dependent (BOLD) MRI—can act as a more practical substitute for the imag-
ing of hypoxia. MRI techniques have been shown to map hypoxic tumor regions at a
reduced cost and increased availability when compared with PET imaging and do not
require the use of radiolabeled tracers [102]. TOLD MRI techniques rely on the differing
characteristics between oxygenated and deoxygenated regions to produce a signal that will
reflect oxygen saturation within tissues [102]. TOLD MRI employs the use of 100% inhaled
oxygen to induce arterial hyperoxia to perturb tumor concentrations of oxygen molecules
in solution (O2(s)) which results in a heterogenous change in longitudinal relaxation rate
(R1) that is directly related to tumor hypoxia [165,166]. BOLD utilizes differences in the
paramagnetic differences between O2(s) and deoxyhemoglobin to produce signals that
reflect blood oxygen saturation [102,167,168]. Since blood oxygen saturation does not neces-
sarily reflect tissue oxygenation, BOLD can only provide qualitative information on tumor
oxygenation. A newer technique known as multiparametric quantitative BOLD (qBOLD)
has been developed and has been shown to provide quantitative assessments of tumor
oxygenation in mouse models with glioma [109]. This approach considers the contribution
of the transverse relaxation parameter (T2), macroscopic field inhomogeneities, and blood
volume fraction (BVf) to BOLD MRI estimates of oxygenation obtained in a brain tumor
models [109].

MRI-Fluorine (19F MRI) is another MRI technique that has been explored for the use
of assessing regional tumor hypoxia [169]. This modality is aided by perfluorocarbons
(PFCs) which are a group of 19F-containing compounds derived from hydrocarbons by
complete substitution of 1H with 19F [170]. After administration, PFCs are not metabolized
by tissue and instead are cleared by circulation and then vaporized into the air through
respiration [169]. Because of their high payload of 19F atoms, PFCs are widely used
compounds for 19F MRI [171,172]. PFCs carry a large quantity of O2 and possess a fast
gas exchange rate with surrounding tissue through free diffusion [170]. As a result, PFCs
can provide a non-invasive measure of tissue oxygenation [173]. The precision of the
19F MRI method can reach 1–3 mmHg in hypoxic regions [114,169]. A limitation of this
method is that blood-delivered PFC nanoparticles are primarily concentrated in well-
vascularized tumor regions as opposed to the minimally perfused hypoxic regions, resulting
in overestimation of tumor pO2. This has been combated by injecting PFCs into different
tumor regions to achieve a comprehensive spatial measure of pO2 [114,174,175]. Probe
toxicity must also be considered in clinical research [117].

A series of fluorinated Cu(II)ATSM derivatives for potential use as 19F magnetic reso-
nance agents for sensing cellular hypoxia has also been introduced [176]. The synthesized
complexes feature a hypoxia-targeting Cu2+ coordination core, and nine equivalent fluorine
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atoms connected via a variable-length polyethylene glycol linker. The ethylene glycol linker
can effectively modulate the lipophilicity and redox properties of the complexes, leading to
different cell uptake levels and selectivity between live cells grown under normoxic and
hypoxic conditions [176]. Magnetic resonance spectroscopy (MRS) utilizes the quantum
spin properties of 1H in a magnetic field to absorb and emit radiofrequency. This technique
can obtain a spectrum of the concentration of metabolites resonating at different frequencies
in high resolution when placed in a magnetic field [177]. Though it does not assess for
tissue oxygenation directly, it can provide a measurement of metabolic products that are
a result of hypoxia, such as lactate, which may also reflect treatment-induced changes in
tumor oxygenation [178,179].

Electron paramagnetic resonance imaging (EPRI), also known as electron spin reso-
nance (ESR), is another magnetic resonance modality that can be used to image hypoxia.
While MRI maps the distribution of protons, EPRI/ESR measures unpaired electron spins
of diffusible O2 using an injected spin probe to measure relaxation directly [180]. The
energy released when the two unpaired electrons of molecular O2 collide with the probe’s
unpaired electron is linearly proportional to the O2 concentration being measured [181].

EPRI/ESR has been more recently enhanced with the development of Overhauser-
enhanced MRI (OMRI) which combines MRI and EPRI/ESR by using a low-field MR
scanner and a paramagnetic contrast agent [130]. OMRI utilizes the Overhauser enhance-
ment in tissue water protons that is generated when a paramagnetic agent is hyperpolarized
through electromagnetic irradiation [131]. This causes a transfer of electron polarization
to occur toward the surrounding water’s protons [131]. This technique has allowed for a
higher resolution. Though this double imaging technique has the potential to be a powerful
tool in the imaging of hypoxia, it needs to be refined before it can be implemented in
a clinical setting. The major limitations of the clinical uses of OMRI are the undesired
heating of the sample due to the saturation pulse and the limited amount of the needed
equipment [131].

3.2.2. Clinical Applications

The clinical applications of TOLD MRI are currently being investigated but this modal-
ity has been shown to be able to distinguish between radiation necrosis and residual
tumor in a mouse model of malignant glioma, which reflects one potential clinical appli-
cation [182]. Furthermore, potential use in radiotherapy prognosis has been suggested in
a small study of rats with Dunning R3327-AT1 tumors treated with radiotherapy [183].
This study demonstrated a slower rate of tumor growth in tumors with greater oxygen
content [183]. However, comparable results were not reproducible in mice bearing glioma
and rhabdomyosarcoma xenografts where carbogen-induced challenges were performed,
emphasizing the need for additional data [184]. A pre-clinical study using Calu6 and U87
xenografts has demonstrated that the OE-MRI biomarker ‘perfused Oxy-R’ is sensitive to
changes in hypoxia induced by hypoxia-modifying targeted therapies [185]. In this study,
both the hypoxia-activated cytotoxic prodrug banoxantrone and the oxygen consumption
modifier atovaquone demonstrated activity in the xenograft models with reduction in the
volume of tumor identified by OE-MRI when compared with control [185].

OE-MRI has also been utilized to identify hypoxic changes between fractionated ra-
diotherapy in many different histologic types of tumors, including brain metastasis [186],
HNSCCs [187], NSCLC [188], renal cell carcinoma (RCC) [189], glioblastoma [190] and hep-
atocellular carcinoma [191]. This has led to the development of a hybrid MRI-radiotherapy
linear accelerator (MR Linac) system, which was validated in human subjects [97]. Hy-
poxia monitoring during treatment has expanded outside the field of radiation oncology
and is now studied in immunotherapy [192], anti-angiogenic therapies [167,193], and
hypoxia-activated prodrugs [194–196], as well as minimally invasive local treatments by
interventional radiology [197,198].

There is also evidence suggesting the utility of BOLD for monitoring tumor hypoxia
and predicting response to therapy in rodent models [199]. This has been demonstrated
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in patients with head and neck tumors and prostate cancer [103,104]. BOLD response to
breathing oxygen before chemotherapy has also been demonstrated to be significantly
different in tumors with good therapeutic outcomes compared with those with poor
outcomes in patients with breast cancer [105]. Traditional dynamic contrast-enhanced
(DCE) MRI failed to identify those differences [105]. Another study also demonstrated
that anti-angiogenic agents combined with hypoxia-activated prodrugs (HAPs, Figure 1)
can inhibit tumor growth effectively and that BOLD-MRI can be used to monitor tumor
perfusion, hypoxia, cell apoptosis, and proliferation in colon cancer xenograft models in
mice [167]. Despite these data, there are significant concerns with the use of BOLD to assess
tumor hypoxia. The BOLD effect does not correlate well with absolute PO2 levels, is strongly
dependent on perfusion, is susceptible to motion artifacts, and absolute value is influenced
by adequacy of oxygen saturation during inhalation [178,200]. Perfluoropolyether (PFPE)-
based hyperbranched (HBPFPE) nanoparticles with attached peptide aptamer as targeting
ligands have been developed and demonstrated use in the detection of breast cancer with
high 19F MRI [110].
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A phase II assessment of tumor hypoxia in newly diagnosed glioblastoma patients
revealed that several MRS markers predicted overall survival at 1 year and 6-month
progression free survival [118]. Though the clinical utility of MRS seems promising, research
is currently limited by its time-consuming nature. EPRI/ESR has shown promise in the
preclinical research phase and has demonstrated a sub-millimeter resolution of PO2 in
tissues [201]. EPRI/ESR has been used to measure tumor oxygenation after treatment with
evofosfamide in pancreatic adenocarcinoma xenograft models [124]. It has also successfully
assessed hypoxia in glioblastoma [125] and colon adenocarcinoma in rat models [126].
EPRI/ESR probes may last in the site of interest for several months after injection and
tolerate serial imaging over several hours, which may make it useful for mapping hypoxic
regions in a live animal over time [124,202]. EPRI/ESR has also been used to distinguish
cycling hypoxia and chronic hypoxia in tumor-bearing mice [203]. EPRI/ESR has made it
possible to obtain 3D pO2 maps within 3 min, enabling non-invasive imaging of cycling
hypoxia in tumors [9].

3.3. Additional Techniques

Photoacoustic (PA) imaging is a technique that utilizes detection of light-absorbing
molecules inside tissues [204,205]. PA imaging can exploit the differences in absorption
spectra between oxygenated and deoxygenated hemoglobin providing estimates of hy-
poxia [205]. Though this technique allows for the measurement of hypoxia using endoge-
nous contrast, oxygen sensitive dyes have also been utilized to observe hypoxic gradients
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within tumors using PA imaging. Hypoxic tumor gradients have been observed in prostate
cancer tumors between 5–10 mm with the use of methylene blue dye and have been con-
firmed with a needle-mounted oxygen probe [206]. Higher resolution PA techniques have
subsequently been developed, such as ratiometric PA. A ratiometric probe with an N-Oxide
functionality that undergoes selective bioreduction under hypoxic conditions has been
shown to measure high resolution oxygen gradients between tumor cells at centimeter
depths in rats [207]. Gold nanorods (AuNRs) that contain nitroimidazole units have also
been employed in the detection of tumor hypoxia in xenograft models [208]. PA imaging is
limited in its ability to detect tumor hypoxia in deep tissues, though it has been used in
breast cancer which may reflect a clinical application in soft tissue tumors [209].

Additional optical techniques have been used to measure hypoxia. Diffuse optical
spectroscopic imaging (DOSI) has emerged as a promising optical technique for func-
tional imaging of hypoxia through the clinical course of breast cancer treatment. DOSI
uses non-ionizing near-infrared light to provide non-invasive measures of concentrations
of oxyhemoglobin [210]. DOSI has demonstrated efficacy in the detection of breast can-
cer [211] and has been used to successfully predict neoadjuvant chemotherapy (NAC)
response in patients with breast cancer [210]. Diffuse reflectance spectroscopy (DRS) is a
similar technique based on light tissue interactions that can distinguish healthy tissue from
malignant tissue in the operating room [212]. Spectral characteristics between invasive
carcinoma, ductal carcinoma in situ and healthy tissues have been shown to be discernable
with DRS, reflecting a clinical utility in determining surgical margins during breast cancer
resection [212].

Luminescence quenching is another optical technique that uses luminescent probes
to report absolute oxygen concentration by transferring energy to nearby molecular oxy-
gen [213]. The oxygen-quenching effect is quickly reversible which makes it possible to
monitor the dynamics of oxygen changes in tumors and distinguish chronically hypoxic
regions from acutely hypoxic regions, which may reflect a utility in the detection of cycling
hypoxia [213]. Cherenkov luminescence imaging is a new method of molecular imag-
ing that captures visible light emission during the radioactive decay of positron-emitting
radionuclides. With the assistance of probes for oxygen or hypoxia-activated molecules,
Cherenkov luminescence imaging may become a useful technique in the functional imaging
of hypoxia [214] and in the monitoring of tumor response to hypoxia-targeted drugs [215].

3.4. Invasive Techniques

The invasive polarographic electrode has been referred to as the “gold standard”
for measuring tumor hypoxia [216]. Though invasive, it is not considered a high risk
modality [217]. This technique involves inserting an electrode into a tumor or metastatic
lymph node and measuring oxygen from several points to provide a direct measurement of
tumor oxygenation. Though this measurement is direct, measurements are only taken in a
point-based manner and provide very limited spatial resolution when compared with non-
invasive imaging methods. In addition to the invasive nature and point-based restraints
of polarographic electrodes, several other limitations have driven research into different
methods that can serve as viable modalities for the measurement of tumor hypoxia. This
technique is not capable of discriminating viable from necrotic tissue, and overestimates
hypoxia when necrotic areas are sampled [217]. Polarographic electrodes also function
poorly when patients are administered halogenated anesthetics, which influence oxygen
measurements [218].

3.5. Hypoxia Imaging and Interventional Radiology

Few studies have incorporated the imaging of hypoxia in the context of interven-
tional radiology. A pilot study on FMISO-PET for HCCs undergoing transcatheter arterial
embolization (TAE) was undertaken in order to identify treatment-related hypoxic re-
sponse [197]. This demonstrated a quantitative correlation between hypoxia and treatment
response, though the clinical utility of this was questioned due to minimal measurable
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differences attributed to the low signal-to-noise ratio of 18F-FMISO in the liver [197]. Pre-
clinical studies of the VX2 rabbit model hepatocellular carcinoma undergoing Yttrium-90
glass microsphere radioembolization revealed the potential predictive role of pre-treatment
BOLD-MRI imaging for treatment outcomes [198]. Lastly, potential effects of combina-
tion therapy involving TAE and hypoxia-activated prodrugs to enhance the efficacy of
embolotherapy are also under investigation [196].

4. Future Directions

While significant advances have been made in the applications of imaging to un-
derstand hypoxia and its role in cancer, several areas still need to be explored as well
as their clinical applications. Advances in immune checkpoint inhibitors as well as non-
responders to therapy highlight the importance of imaging programmed cell death-ligand
1 (PD-L1)/programmed cell death protein 1 (PD-1) within the microenvironment of any
given tumor to truly understand the role of hypoxia. This interaction is being explored
from the therapeutic perspective in the locoregional therapy arena [196]. However, from
the imaging standpoint, a clinical study still has not been designed to our knowledge.
Significant challenges in the clinical setting include the reproducibility of techniques and
the resolution of currently available hypoxia imaging modalities. Defining hypoxic areas,
cycling tumor hypoxia, and heterogeneity within and between tumors of the same patient
are factors that significantly affect interpretation. Taking this into account, theranostics
is the natural next step in the evolution of the developed radiotracers. One example of
hypoxia-derived theranostics is radiation therapy dose painting. This is where a boost of
radiation is delivered to hypoxic tumor regions and identified on imaging. Additionally,
there is now a trend to develop novel nanoparticles or targeted small molecules with α

or β-emitters for hypoxia-based radiotheranostics [219]. One difficulty is the delivery
of intravenous radiotheranostics to target tumor cells. Maximizing tumor uptake and
minimizing off-target toxicity has proven to be a challenge. This may expand the role of
the interventional radiologist as concentration of these particles and precise delivery can
improve not only their imaging capability but also their therapeutic efficacy [220].

5. Conclusions

Identifying hypoxia within tissues and within the tumor microenvironment non-
invasively may be of great value to improve treatment and can help in understanding
those cases that are non-responders or refractory to any given therapy. Multiple imaging
modalities are now clinically available and under investigation. PET tracers have been
investigated and developed and it is only natural that these will transition into the theranos-
tics arena. Nevertheless, determination of the clinical utility of these tracers and techniques
is still ongoing and further evidence-based data should be constructed especially in the
locoregional therapy arena. Future trials should focus on the use of hypoxia imaging
techniques as a prognostic biomarker. In addition, a strategy to either change therapeutic
approaches earlier or to potentially target hypoxia to decrease cancer aggressiveness and
course must be studied. Combinations of hypoxia-driven therapeutic strategies with im-
munotherapy should be explored as well, especially with the aid of locoregional therapy
through interventional radiology approaches.
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