Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of Lung Cancer
3. Biomarkers and Their Biosensors
3.1. DNA Methylation
3.2. MicroRNA
3.3. Adenosine
3.4. ProGRP
3.5. Cytokeratin 19 Fragment 21-1 (CYFRA21-1)
3.6. CEA
3.7. CA15-3, CA125, CA19-9
3.8. IL-10
3.9. Vascular Endothelial Growth Factor (VEGF)
3.10. Annexin II
3.11. ENO1
3.12. Ferritin
3.13. Nitrated Ceruloplasmin
3.14. Folate Binding Protein (FBP)
3.15. Alpha-Fetoprotein (AFP)
3.16. Serum Amyloid A (SAA)
3.17. Neuron-Specific Enolase (NSE)
3.18. Squamous Cell Carcinoma Antigen (SCCA)
3.19. Heat Shock Proteins
4. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
Glossary
SCLC | Small-cell lung cancer |
NSCLC | Non-small-cell lung cancer |
RCTs | Randomized controlled clinical trails |
TNMs | Tumors (Ts), nodes (Ns), and metastases (Ms) |
TTF | Thyroid transcription factor |
CT | Computed tomography |
LDCT | Low-dose computed tomography |
AI | Artificial intelligence |
MRI | Magnetic resonance imaging |
PET | Positron emission tomography |
BRE | Bio-recognition element |
EGFR | Epidermal growth factor receptor |
NAATs | Nucleic acid amplification assays () |
ctDNA | Circulating tumor DNA |
ssDNA | Single-strand DNA |
dsDNA | Double-strand DNA |
MiR | MicroRNA |
cDNA | Complementary DNA |
ERA | Exonuclease (Exo) III-assisted target recycling amplification |
ECM | Extracellular matrix |
PDACs | Pancreatic ductal adenocarcinomas |
COPD | Chronic obstructive pulmonary disease |
EBC | Exhaled breath condensate |
ProGRP | Pro-gastrin-releasing peptide |
CYFRA21-1 | Cytokeratin 19 fragment 21-1 |
CEA | Carcinoembryonic antigen |
IL-10 | Interleukin-10 |
CA | Cancer antigen |
VEGF | Vascular endothelial growth factor |
ENO1 | Enolase-1 |
β-HCG | Human chorionic gonadotropin |
FBP | Folate-binding protein |
FR | Folate receptor |
AFP | Alpha-fetoprotein |
SAA | Serum amyloid A |
NSE | Neuron-specific enolase |
M.Tase | Methyl transferase |
GOD | Glucose oxidase |
BSA | Bovine serum albumin |
HA | Hyaluronic acid |
HRP | Horseradish peroxidase |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
CRP | C-reactive protein |
CGA | Chromogranin A |
ECL | Electrochemiluminescence |
MEF | Metal-enhanced fluorescence |
SPR | Surface plasmon resonance |
LSPR | Localized surface plasmon resonance |
LRET | Luminescence resonance energy transfer |
FRET | Fluorescence resonance energy transfer |
EC | Electrochemical |
PEC | Photoelectrochemical |
MESIA | Magnetic-force-assisted electrochemical sandwich immunoassay |
ECL | Electrogenerated chemiluminescence |
EIS | Electrochemical impedance spectroscopy |
CL-ELISA | Chemiluminescence enzyme-linked immunosorbent assay |
ELISA | Enzyme-linked immunosorbent assay |
AlphaLISA | Amplified luminescent proximity homogeneous assay |
FET | Field effect transistor |
G-FET | Graphene field-effect transistor |
poly-Si NW FET | Polycrystalline silicon nanowire field-effect transistor |
µPAD | Microfluidic paper-based analytical device |
LFIA | Lateral flow immunoassay |
RCA | Rolling circle amplification |
PCR | Polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
RT-qPCR | Real-time quantitative polymerase chain reaction |
NRCA | Netlike rolling circle amplification |
LAMP | Loop-mediated isothermal amplification |
BIND | Biomolecular interaction detection |
SPE | Screen printing electrode |
LSV | Linear-sweep voltammetry |
ASV | Anodic stripping voltammetric |
CV | Cyclic voltammetry |
DPV | Differential pulse voltammetry |
SPGE | Screen-printed graphene–carbon paste electrode |
MOE | Molecular operating environment |
PEC | Photoelectrochemical |
MS-PCR | Methylation-specific polymerase chain reaction |
MS-snuPE | Methylation-sensitive single nucleotide primer extension |
MBD | Methyl-binding domain |
HPLC | High-performance liquid chromatography |
MS | Mass spectrometry |
GC | Gas chromatography |
GC-MS | Gas chromatography mass spectrometry |
LC-MS | Liquid chromatography mass spectrometry |
SERS | Surface-enhanced Raman scattering |
SPF | Surface plasmon-enhanced fluorescence |
PLFS | Paper-based lateral flow strip |
LFA | Lateral flow assay |
ASSURED | Affordable, specific, sensitive, user-friendly, rapid and robust, equipment-free, and deliverable to end user |
MB | Methylene blue |
Fc | Ferrocene |
FA | Folic acid |
ITO | Indium tin oxide |
APTES | (3- aminopropyl)triethoxysilane |
3-Th-COOH | 3-thiophenecarboxylic acid |
NMM | N-methylmesoporphyrin IX |
TiO2 NPs | Titanium dioxide nanoparticles |
AuNP | Gold nanoparticle |
AuNC | Gold nanocube |
AuNR | Gold nanorod |
UCNPs | Upconversion nanoparticles |
Ag NPs | Silver nanoparticles |
CQDs | Carbon quantum dots |
QDs | Quantum dots |
GO | Graphene oxide |
rGO | Reduced graphene oxide |
GQD | Graphene quantum dots |
GO-COOH | Carboxylated graphene oxide |
CNTs | Carbon nanotubes |
SPIONs | Super-paramagnetic iron oxide nanoparticles |
IONPs | Iron oxide nanoparticles |
PC | Photonic crystal |
CuO NWs | Copper oxide nanowires |
CuO Nps | Copper oxide nanoparticles |
GMPs | Gold-capped magnetic nanoparticles |
PtNPs | Platinum nanoparticles |
SeNPs | Selenium nanoparticles |
AAO | Anodic aluminum oxide |
MWCNTs | Multiwalled carbon nanotubes |
MNO2NSs | Manganese oxide nanospheres |
PHSGNPs | Porous hollow silver–gold nanoparticles |
Co3O4NPs | Cobalt oxide nanoparticles |
PNA | Peptide nucleic acid |
MCH | 6-Mercaptohexanol |
DTT | Dithothreitol |
TMB | 3,3′,5,5′-Tetramethylbenzidine |
PhCN | Phthalocyanine |
[Fe(CN)6]3− | Ferricyanide |
[Fe(CN)6]4− | Ferrocyanide |
Cys/GS-Nf | Cysteine/Nafion-graphene |
PTCDA | 3,4,9,10-Perylenetetracarboxylic dianhydride |
MOF | Metal–organic frameworks |
PETp | Polyethylene terephthalate |
PPy | Polypyrrole |
poly-TTCA | Poly(terthiophene carboxylic acid) |
PDA | Polydopamine |
PEG | Poly(ethylene glycol) |
eATRP | Electrochemically induced atom transfer radical polymerization |
CCP | Cationic conjugated polymers |
MIP | Molecularly imprinted polymer |
TESUD | 11-(Triethoxysilyl) undecanal |
PBASE | 1-Pyrenebutyric acid N-hydroxysuccinimide ester |
GA | Glutaraldehyde |
Zr-TAPP | 5,10,15,20-Tetra(4-aminophenyl) porphyrin |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide |
NHS | N-hydroxysuccinimide |
LOD | Limit of detection |
POCT | Point-of-care testing |
FAM | 6-Carboxyfluorescein |
HSPs | Heat shock proteins |
References
- Kristina, S.A.; Endarti, D.; Aditama, H. American Cancer Society Global Cancer—Facts & Figures 4th Edition. Am. Cancer Soc. 2018, 29, 138–144. [Google Scholar]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and Locally Advanced Non-Small-Cell Lung Cancer (NSCLC): ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.M.C.; Früh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.E.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.M.; et al. Small-Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 839. [Google Scholar] [CrossRef]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Spiro, S.G.; Gould, M.K.; Colice, G.L. Initial Evaluation of the Patient with Lung Cancer: Symptoms, Signs, Laboratory Tests, and Paraneoplastic Syndromes. ACCP Evidenced-Based Clinical Practice Guidelines (2nd Edition). Chest 2007, 132, 149S–160S. [Google Scholar] [CrossRef]
- Silvestri, G.A.; Gonzalez, A.V.; Jantz, M.A.; Margolis, M.L.; Gould, M.K.; Tanoue, L.T.; Harris, L.J.; Detterbeck, F.C. Methods for Staging Non-Small Cell Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143, e211S–e250S. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H.J.W.L. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3266. [Google Scholar] [CrossRef] [Green Version]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and AI for Lung Cancer Precision Medicine. Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [Google Scholar] [CrossRef]
- Rodriguez-Canales, J.; Parra-Cuentas, E.; Wistuba, I.I. Diagnosis and Molecular Classification of Lung Cancer. Cancer Treat. Res. 2016, 170, 25–46. [Google Scholar] [CrossRef]
- De Sousa, V.M.L.; Carvalho, L. Heterogeneity in Lung Cancer. Pathobiology 2018, 85, 96–107. [Google Scholar] [CrossRef]
- Lung and Bronchus Cancer—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 8 January 2023).
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, U.; Silva, M.; Sestini, S.; Sabia, F.; Boeri, M.; Cantarutti, A.; Sverzellati, N.; Sozzi, G.; Corrao, G.; Marchianò, A. Prolonged Lung Cancer Screening Reduced 10-Year Mortality in the MILD Trial: New Confirmation of Lung Cancer Screening Efficacy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1162–1169. [Google Scholar] [CrossRef]
- Becker, N.; Motsch, E.; Trotter, A.; Heussel, C.P.; Dienemann, H.; Schnabel, P.A.; Kauczor, H.U.; Maldonado, S.G.; Miller, A.B.; Kaaks, R.; et al. Lung Cancer Mortality Reduction by LDCT Screening-Results from the Randomized German LUSI Trial. Int. J. Cancer 2020, 146, 1503–1513. [Google Scholar] [CrossRef]
- Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in Rapid Detection of COVID-19. 3 Biotech 2020, 10, 385. [Google Scholar] [CrossRef]
- Roointan, A.; Mir, T.A.; Wani, S.I.; Rehman, M.U.; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gandomani, G.; Gandomani, M.; et al. Early Detection of Lung Cancer Biomarkers through Biosensor Technology: A Review. J. Pharm. Biomed. Anal. 2019, 164, 93–103. [Google Scholar] [CrossRef]
- Alsalameh, S.; Alnajjar, K.; Makhzoum, T.; Al Eman, N.; Shakir, I.; Mir, T.A.; Alkattan, K.; Chinnappan, R.; Yaqinuddin, A. Advances in Biosensing Technologies for Diagnosis of COVID-19. Biosensors 2022, 12, 898. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Rana, G.; Satapathy, S.; Mohanty, M.; Pradhan, S.; Panda, M.K.; Ningthoujam, R.; Hazarika, B.N.; Singh, Y.D. Biosensors in Diagnosing COVID-19 and Recent Development. Sens. Int. 2020, 1, 100054. [Google Scholar] [CrossRef]
- Chinnappan, R.; Mir, T.A.; Alsalameh, S.; Makhzoum, T.; Adeeb, S.; Al-Kattan, K.; Yaqinuddin, A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life 2023, 13, 1273. [Google Scholar] [CrossRef]
- Jacinth Gracia, K.D.; Thavamani, S.S.; Amaladhas, T.P.; Devanesan, S.; Ahmed, M.; Kannan, M.M. Valorisation of Bio-Derived Fluorescent Carbon Dots for Metal Sensing, DNA Binding and Bioimaging. Chemosphere 2022, 298, 134128. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.A.; Yoon, J.-H.; Gurudatt, N.G.; Won, M.-S.; Shim, Y.-B. Ultrasensitive Cytosensing Based on an Aptamer Modified Nanobiosensor with a Bioconjugate: Detection of Human Non-Small-Cell Lung Cancer Cells. Biosens. Bioelectron. 2015, 74, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, P.; Wistuba, I.I. Lung Cancer Biomarkers Guideline. Hematol Oncol. Clin. 2017, 31, 13–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirieac, L.R. Tumor Cell Proliferation, Proliferative Index and Mitotic Count in Lung Cancer. Transl. Lung Cancer Res. 2016, 5, 554. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. CtDNA as a Cancer Biomarker: A Broad Overview. Crit. Rev. Oncol. Hematol. 2020, 155, 103109. [Google Scholar] [CrossRef]
- Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent Advances in Biosensor Development for the Detection of Cancer Biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What Are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463. [Google Scholar] [CrossRef]
- Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Mohandas, T.; Sparkes, R.; Shapiro, L. Reactivation of an Inactive Human X Chromosome: Evidence for X Inactivation by DNA Methylation. Science 1981, 211, 393–396. [Google Scholar] [CrossRef]
- Robertson, K.D.; Peter, A.J. DNA Methylation: Past, Present and Future Directions. Carcinogenesis 2000, 21, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.A.; Gonzalgo, M.L. Altered DNA Methylation and Genome Instability: A New Pathway to Cancer? Proc. Natl. Acad. Sci. USA 1997, 94, 2103–2105. [Google Scholar] [CrossRef] [Green Version]
- Schübeler, D. Function and Information Content of DNA Methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef]
- Gonzalgo, M.L.; Jones, P.A. Rapid Quantitation of Methylation Differences at Specific Sites Using Methylation-Sensitive Single Nucleotide Primer Extension (Ms-SNuPE). Nucleic Acids Res. 1997, 25, 2529–2531. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, S.A.; Bashir, M.U.; Yaqinuddin, A. Utility of DNA Methylation Markers for Diagnosing Cancer. Int. J. Surg. 2010, 8, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.; Halbritter, F.; Carmona, F.J.; Tierling, S.; Datlinger, P.; Assenov, Y.; Berdasco, M.; Bergmann, A.K.; Booher, K.; Busato, F.; et al. Quantitative Comparison of DNA Methylation Assays for Biomarker Development and Clinical Applications. Nat. Biotechnol. 2016, 34, 726–737. [Google Scholar] [CrossRef] [Green Version]
- Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of TFPI2 Methylation in the Serum of Colorectal Cancer Patients. Cancer Lett. 2011, 311, 96–100. [Google Scholar] [CrossRef]
- Šestáková, Š.; Šálek, C.; Remešová, H. DNA Methylation Validation Methods: A Coherent Review with Practical Comparison. Biol. Proced. Online 2019, 21, 19. [Google Scholar] [CrossRef]
- Gao, L.; Cheng, L.; Zhou, J.; Zhu, B.; Lu, Z. DNA Microarray: A High Throughput Approach for Methylation Detection. Colloids Surf. B Biointerfaces 2005, 40, 127–131. [Google Scholar] [CrossRef]
- Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schuebeler, D. Chromosome-Wide and Promoter-Specific Analyses Identify Sites of Differential DNA Methylation in Normal and Transformed Human Cells. Nat. Genet. 2005, 37, 853–862. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, S.; Zou, L.; Li, G.; Ye, B. Grafting Homogenous Electrochemical Biosensing Strategy Based on Reverse Proximity Ligation and Exo III Assisted Target Circulation for Multiplexed Communicable Disease DNA Assay. Biosens. Bioelectron. 2020, 167, 112487. [Google Scholar] [CrossRef]
- Feng, Q.; Qin, L.; Wang, M.; Wang, P. Signal-on Electrochemical Detection of DNA Methylation Based on the Target-Induced Conformational Change of a DNA Probe and Exonuclease III-Assisted Target Recycling. Biosens. Bioelectron. 2020, 149, 111847. [Google Scholar] [CrossRef] [PubMed]
- Wajed, S.A.; Laird, P.W.; DeMeester, T.R. DNA Methylation: An Alternative Pathway to Cancer. Ann. Surg. 2001, 234, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, H.; Dai, Z.; Zou, X. Picomolar Level Profiling of the Methylation Status of the P53 Tumor Suppressor Gene by a Label-Free Electrochemical Biosensor. Chem. Commun. 2012, 48, 10754–10756. [Google Scholar] [CrossRef] [PubMed]
- Daneshpour, M.; Moradi, L.S.; Izadi, P.; Omidfar, K. Femtomolar Level Detection of RASSF1A Tumor Suppressor Gene Methylation by Electrochemical Nano-Genosensor Based on Fe3O4/TMC/Au Nanocomposite and PT-Modified Electrode. Biosens. Bioelectron. 2016, 77, 1095–1103. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, H.; Dou, B.; Feng, Q.; Han, X.; Wang, P. Construction of a Sensitive Ratiometric Electrochemical Sensing Platform for DNA Methylation Detection Based on the Design of Multistep DNA Amplification Circuits. Sens. Actuators B Chem. 2022, 370, 132491. [Google Scholar] [CrossRef]
- Chen, X.; Huang, J.; Zhang, S.; Mo, F.; Su, S.; Li, Y.; Fang, L.; Deng, J.; Huang, H.; Luo, Z.; et al. Electrochemical Biosensor for DNA Methylation Detection through Hybridization Chain-Amplified Reaction Coupled with a Tetrahedral DNA Nanostructure. ACS Appl. Mater. Interfaces 2019, 11, 3745–3752. [Google Scholar] [CrossRef]
- Liu, H.; Luo, J.; Fang, L.; Huang, H.; Deng, J.; Huang, J.; Zhang, S.; Li, Y.; Zheng, J. An Electrochemical Strategy with Tetrahedron Rolling Circle Amplification for Ultrasensitive Detection of DNA Methylation. Biosens. Bioelectron. 2018, 121, 47–53. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, S.; Mo, F.; Su, S.; Chen, X.; Li, Y.; Fang, L.; Huang, H.; Deng, J.; Liu, H.; et al. An Electrochemical DNA Biosensor Analytic Technique for Identifying DNA Methylation Specific Sites and Quantify DNA Methylation Level. Biosens. Bioelectron. 2019, 127, 155–160. [Google Scholar] [CrossRef]
- Su, F.; Wang, L.; Sun, Y.; Liu, C.; Duan, X.; Li, Z. Highly Sensitive Detection of CpG Methylation in Genomic DNA by AuNP-Based Colorimetric Assay with Ligase Chain Reaction. Chem. Commun. 2015, 51, 3371–3374. [Google Scholar] [CrossRef]
- Ge, C.; Fang, Z.; Chen, J.; Liu, J.; Lu, X.; Zeng, L. A Simple Colorimetric Detection of DNA Methylation. Analyst 2012, 137, 2032–2035. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Chang, Y.-N.; Xia, L.; Gu, W.; Qin, Y.; Li, J.; Cui, S.; Xing, G. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation. Nanoscale Res. Lett. 2016, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Khaki, F.; Dadmehr, M.; Ganjali, M.R. Spectroscopic Study of CpG Alternating DNA-Methylene Blue Interaction for Methylation Detection. J. Fluoresc. 2016, 26, 1123–1129. [Google Scholar] [CrossRef]
- Wee, E.J.; Ngo, T.H.; Trau, M. Colorimetric Detection of Both Total Genomic and Loci-Specific DNA Methylation from Limited DNA Inputs. Clin. Epigenetics 2015, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.A.; Dadmehr, M.; Hosseini, M.; Korouzhdehi, B.; Oroojalian, F. Sensitive Detection of Methylated DNA and Methyltransferase Activity Based on the Lighting up of FAM-Labeled DNA Quenched Fluorescence by Gold Nanoparticles. RSC Adv. 2019, 9, 12063–12069. [Google Scholar] [CrossRef] [Green Version]
- Hori, Y.; Otomura, N.; Nishida, A.; Nishiura, M.; Umeno, M.; Suetake, I.; Kikuchi, K. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation. J. Am. Chem. Soc. 2018, 140, 1686–1690. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Liu, L.; Wang, S. Fluorescent Conjugated Polymer-Based FRET Technique for Detection of DNA Methylation of Cancer Cells. Nat. Protoc. 2010, 5, 1255–1264. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, B.; Song, J.; Zhang, F.; Nie, C.; Jiao, L.; Liu, L.; Lv, F.; Wang, S. Associated Analysis of DNA Methylation for Cancer Detection Using CCP-Based FRET Technique. Anal. Chem. 2014, 86, 346–350. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Wang, K.; Guo, Z. Sequence-Specific Detection of Cytosine Methylation in DNA via the FRET Mechanism between Upconversion Nanoparticles and Gold Nanorods. Chem. Commun. 2016, 52, 8377–8380. [Google Scholar] [CrossRef]
- Rafiei, S.; Dadmehr, M.; Hosseini, M.; Kermani, H.A.; Ganjali, M.R. A Fluorometric Study on the Effect of DNA Methylation on DNA Interaction with Graphene Quantum Dots. Methods Appl. Fluoresc. 2019, 7, 025001. [Google Scholar] [CrossRef]
- Ouyang, X.; Liu, J.; Li, J.; Yang, R. A Carbon Nanoparticle-Based Low-Background Biosensing Platform for Sensitive and Label-Free Fluorescent Assay of DNA Methylation. Chem. Commun. 2012, 48, 88–90. [Google Scholar] [CrossRef]
- Hosseini, M.; Khaki, F.; Shokri, E.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R.; Feizabadi, M.; Ajloo, D. Study on the Interaction of the CpG Alternating DNA with CdTe Quantum Dots. J. Fluoresc. 2017, 27, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Adampourezare, M.; Hasanzadeh, M.; Seidi, F. Optical Bio-Sensing of DNA Methylation Analysis: An Overview of Recent Progress and Future Prospects. RSC Adv. 2022, 12, 25786–25806. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Janke, F.; Dietz, S.; Sültmann, H. Circulating MicroRNAs as Potential Biomarkers for Lung Cancer. Tumor Liq. Biopsies 2020, 215, 299–318. [Google Scholar]
- Zhang, H.; Mao, F.; Shen, T.; Luo, Q.; Ding, Z.; Qian, L.; Huang, J. Plasma MiR-145, MiR-20a, MiR-21 and MiR-223 as Novel Biomarkers for Screening Early-stage Non-small Cell Lung Cancer. Oncol. Lett. 2017, 13, 669–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracken, C.P.; Scott, H.S.; Goodall, G.J. A Network-Biology Perspective of MicroRNA Function and Dysfunction in Cancer. Nat. Rev. Genet. 2016, 17, 719–732. [Google Scholar] [CrossRef]
- Dave, V.P.; Ngo, T.A.; Pernestig, A.-K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D.D. MicroRNA Amplification and Detection Technologies: Opportunities and Challenges for Point of Care Diagnostics. Lab. Investig. 2019, 99, 452–469. [Google Scholar] [CrossRef]
- Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013, 113, 6207–6233. [Google Scholar] [CrossRef]
- Várallyay, E.; Burgyán, J.; Havelda, Z. MicroRNA Detection by Northern Blotting Using Locked Nucleic Acid Probes. Nat. Protoc. 2008, 3, 190–196. [Google Scholar] [CrossRef]
- Chinnappan, R.; Mohammed, R.; Yaqinuddin, A.; Abu-Salah, K.; Zourob, M. Highly Sensitive Multiplex Detection of MicroRNA by Competitive DNA Strand Displacement Fluorescence Assay. Talanta 2019, 200, 487–493. [Google Scholar] [CrossRef]
- Gong, S.; Li, J.; Pan, W.; Li, N.; Tang, B. Duplex-Specific Nuclease-Assisted CRISPR-Cas12a Strategy for MicroRNA Detection Using a Personal Glucose Meter. Anal. Chem. 2021, 93, 10719–10726. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, F.; Sun, G.; Zhang, S.; Zhang, X. Homogeneous Multiplexed Digital Detection of MicroRNA with Ligation-Rolling Circle Amplification. Chem. Commun. 2020, 56, 5409–5412. [Google Scholar] [CrossRef]
- Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in Multiplexed Techniques for the Detection and Quantification of MicroRNAs. Chem. Soc. Rev. 2021, 50, 4141–4161. [Google Scholar] [CrossRef]
- Fang, G.; Seitz, O. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling. ChemBioChem 2017, 18, 189–194. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.A.; Jeong, S.; Rhee, W.J. Simultaneous and Multiplexed Detection of Exosome MicroRNAs Using Molecular Beacons. Biosens. Bioelectron. 2016, 86, 202–210. [Google Scholar] [CrossRef]
- Chinnappan, R.; Ramadan, Q.; Zourob, M. An Integrated Lab-on-a-Chip Platform for Pre-Concentration and Detection of Colorectal Cancer Exosomes Using Anti-CD63 Aptamer as a Recognition Element. Biosens. Bioelectron. 2022, 220, 114856. [Google Scholar] [CrossRef]
- Jou, A.F.-J.; Chen, Y.-J.; Li, Y.; Chang, Y.-F.; Lee, J.; Liao, A.T.; Ho, J.A. Target-Triggered, Dual Amplification Strategy for Sensitive Electrochemical Detection of a Lymphoma-Associated MicroRNA. Electrochim. Acta 2017, 236, 190–197. [Google Scholar] [CrossRef]
- Pimalai, D.; Putnin, T.; Waiwinya, W.; Chotsuwan, C.; Aroonyadet, N.; Japrung, D. Development of Electrochemical Biosensors for Simultaneous Multiplex Detection of MicroRNA for Breast Cancer Screening. Microchim. Acta 2021, 188, 329. [Google Scholar] [CrossRef]
- El Aamri, M.; Yammouri, G.; Mohammadi, H.; Amine, A.; Korri-Youssoufi, H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. Biosensors 2020, 10, 186. [Google Scholar] [CrossRef]
- Hou, S.-Y.; Hsiao, Y.-L.; Lin, M.-S.; Yen, C.-C.; Chang, C.-S. MicroRNA Detection Using Lateral Flow Nucleic Acid Strips with Gold Nanoparticles. Talanta 2012, 99, 375–379. [Google Scholar] [CrossRef]
- Gao, X.; Xu, L.-P.; Wu, T.; Wen, Y.; Ma, X.; Zhang, X. An Enzyme-Amplified Lateral Flow Strip Biosensor for Visual Detection of MicroRNA-224. Talanta 2016, 146, 648–654. [Google Scholar] [CrossRef]
- Feng, C.; Mao, X.; Shi, H.; Bo, B.; Chen, X.; Chen, T.; Zhu, X.; Li, G. Detection of MicroRNA: A Point-of-Care Testing Method Based on a PH-Responsive and Highly Efficient Isothermal Amplification. Anal. Chem. 2017, 89, 6631–6636. [Google Scholar] [CrossRef] [PubMed]
- Leij-Halfwerk, S.; Agteresch, H.J.; Sijens, P.E.; Dagnelie, P.C. Adenosine Triphosphate Infusion Increases Liver Energy Status in Advanced Lung Cancer Patients: An in Vivo31P Magnetic Resonance Spectroscopy Study. Hepatology 2002, 35, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Kami, K.; Fujimori, T.; Sato, H.; Sato, M.; Yamamoto, H.; Ohashi, Y.; Sugiyama, N.; Ishihama, Y.; Onozuka, H.; Ochiai, A.; et al. Metabolomic Profiling of Lung and Prostate Tumor Tissues by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Metabolomics 2013, 9, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.-Y.; Chen, C.-J.; Huang, Y.-C.; Tsai, F.-J.; Jeng, L.-B.; Lai, C.-C. Urinary Nucleosides as Biomarkers of Breast, Colon, Lung, and Gastric Cancer in Taiwanese. PLoS ONE 2013, 8, e81701. [Google Scholar] [CrossRef]
- Sidders, B.; Zhang, P.; Goodwin, K.; O’Connor, G.; Russell, D.L.; Borodovsky, A.; Armenia, J.; McEwen, R.; Linghu, B.; Bendell, J.C.; et al. Adenosine Signaling Is Prognostic for Cancer Outcome and Has Predictive Utility for Immunotherapeutic Response. Clin. Cancer Res. 2020, 26, 2176–2187. [Google Scholar] [CrossRef]
- Zhou, S.; Gan, Y.; Kong, L.; Sun, J.; Liang, T.; Wang, X.; Wan, H.; Wang, P. A Novel Portable Biosensor Based on Aptamer Functionalized Gold Nanoparticles for Adenosine Detection. Anal. Chim. Acta 2020, 1120, 43–49. [Google Scholar] [CrossRef]
- Gliga, L.-E.; Iacob, B.-C.; Cheșcheș, B.; Florea, A.; Barbu-Tudoran, L.; Bodoki, E.; Oprean, R. Electrochemical Platform for the Detection of Adenosine Using a Sandwich-Structured Molecularly Imprinted Polymer-Based Sensor. Electrochim. Acta 2020, 354, 136656. [Google Scholar] [CrossRef]
- Hashemian, Z.; Khayamian, T.; Saraji, M.; Shirani, M.P. Aptasensor Based on Fluorescence Resonance Energy Transfer for the Analysis of Adenosine in Urine Samples of Lung Cancer Patients. Biosens. Bioelectron. 2016, 79, 334–340. [Google Scholar] [CrossRef]
- Yang, T.; Guo, X.; Wu, Y.; Wang, H.; Fu, S.; Wen, Y.; Yang, H. Facile and Label-Free Detection of Lung Cancer Biomarker in Urine by Magnetically Assisted Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 20985–20993. [Google Scholar] [CrossRef]
- Runsewe, D.O.; Haya, G.; Betancourt, T.; Irvin, J.A. Conducting Polymer-Based Electrochemical Aptasensor for the Detection of Adenosine. ACS Appl. Polym. Mater. 2021, 3, 6674–6683. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, J.; Li, X. Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles. Anal. Chem. 2008, 80, 8382–8388. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Sitaula, S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Real-Time Electrochemical Monitoring of Adenosine Triphosphate in the Picomolar to Micromolar Range Using Graphene-Modified Electrodes. Anal. Chem. 2013, 85, 8158–8165. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, J.; Tan, Z.; Wang, H. Electrochemical Impedance Spectroscopy Aptasensor for Ultrasensitive Detection of Adenosine with Dual Backfillers. Biosens. Bioelectron. 2014, 60, 218–223. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Yang, X.; Wang, K.; He, L.; Li, X.; Xue, C. Surface Plasmon Resonance Detection of Small Molecule Using Split Aptamer Fragments. Sens. Actuators B Chem. 2011, 156, 893–898. [Google Scholar] [CrossRef]
- Yao, G.-H.; Liang, R.-P.; Huang, C.-F.; Zhang, L.; Qiu, J.-D. Enzyme-Free Surface Plasmon Resonance Aptasensor for Amplified Detection of Adenosine via Target-Triggering Strand Displacement Cycle and Au Nanoparticles. Anal. Chim. Acta 2015, 871, 28–34. [Google Scholar] [CrossRef]
- Zhao, R.; Yin, N.; Ma, L.; Zhang, J.; Luo, Y.; Guo, Z.; Fa, M.; Yang, D.; Wang, D.; Yao, X. Surface Plasmon Resonance (SPR) Determination of Adenosine Triphosphate (ATP) Using Silver (I) Induced Configuration Changes of a Single Stranded DNA Probe with Cytosine (C). Anal. Lett. 2022, 55, 2954–2967. [Google Scholar] [CrossRef]
- You, J.; You, Z.; Xu, X.; Ji, J.; Lu, T.; Xia, Y.; Wang, L.; Zhang, L.; Du, S. A Split Aptamer-Labeled Ratiometric Fluorescent Biosensor for Specific Detection of Adenosine in Human Urine. Mikrochim. Acta 2018, 186, 43. [Google Scholar] [CrossRef]
- Li, L.-L.; Ge, P.; Selvin, P.R.; Lu, Y. Direct Detection of Adenosine in Undiluted Serum Using a Luminescent Aptamer Sensor Attached to a Terbium Complex. Anal. Chem. 2012, 84, 7852–7856. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ding, C.; Lin, Y.; Sun, W.; Liu, H.; Zhu, X.; Dai, Y.; Luo, C. Highly Selective and Sensitive Chemiluminescence Biosensor for Adenosine Detection Based on Carbon Quantum Dots Catalyzing Luminescence Released from Aptamers Functionalized Graphene@magnetic β-Cyclodextrin Polymers. Talanta 2018, 186, 238–247. [Google Scholar] [CrossRef]
- Molina, R.; Filella, X.; Augé, J.M. ProGRP: A New Biomarker for Small Cell Lung Cancer. Clin. Biochem. 2004, 37, 505–511. [Google Scholar] [CrossRef]
- Tian, K.; Li, Z.; Qin, L. Detection of CEA and ProGRP Levels in BALF of Patients with Peripheral Lung Cancer and Their Relationship with CT Signs. BioMed Res. Int. 2022, 2022, 4119912. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Philipp, M.; Velcovsky, H.-G.; Morr, H.; Katz, N. Pro-Gastrin-Releasing Peptide (ProGRP), Neuron Specific Enolase (NSE), Carcinoembryonic Antigen (CEA) and Cytokeratin 19-Fragments (CYFRA 21-1) in Patients with Lung Cancer in Comparison to Other Lung Diseases. Anticancer Res. 2003, 23, 885–893. [Google Scholar] [PubMed]
- Cui, H.-F.; Li, Y.-J.; Wang, J.; Li, X.-J.; Wang, Q.-L.; Bai, Y.-F. Selection, Identification, and Characterization of Aptamers for pro-Gastrin-Releasing Peptide (31–98), a Tumor Marker for Small Cell Lung Cancer. RSC Adv. 2016, 6, 1484–1490. [Google Scholar] [CrossRef]
- Sun, L.; Shen, K.; Zhang, J.; Wan, W.; Cao, W.; Wang, Z.; Guo, C. Aptamer Based Surface Plasma Resonance Assay for Direct Detection of Neuron Specific Enolase and Progastrin-Releasing Peptide (31-98). RSC Adv. 2021, 11, 32135–32142. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, H.; Wang, C.; Wei, Q.; Wang, Y.; Xiong, X.; Li, C.; Li, W. A Pro-Gastrin-Releasing Peptide Imprinted Photoelectrochemical Sensor Based on the in Situ Growth of Gold Nanoparticles on a MoS2 Nanosheet Surface. Analyst 2020, 145, 1302–1309. [Google Scholar] [CrossRef]
- Liu, Y.; Si, S.; Dong, S.; Ji, B.; Li, H.; Liu, S. Ultrasensitive Electrochemical Immunosensor for ProGRP Detection Based on 3D-RGO@Au Nanocomposite. Microchem. J. 2021, 170, 106644. [Google Scholar] [CrossRef]
- Zhuo, Y.; Chai, Y.-Q.; Yuan, R.; Mao, L.; Yuan, Y.-L.; Han, J. Glucose Oxidase and Ferrocene Labels Immobilized at Au/TiO2 Nanocomposites with High Load Amount and Activity for Sensitive Immunoelectrochemical Measurement of ProGRP Biomarker. Biosens. Bioelectron. 2011, 26, 3838–3844. [Google Scholar] [CrossRef]
- Fu, L.; Wang, R.; Yin, L.; Shang, X.; Zhang, R.; Zhang, P. CYFRA21-1 Tests in the Diagnosis of Non-Small Cell Lung Cancer: A Meta-Analysis. Int. J. Biol. Markers 2019, 34, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Shi, X.; Liu, J.; Chen, Z.; Wang, G. Serum Cyfra21-1 as a Biomarker in Patients with Nonsmall Cell Lung Cancer. J. Cancer Res. Ther. 2014, 10 (Suppl. S3), C215–C217. [Google Scholar] [CrossRef]
- Cui, C.; Sun, X.; Zhang, J.; Han, D.; Gu, J. The Value of Serum Cyfra21-1 as a Biomarker in the Diagnosis of Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. J. Cancer Res. Ther. 2014, 10 (Suppl. S4), C131–C134. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, Y.; Xiao, K.; Du, C.; Zhang, X.; Chen, J. Sensitive Dual-Mode Biosensors for CYFRA21-1 Assay Based on the Dual-Signaling Electrochemical Ratiometric Strategy and “On–Off–On” PEC Method. Anal. Chem. 2021, 93, 6801–6807. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, J.; Sharma, S.N. Nanostructured Titania Based Electrochemical Impedimetric Biosensor for Non-Invasive Cancer Detection. Mater. Res. Express 2018, 5, 125405. [Google Scholar] [CrossRef]
- Chiu, N.-F.; Yang, H.-T. High-Sensitivity Detection of the Lung Cancer Biomarker CYFRA21-1 in Serum Samples Using a Carboxyl-MoS2 Functional Film for SPR-Based Immunosensors. Front. Bioeng. Biotechnol. 2020, 8, 234. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wu, S.; Jing, F.; Zhou, H.; Jia, C.; Li, G.; Cong, H.; Jin, Q.; Zhao, J. Bead-Based Microarray Immunoassay for Lung Cancer Biomarkers Using Quantum Dots as Labels. Biosens. Bioelectron. 2016, 80, 300–306. [Google Scholar] [CrossRef]
- Chen, M.; Hou, C.; Huo, D.; Yang, M.; Fa, H. A Highly Sensitive Electrochemical DNA Biosensor for Rapid Detection of CYFRA21-1, a Marker of Non-Small Cell Lung Cancer. Anal. Methods 2015, 7, 9466–9473. [Google Scholar] [CrossRef]
- Joshi, S.; Kallappa, S.; Kumar, P.; Shukla, S.; Ghosh, R. Simple Diagnosis of Cancer by Detecting CEA and CYFRA 21-1 in Saliva Using Electronic Sensors. Sci. Rep. 2022, 12, 15315. [Google Scholar] [CrossRef]
- Jian, L.; Wang, X.; Hao, L.; Liu, Y.; Yang, H.; Zheng, X.; Feng, W. Electrochemiluminescence Immunosensor for Cytokeratin Fragment Antigen 21-1 Detection Using Electrochemically Mediated Atom Transfer Radical Polymerization. Microchim. Acta 2021, 188, 115. [Google Scholar] [CrossRef]
- Alarfaj, N.A.; El-Tohamy, M.F.; Oraby, H.F. New Immunosensing-Fluorescence Detection of Tumor Marker Cytokeratin-19 Fragment (CYFRA 21-1) via Carbon Quantum Dots/Zinc Oxide Nanocomposite. Nanoscale Res. Lett. 2020, 15, 12. [Google Scholar] [CrossRef]
- Lei, Q.; Zhao, L.; Ye, S.; Sun, Y.; Xie, F.; Zhang, H.; Zhou, F.; Wu, S. Rapid and Quantitative Detection of Urinary Cyfra21-1 Using Fluorescent Nanosphere-Based Immunochromatographic Test Strip for Diagnosis and Prognostic Monitoring of Bladder Cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4266–4272. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cao, Y.; Xu, Y.; Li, G. Colorimetric Multiplexed Immunoassay for Sequential Detection of Tumor Markers. Biosens. Bioelectron. 2009, 25, 532–536. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, J.; Huang, Y.; Zhao, S.; Liu, Y.-M. Aptamer-Based Microchip Electrophoresis Assays for Amplification Detection of Carcinoembryonic Antigen. Clin. Chim. Acta 2015, 450, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Wu, Z.; Xu, F.; Li, X.; Yao, C.; Xu, M.; Sheng, L.; Yu, S.; Tang, Y. A Portable Smart Phone-Based Plasmonic Nanosensor Readout Platform That Measures Transmitted Light Intensities of Nanosubstrates Using an Ambient Light Sensor. Lab Chip 2016, 16, 1927–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, G.-Y.; Wang, H.; Deng, T.; Shen, G.-L.; Yu, R.-Q. A Novel Piezoelectric Immunosensor for Detection of Carcinoembryonic Antigen. Talanta 2005, 67, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.-W.; Huang, I.-Y.; Lin, Y.-C.; Lin, C.-Y.; Chen, J.-L.; Hsieh, C.-H. Development of an FPW Biosensor with Low Insertion Loss and High Fabrication Yield for Detection of Carcinoembryonic Antigen. Sensors 2016, 16, 1729. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bei, J.; Guo, X.; Ding, Y.; Chen, T.; Lu, B.; Wang, Y.; Du, Y.; Yao, Y. Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Pillar[5]Arene-Functionalized Au Nanoparticles and Hollow PANI Hybrid BiOBr Heterojunction. Biosens. Bioelectron. 2022, 208, 114220. [Google Scholar] [CrossRef]
- Li, W.; Ma, C.; Song, Y.; Hong, C.; Qiao, X.; Yin, B. Sensitive Detection of Carcinoembryonic Antigen (CEA) by a Sandwich-Type Electrochemical Immunosensor Using MOF-Ce@HA/Ag-HRP-Ab2 as a Nanoprobe. Nanotechnology 2020, 31, 185605. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Kim, E.; Kim, S.; Hwang, H. Evaluation of Analytical Performances of Magnetic Force-Assisted Electrochemical Sandwich Immunoassay for the Quantification of Carcinoembryonic Antigen. Front. Bioeng. Biotechnol. 2022, 9, 798079. [Google Scholar] [CrossRef]
- Song, J.; Teng, H.; Xu, Z.; Liu, N.; Xu, L.; Liu, L.; Gao, F.; Luo, X. Free-Standing Electrochemical Biosensor for Carcinoembryonic Antigen Detection Based on Highly Stable and Flexible Conducting Polypyrrole Nanocomposite. Microchim. Acta 2021, 188, 217. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Wang, M.; Liu, C.; Tian, Z. Advances in Detection of Carcinoembryonic Antigen for Diagnosis of Esophageal Cancer Based on Electrochemical Aptamer Sensors. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Chen, M.; Yeasmin Khusbu, F.; Ma, C.; Wu, K.; Zhao, H.; Chen, H.; Wang, K. A Sensitive Detection Method of Carcinoembryonic Antigen Based on DsDNA-Templated Copper Nanoparticles. New J. Chem. 2018, 42, 13702–13707. [Google Scholar] [CrossRef]
- He, M.-Q.; Wang, K.; Wang, W.-J.; Yu, Y.-L.; Wang, J.-H. Smart DNA Machine for Carcinoembryonic Antigen Detection by Exonuclease III-Assisted Target Recycling and DNA Walker Cascade Amplification. Anal. Chem. 2017, 89, 9292–9298. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Pourhassan-Moghaddam, M.; Shirdel, B.; Baradaran, B.; Morales-Narváez, E.; Golmohammadi, H. On-Site Detection of Carcinoembryonic Antigen in Human Serum. Biosensors 2021, 11, 392. [Google Scholar] [CrossRef]
- Špringer, T.; Homola, J. Biofunctionalized Gold Nanoparticles for SPR-Biosensor-Based Detection of CEA in Blood Plasma. Anal. Bioanal. Chem. 2012, 404, 2869–2875. [Google Scholar] [CrossRef]
- Shitrit, D.; Zingerman, B.; Shitrit, A.B.-G.; Shlomi, D.; Kramer, M.R. Diagnostic Value of CYFRA 21-1, CEA, CA 19-9, CA 15-3, and CA 125 Assays in Pleural Effusions: Analysis of 116 Cases and Review of the Literature. Oncologist 2005, 10, 501–507. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Zhang, L.; Liu, H.; Li, S.; Wang, Y.; Deng, X. Serum Markers CA125, CA153, and CEA along with Inflammatory Cytokines in the Early Detection of Lung Cancer in High-Risk Populations. BioMed Res. Int. 2022, 2022, 1394042. [Google Scholar] [CrossRef]
- Ghosh, I.; Bhattacharjee, D.; Das, A.K.; Chakrabarti, G.; Dasgupta, A.; Dey, S.K. Diagnostic Role of Tumour Markers CEA, CA15-3, CA19-9 and CA125 in Lung Cancer. Indian J. Clin. Biochem. 2013, 28, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, T.S.C.R.; Ribeiro, J.A.; Sales, M.G.F.; Pereira, C.M. Electrochemical Immunosensor for Detection of CA 15-3 Biomarker in Point-of-Care. Sens. Bio-Sens. Res. 2021, 33, 100445. [Google Scholar] [CrossRef]
- Wei, Z.; Cai, X.; Cui, W.; Zhang, J. Electrochemical Immunoassay for Tumor Marker CA19-9 Detection Based on Self-Assembled Monolayer. Molecules 2022, 27, 4578. [Google Scholar] [CrossRef]
- Abou-Omar, M.N.; Attia, M.S.; Afify, H.G.; Amin, M.A.; Boukherroub, R.; Mohamed, E.H. Novel Optical Biosensor Based on a Nano-Gold Coated by Schiff Base Doped in Sol/Gel Matrix for Sensitive Screening of Oncomarker CA-125. ACS Omega 2021, 6, 20812–20821. [Google Scholar] [CrossRef]
- Omer, W.E.; Abdelbar, M.F.; El-Kemary, N.M.; Fukata, N.; El-Kemary, M.A. Cancer Antigen 125 Assessment Using Carbon Quantum Dots for Optical Biosensing for the Early Diagnosis of Ovarian Cancer. RSC Adv. 2021, 11, 31047–31057. [Google Scholar] [CrossRef]
- Wang, R.; Lu, M.; Chen, H.; Chen, S.; Luo, X.; Qin, Y.; Zhang, J. Increased IL-10 MRNA Expression in Tumor-Associated Macrophage Correlated with Late Stage of Lung Cancer. J. Exp. Clin. Cancer Res. 2011, 30, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed Cytokine Detection Using Electrochemical Point-of-Care Sensing Device towards Rapid Sepsis Endotyping. Biosens. Bioelectron. 2021, 171, 112726. [Google Scholar] [CrossRef] [PubMed]
- Stefan-van Staden, R.-I.; Ilie-Mihai, R.M.; Gugoasa, L.A.; Bilasco, A.; Visan, C.A.; Streinu-Cercel, A. Molecular Recognition of IL-8, IL-10, IL-12, and IL-15 in Biological Fluids Using Phthalocyanine-Based Stochastic Sensors. Anal. Bioanal. Chem. 2018, 410, 7723–7737. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.W.; Zhou, Z.G.; Wang, M.; Dong, J.Q.; Du, K.P.; Li, S.; Liu, Y.L.; Lv, P.J.; Gao, J.B. Combination of IL-6, IL-10, and MCP-1 with Traditional Serum Tumor Markers in Lung Cancer Diagnosis and Prognosis. Genet. Mol. Res. GMR 2016, 15, gmr15048949. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Song, H.W.; Lee, S.; Kim, J.-E.; Kim, Y.H.; Wi, J.-S.; Ok, J.G.; Park, J.S.; Hong, S.; Kwak, M.K. Gold Nanoparticle-Enhanced and Roll-to-Roll Nanoimprinted LSPR Platform for Detecting Interleukin-10. Front. Chem. 2020, 8, 285. [Google Scholar] [CrossRef]
- Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A Novel Biosensor Based on Hafnium Oxide: Application for Early Stage Detection of Human Interleukin-10. Sens. Actuators B Chem. 2012, 175, 201–207. [Google Scholar] [CrossRef]
- Nessark, F.; Eissa, M.; Baraket, A.; Zine, N.; Nessark, B.; Zouaoui, A.; Bausells, J.; Errachid, A. Capacitance Polypyrrole-Based Impedimetric Immunosensor for Interleukin-10 Cytokine Detection. Electroanalysis 2020, 32, 1795–1806. [Google Scholar] [CrossRef]
- Frezzetti, D.; Gallo, M.; Maiello, M.R.; D’Alessio, A.; Esposito, C.; Chicchinelli, N.; Normanno, N.; De Luca, A. VEGF as a Potential Target in Lung Cancer. Expert Opin. Ther. Targets 2017, 21, 959–966. [Google Scholar] [CrossRef]
- Kim, M.; Iezzi Jr, R.; Shim, B.S.; Martin, D.C. Impedimetric Biosensors for Detecting Vascular Endothelial Growth Factor (VEGF) Based on Poly (3, 4-Ethylene Dioxythiophene)(PEDOT)/Gold Nanoparticle (Au NP) Composites. Front. Chem. 2019, 7, 234. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Ming, T.; Luo, J.; Xing, Y.; Liu, J.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; et al. An Origami Paper-Based Nanoformulated Immunosensor Detects Picograms of VEGF-C per Milliliter of Blood. Commun. Biol. 2021, 4, 121. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, N.K.; Park, S.-W.; Kang, H.W. VEGF Detection via Simplified FLISA Using a 3D Microfluidic Disk Platform. Biosensors 2021, 11, 270. [Google Scholar] [CrossRef]
- Kwon, O.S.; Park, S.J.; Jang, J. A High-Performance VEGF Aptamer Functionalized Polypyrrole Nanotube Biosensor. Biomaterials 2010, 31, 4740–4747. [Google Scholar] [CrossRef]
- Ghavamipour, F.; Rahmani, H.; Shanehsaz, M.; Khajeh, K.; Mirshahi, M.; Sajedi, R.H. Enhanced Sensitivity of VEGF Detection Using Catalase-Mediated Chemiluminescence Immunoassay Based on CdTe QD/H2O2 System. J. Nanobiotechnol. 2020, 18, 93. [Google Scholar] [CrossRef]
- Kim, J.; Hajjar, K.A. Annexin II: A Plasminogen-Plasminogen Activator Co-Receptor. Front. Biosci.-Landmark 2002, 7, 341–348. [Google Scholar] [CrossRef]
- Dehghani, S.; Nosrati, R.; Yousefi, M.; Nezami, A.; Soltani, F.; Taghdisi, S.M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Aptamer-Based Biosensors and Nanosensors for the Detection of Vascular Endothelial Growth Factor (VEGF): A Review. Biosens. Bioelectron. 2018, 110, 23–37. [Google Scholar] [CrossRef]
- Wang, S.; Lu, H.; Wang, L.; Zou, J.; Zhang, R. Rapid Determination of Serum Vascular Endothelial Growth Factor (VEGF) by a Fluorescence Immunochromatographic Assay. Anal. Lett. 2020, 54, 1233–1241. [Google Scholar] [CrossRef]
- Jia, J.-W.; Li, K.-L.; Wu, J.-X.; Guo, S.-L. Clinical Significance of Annexin II Expression in Human Non-Small Cell Lung Cancer. Tumor Biol. 2013, 34, 1767–1771. [Google Scholar] [CrossRef]
- Kim, D.-M.; Noh, H.-B.; Park, D.S.; Ryu, S.-H.; Koo, J.S.; Shim, Y.-B. Immunosensors for Detection of Annexin II and MUC5AC for Early Diagnosis of Lung Cancer. Biosens. Bioelectron. 2009, 25, 456–462. [Google Scholar] [CrossRef]
- Davis, R.G.; Vishwanatha, J.K. Detection of Secreted and Intracellular Annexin II by a Radioimmunoassay. J. Immunol. Methods 1995, 188, 91–95. [Google Scholar] [CrossRef]
- Qiao, G.; Wu, A.; Chen, X.; Tian, Y.; Lin, X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int. J. Biol. Sci. 2021, 17, 3981. [Google Scholar] [CrossRef]
- Huang, C.K.; Sun, Y.; Lv, L.; Ping, Y. ENO1 and Cancer. Mol. Ther.-Oncolytics 2022, 24, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.A.; Chang, H.-C.; Shih, N.-Y.; Wu, L.-C.; Chang, Y.-F.; Chen, C.-C.; Chou, C. Diagnostic Detection of Human Lung Cancer-Associated Antigen Using a Gold Nanoparticle-Based Electrochemical Immunosensor. Anal. Chem. 2010, 82, 5944–5950. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, H.; Bi, R.; Gao, G.; Li, K.; Liu, H. ENO1-targeted Superparamagnetic Iron Oxide Nanoparticles for Detecting Pancreatic Cancer by Magnetic Resonance Imaging. J. Cell. Mol. Med. 2020, 24, 5751–5757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Wang, L.; Liu, H.-L. ENO1 Overexpression in Pancreatic Cancer Patients and Its Clinical and Diagnostic Significance. Gastroenterol. Res. Pract. 2018, 2018, 3842198. [Google Scholar] [CrossRef] [Green Version]
- Kukulj, S.; Jaganjac, M.; Boranic, M.; Krizanac, S.; Santic, Z.; Poljak-Blazi, M. Altered Iron Metabolism, Inflammation, Transferrin Receptors, and Ferritin Expression in Non-Small-Cell Lung Cancer. Med. Oncol. 2010, 27, 268–277. [Google Scholar] [CrossRef]
- Mao, X.; Du, T.-E.; Meng, L.; Song, T. Novel Gold Nanoparticle Trimer Reporter Probe Combined with Dry-Reagent Cotton Thread Immunoassay Device for Rapid Human Ferritin Test. Anal. Chim. Acta 2015, 889, 172–178. [Google Scholar] [CrossRef]
- Meng, L.-L.; Song, T.-T.; Mao, X. Novel Immunochromatographic Assay on Cotton Thread Based on Carbon Nanotubes Reporter Probe. Talanta 2017, 167, 379–384. [Google Scholar] [CrossRef]
- Song, T.-T.; Wang, W.; Meng, L.-L.; Liu, Y.; Jia, X.-B.; Mao, X. Electrochemical Detection of Human Ferritin Based on Gold Nanorod Reporter Probe and Cotton Thread Immunoassay Device. Chin. Chem. Lett. 2017, 28, 226–230. [Google Scholar] [CrossRef]
- Wu, X.; Chen, H.; Liu, X.; Zeng, Q. Significance of Combined Detection of Serum Cyfra21-1 and NSE and Ferritin in Diagnosis of Lung Cancer. J. Trop. Med. Guangzhou 2010, 10, 838–841. [Google Scholar]
- Yen, L.-C.; Pan, T.-M.; Lee, C.-H.; Chao, T.-S. Label-Free and Real-Time Detection of Ferritin Using a Horn-like Polycrystalline-Silicon Nanowire Field-Effect Transistor Biosensor. Sens. Actuators B Chem. 2016, 230, 398–404. [Google Scholar] [CrossRef]
- Garg, M.; Chatterjee, M.; Sharma, A.L.; Singh, S. Label-Free Approach for Electrochemical Ferritin Sensing Using Biosurfactant Stabilized Tungsten Disulfide Quantum Dots. Biosens. Bioelectron. 2020, 151, 111979. [Google Scholar] [CrossRef]
- Yoon, H.C.; Yang, H.; Byun, S.Y. Ferritin Immunosensing on Microfabricated Electrodes Based on the Integration of Immunoprecipitation and Electrochemical Signaling Reactions. Anal. Sci. 2004, 20, 1249–1253. [Google Scholar] [CrossRef] [Green Version]
- Ashmawi, S.S.; Diab, H.S.; Fahmy, E.A. Evaluation of Lung Cancer by Estimating Ferritin in Exhaled Breath Condensate. Egypt. J. Chest Dis. Tuberc. 2015, 64, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Boonkaew, S.; Teengam, P.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. Cost-Effective Paper-Based Electrochemical Immunosensor Using a Label-Free Assay for Sensitive Detection of Ferritin. Analyst 2020, 145, 5019–5026. [Google Scholar] [CrossRef]
- Garg, M.; Christensen, M.G.; Iles, A.; Sharma, A.L.; Singh, S.; Pamme, N. Microfluidic-Based Electrochemical Immunosensing of Ferritin. Biosensors 2020, 10, 91. [Google Scholar] [CrossRef]
- Peterson, R.D.; Cunningham, B.T.; Andrade, J.E. A Photonic Crystal Biosensor Assay for Ferritin Utilizing Iron-Oxide Nanoparticles. Biosens. Bioelectron. 2014, 56, 320–327. [Google Scholar] [CrossRef]
- Senra Varela, A.; Lopez Saez, J.J.B.; Quintela Senra, D. Serum Ceruloplasmin as a Diagnostic Marker of Cancer. Cancer Lett. 1997, 121, 139–145. [Google Scholar] [CrossRef]
- Lopez, M.J.; Royer, A.; Shah, N.J. Biochemistry, Ceruloplasmin. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Matsuoka, R.; Shiba-Ishii, A.; Nakano, N.; Togayachi, A.; Sakashita, S.; Sato, Y.; Minami, Y.; Noguchi, M. Heterotopic Production of Ceruloplasmin by Lung Adenocarcinoma Is Significantly Correlated with Prognosis. Lung Cancer 2018, 118, 97–104. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; Pounds, J.G.; Lin, Y. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Anal. Chem. 2010, 82, 7008–7014. [Google Scholar] [CrossRef]
- Nunez, M.I.; Behrens, C.; Woods, D.M.; Lin, H.; Suraokar, M.; Kadara, H.; Hofstetter, W.; Kalhor, N.; Lee, J.J.; Franklin, W.; et al. High Expression of Folate Receptor Alpha in Lung Cancer Correlates with Adenocarcinoma Histology and Mutation. J. Thorac. Oncol. 2012, 7, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Henne, W.A.; Doorneweerd, D.D.; Lee, J.; Low, P.S.; Savran, C. Detection of Folate Binding Protein with Enhanced Sensitivity Using a Functionalized Quartz Crystal Microbalance Sensor. Anal. Chem. 2006, 78, 4880–4884. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Fan, Q.; Hu, L.; Cui, M.; Wang, X.; Ma, H.; Wei, Q. Polydopamine-PEG–Folic Acid Conjugate Film Engineered TiO2 Nanotube Arrays for Photoelectrochemical Sensing of Folate Binding Protein. ACS Appl. Mater. Interfaces 2020, 12, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Han, X.; Wang, J.; Zhao, J.; Guo, Z.; Zhang, Y. Horseradish Peroxidase Functionalized Gold Nanorods as a Label for Sensitive Electrochemical Detection of Alpha-Fetoprotein Antigen. Anal. Biochem. 2015, 491, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Oh, H.G.; Park, W.H.; Jeon, D.C.; Lim, K.M.; Kim, H.J.; Jang, B.K.; Song, K.S. Detection of Alpha-Fetoprotein in Hepatocellular Carcinoma Patient Plasma with Graphene Field-Effect Transistor. Sensors 2018, 18, 4032. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Ma, Y.; Zeng, Q.; Tao, J.; Huang, J.; Wang, L. Molecularly Imprinted Electrochemical Sensor for Advanced Diagnosis of Alpha-Fetoprotein. Anal. Methods 2016, 8, 7361–7368. [Google Scholar] [CrossRef]
- Xie, Q.; Weng, X.; Lu, L.; Lin, Z.; Xu, X.; Fu, C. A Sensitive Fluorescent Sensor for Quantification of Alpha-Fetoprotein Based on Immunosorbent Assay and Click Chemistry. Biosens. Bioelectron. 2016, 77, 46–50. [Google Scholar] [CrossRef]
- Phuc, L.G.; Do, P.Q.; Ta, H.K.; Dang, V.Q.; Joo, S.-W.; Manh, D.H.; Bach, T.N.; Van, T.T.T.; Tran, N.H. Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite. Chemosensors 2023, 11, 56. [Google Scholar] [CrossRef]
- Yang, Q.; Gong, X.; Song, T.; Yang, J.; Zhu, S.; Li, Y.; Cui, Y.; Li, Y.; Zhang, B.; Chang, J. Quantum Dot-Based Immunochromatography Test Strip for Rapid, Quantitative and Sensitive Detection of Alpha Fetoprotein. Biosens. Bioelectron. 2011, 30, 145–150. [Google Scholar] [CrossRef]
- Mohammadinejad, A.; Kazemi Oskuee, R.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Development of Biosensors for Detection of Alpha-Fetoprotein: As a Major Biomarker for Hepatocellular Carcinoma. TrAC Trends Anal. Chem. 2020, 130, 115961. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Xie, B.; Zhang, B.; Lin, Y.; Gao, L. Detection of Alpha-Fetoprotein Using Aptamer-Based Sensors. Biosensors 2022, 12, 780. [Google Scholar] [CrossRef]
- Upan, J.; Youngvises, N.; Tuantranont, A.; Karuwan, C.; Banet, P.; Aubert, P.-H.; Jakmunee, J. A Simple Label-Free Electrochemical Sensor for Sensitive Detection of Alpha-Fetoprotein Based on Specific Aptamer Immobilized Platinum Nanoparticles/Carboxylated-Graphene Oxide. Sci. Rep. 2021, 11, 13969. [Google Scholar] [CrossRef]
- Kushner, I.; Mackiewicz, A. The Acute Phase Response: An Overview. In Acute Phase Proteins; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–19. ISBN 1-00-306858-8. [Google Scholar]
- Westermark, G.T.; Engström, U.; Westermark, P. The N-Terminal Segment of Protein AA Determines Its Fibrillogenic Property. Biochem. Biophys. Res. Commun. 1992, 182, 27–33. [Google Scholar] [CrossRef]
- Dwulet, F.E.; Wallace, D.K.; Benson, M.D. Amino Acid Structures of Multiple Forms of Amyloid-Related Serum Protein SAA from a Single Individual. Biochemistry 1988, 27, 1677–1682. [Google Scholar] [CrossRef]
- Jensen, L.E.; WHITEHEAD, A.S. Regulation of Serum Amyloid A Protein Expression during the Acute-Phase Response. Biochem. J. 1998, 334, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Gautam, V.; Naseem, S. Acute-Phase Proteins: As Diagnostic Tool. J. Pharm. Bioallied Sci. 2011, 3, 118. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Jiang, Y.; Liu, D.; Li, M.; Zhong, Q.; Zeng, S.; Liu, W.; Zeng, M. The Prognostic Value of Serum C-reactive Protein-bound Serum Amyloid A in Early-stage Lung Cancer. Cancer Commun. 2015, 34, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.-J.; Ahn, J.-M.; Yoon, Y.-H.; Rhim, T.-Y.; Park, C.-S.; Park, J.-Y.; Lee, S.-Y.; Kim, J.-W.; Cho, J.-Y. Identification and Validation of SAA as a Potential Lung Cancer Biomarker and Its Involvement in Metastatic Pathogenesis of Lung Cancer. J. Proteome Res. 2011, 10, 1383–1395. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, S.-W.; Jang, E.-Y.; Kang, B.-H.; Lee, S.-W.; Sai-Anand, G.; Lee, S.-H.; Kwon, D.-H.; Kang, S.-W. Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry. J. Nanomater. 2015, 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Balayan, S.; Chauhan, N.; Chandra, R.; Jain, U. Molecular Imprinting Based Electrochemical Biosensor for Identification of Serum Amyloid A (SAA), a Neonatal Sepsis Biomarker. Int. J. Biol. Macromol. 2022, 195, 589–597. [Google Scholar] [CrossRef]
- Yamada, T.; Nomata, Y.; Sugita, O.; Okada, M. A Rapid Method for Measuring Serum Amyloid A Protein by Latex Agglutination Nephelometric Immunoassay. Ann. Clin. Biochem. 1993, 30, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zheng, X.; Yang, Z.; Sun, M.; Zhang, G.; An, X.; Pan, L.; Zhang, S. Serum Carcinoembryonic Antigen, Neuron-Specific Enolase as Biomarkers for Diagnosis of Nonsmall Cell Lung Cancer. J. Cancer Res. Ther. 2016, 12, C34–C36. [Google Scholar] [CrossRef]
- Lamy, P.J.; Grenier, J.; Kramar, A.; Pujol, J.L. Pro-Gastrin-Releasing Peptide, Neuron Specific Enolase and Chromogranin A as Serum Markers of Small Cell Lung Cancer. Lung Cancer 2000, 29, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Li, Z.; Wang, M.; He, L.; Zhang, Z. Zirconium-Porphyrin Complex as Novel Nanocarrier for Label-Free Impedimetric Biosensing Neuron-Specific Enolase. Sens. Actuators B Chem. 2020, 314, 128090. [Google Scholar] [CrossRef]
- Toma, M.; Izumi, S.; Tawa, K. Rapid and Sensitive Detection of Neuron Specific Enolase with a Polydopamine Coated Plasmonic Chip Utilizing a Rear-Side Coupling Method. Analyst 2018, 143, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zheng, P.; Kasani, S.; Wu, S.; Yang, F.; Lewis, S.; Nayeem, S.; Engler-Chiurazzi, E.B.; Wigginton, J.G.; Simpkins, J.W.; et al. Paper-Based Surface-Enhanced Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific Enolase in Blood Plasma. Anal. Chem. 2017, 89, 10104–10110. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Qian, C.; Dou, L.; Cui, F.; Chen, X. Label-Free Electrochemical Immunoassay for Neuron Specific Enolase Based on 3D Macroporous Reduced Graphene Oxide/Polyaniline Film. Anal. Biochem. 2018, 540–541, 1–8. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Ren, X.; Li, Y.; Wang, H.; Ma, H.; Wu, D.; Wei, Q. A No-washing Point-of-Care Electrochemical Biosensor Based on CuS Nanoparticles for Rapid and Sensitive Detection of Neuron-specific Enolase. Electroanalysis 2022, 34, 338–344. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical Biosensors for the Detection of Lung Cancer Biomarkers: A Review. Talanta 2020, 206, 120251. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Di, Y.; He, L.; Liao, S.; Li, D.; Liu, X. In Vitro Selection of DNA Aptamers for the Development of Chemiluminescence Aptasensor for Neuron-Specific Enolase (NSE) Detection. RSC Adv. 2019, 9, 15513–15520. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Hideshima, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-Free Detection of Tumor Markers Using Field Effect Transistor (FET)-Based Biosensors for Lung Cancer Diagnosis. Sens. Actuators B Chem. 2015, 212, 329–334. [Google Scholar] [CrossRef]
- Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl. Bio Mater. 2020, 3, 4922–4932. [Google Scholar] [CrossRef]
- Yang, G.; Xiao, Z.; Tang, C.; Deng, Y.; Huang, H.; He, Z. Recent Advances in Biosensor for Detection of Lung Cancer Biomarkers. Biosens. Bioelectron. 2019, 141, 111416. [Google Scholar] [CrossRef]
- Wu, L.; Hu, Y.; Sha, Y.; Li, W.; Yan, T.; Wang, S.; Li, X.; Guo, Z.; Zhou, J.; Su, X. An “in-Electrode”-Type Immunosensing Strategy for the Detection of Squamous Cell Carcinoma Antigen Based on Electrochemiluminescent AuNPs/g-C3N4 Nanocomposites. Talanta 2016, 160, 247–255. [Google Scholar] [CrossRef]
- Mo, G.; Qin, D.; Jiang, X.; Zheng, X.; Mo, W.; Deng, B. A Sensitive Electrochemiluminescence Biosensor Based on Metal-Organic Framework and Imprinted Polymer for Squamous Cell Carcinoma Antigen Detection. Sens. Actuators B Chem. 2020, 310, 127852. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, R.; Yuan, J.; Quan, Y.; Yang, H.; Xi, M. A Reusable Localized Surface Plasmon Resonance Biosensor for Quantitative Detection of Serum Squamous Cell Carcinoma Antigen in Cervical Cancer Patients Based on Silver Nanoparticles Array. Int. J. Nanomed. 2014, 9, 1097. [Google Scholar]
- Ciocca, D.R.; Calderwood, S.K. Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications. Cell Stress Chaperones 2005, 10, 86–103. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, H.; Cao, L. Recent Advances in Heat Shock Proteins in Cancer Diagnosis, Prognosis, Metabolism and Treatment. Biomed. Pharmacother. 2021, 142, 112074. [Google Scholar] [CrossRef]
- Mittal, S.; Rajala, M.S. Heat Shock Proteins as Biomarkers of Lung Cancer. Cancer Biol. Ther. 2020, 21, 477–485. [Google Scholar] [CrossRef]
- Guo, F.; Sigua, C.; Bali, P.; George, P.; Fiskus, W.; Scuto, A.; Annavarapu, S.; Mouttaki, A.; Sondarva, G.; Wei, S. Mechanistic Role of Heat Shock Protein 70 in Bcr-Abl–Mediated Resistance to Apoptosis in Human Acute Leukemia Cells. Blood 2005, 105, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the Hub of Protein Homeostasis: Emerging Mechanistic Insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis. Trends Biochem. Sci. 2006, 31, 164–172. [Google Scholar] [CrossRef]
- Wang, Y.; Barghi, S.M.S.; Yang, Y.; Akhavan-Sigari, R. Value of HSP90α in Lung Cancer Diagnosis and Recurrence Prediction: A Cohort Study. Oncol. Res. Treat. 2021, 44, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yuan, Z.; Zhang, H.; Wang, P.; Hao, J. Predictive Value of Serum Heat Shock Protein 90α on the Prognosis of Patients with Lung Adenocarcinoma. J. Inflamm. Res. 2023, 16, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Barlesi, F.; Besse, B.; Chu, Q.; Gandhi, L.; Kim, S.-W.; Carcereny, E.; Sequist, L.V.; Brunsvig, P.; Chouaid, C. Phase 2 Study of the HSP-90 Inhibitor AUY922 in Previously Treated and Molecularly Defined Patients with Advanced Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, M.; Guo, R.; Giaccone, G.; Liu, S.V.; Hao, Z.; Hilton, C.; Hinson, J.M., Jr.; Kris, M.G.; Orlemans, E.O.; Drilon, A. Phase 1 Multicenter Study of the HSP90 Inhibitor SNX-5422 plus Carboplatin and Paclitaxel in Patients with Lung Cancers. Lung Cancer 2021, 162, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Maniya, N.H.; Parashar, K.; Kadam, L.N.; Srivastava, D.N. Electrochemical Detection of Heat Shock Protein 70 over Cost-Effective Plastic Chip Electrode Platform. J. Taiwan Inst. Chem. Eng. 2021, 128, 11–19. [Google Scholar] [CrossRef]
- Pohanka, M. Heat Shock Protein 60 (HSP60) Detection by QCM Biosensor and Antibody Covered Gold Nanoparticles. Int. J. Electrochem. Sci. 2021, 16, 210512. [Google Scholar] [CrossRef]
- Sonuç Karaboğa, M.N.; Şimşek, Ç.S.; Sezgintürk, M.K. AuNPs Modified, Disposable, ITO Based Biosensor: Early Diagnosis of Heat Shock Protein 70. Biosens. Bioelectron. 2016, 84, 22–29. [Google Scholar] [CrossRef]
- Vijayan, V.M.; Jothi, L.; Sankar, A.R.; Nageswaran, G. Recent Advances in the Electrochemical Sensing of Lung Cancer Biomarkers. Biosens. Bioelectron. X 2022, 12, 100235. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Wan, H.; Wang, L.; Xu, W.; Zhu, S.; Liang, Y.; Zhang, B.; Lou, J.; Dai, H.; et al. High Performance, Multiplexed Lung Cancer Biomarker Detection on a Plasmonic Gold Chip. Adv. Funct. Mater. 2016, 26, 7994–8002. [Google Scholar] [CrossRef]
- Chinnappan, R.; Al Faraj, A.; Abdel Rahman, A.M.; Abu-Salah, K.M.; Mouffouk, F.; Zourob, M. Anti-VCAM-1 and Anti-IL4Rα Aptamer-Conjugated Super Paramagnetic Iron Oxide Nanoparticles for Enhanced Breast Cancer Diagnosis and Therapy. Molecules 2020, 25, 3437. [Google Scholar] [CrossRef] [PubMed]
Analyte | Transduction Method | Materials Used | Recognition Element | Linear Range | LOD | Reference |
---|---|---|---|---|---|---|
Adenosine | Electrochemical aptasensors | Indium tin oxide (ITO) coated glass electrode modified with (3-aminopropyl)triethoxysilane (APTES) and 3-thiophenecarboxylic acid (3-Th-COOH) followed by electrochemical polymerization of EDOT and ProDOT-(COOH)2 | Aptamer | 9.6 nM to 600 µM | 2.33 nM | [91] |
ATP | Electrochemical aptasensors | Graphene and gold nanoparticle (AuNP) modified carbon paste electrode (Gr–AuNP–CPE) | Aptamer | 0.114 nM–30 µM | 20 pM | [93] |
ATP | Surface plasmon resonance (SPR) aptasensors | Cytosines (C) modified aptamer in the stem part of the stem–loop aptamer | Aptamer | 0.05–500 nM | 15 pM | [97] |
Adenosine | Luminescence resonance energy transfer (LRET) aptasensors | Tb3+ chelated complex labeled DNA, quencher labeled DNA, and extended aptamer DNA | Aptamer | - | 60 µM | [99] |
Adenosine | Carbon dot nanoparticle induced chemiluminescence aptasensors | Aptamer-functionalized graphene@magnetic β-cyclodextrin polymers | Aptamer | 0.5 pM–5 nM | 0.21 pM | [100] |
Adenosine | Electrochemical aptasensor | Co-assembling of thiolated aptamer, dithothreito (DTT) l, and 6-mercaptohexanol (MCH) on the surface of the gold electrode (Au/aptamer-DTT/MCH) | Aptamer | 0.05 pM to 17 pM | 0.02 pM | [94] |
ProGRP31–98 | Electrochemiluminescence | Aptamer-modified electrode | Aptamer | 0.48–3.36 µM | 17 nM | [104] |
ProGRP31–98 | Surface plasmon resonance (SPR) aptasensors | Aptamer-modified SPR sensor surface | Aptamer | 15.6 nM–1 µM | 15.6 nM | [105] |
Pro-GRP | Photoelectrochemical sensor | Electrochemically deposited molecularly imprinted polymerized ionic liquid film on a AuNP/2D-MoS2/GCE surface | PMIMBr ionic liquid functional monomer/Pro-GRP template. | 0.02–5 ng/mL | 0.0032 ng/mL | [106] |
Pro-GRP | Electrochemical immunosensor | Modified electrodes using 3D- rGO gold nanoparticles composite (3D-rGO@Au) substrate and SiO2 nanosphere-modified detection antibody | Antibodies | 1 fg/mL to 10 ng/mL | 0.14 fg/mL | [107] |
Pro-GRP | Electrochemicalimmunosensor | Secondary antibody labeled with ferrocene and GOD) linked to nano-Au/TiO2 capture antibody immobilized on Cys/GS-Nf membrane | Antibodies | 10–500 pg/mL | 3 pg/mL | [108] |
CYFRA21-1 | Electrochemical sensors | 3,4,9,10- perylenetetracarboxylic dianhydride (PTCDA)@C60 and gold nanoparticles (Au NPs) modified indium tin oxide (ITO) electrode | Antibodies | 0.001–40 ng/ml | 0.3 pg/mL | [112] |
CYFRA21-1 | Photoelectrochemical sensor | 3,4,9,10- perylenetetracarboxylic dianhydride (PTCDA)@C60 and gold nanoparticles (Au NPs) modified indium tin oxide (ITO) electrode | Antibodies | 0.0001–4 ng/mL | 0.03 pg/mL | [112] |
CYFRA21-1 | Electrochemical immunosensors | Bovine serum albumin/anti-CYFRA-21-1/(3-aminopropyl) triethoxysilane/TiO2/indium tin oxide immunoelectrode | Antibody | 0–12 ng/mL | 0.24 ng/mL | [113] |
CYFRA21-1 | Surface plasmon resonance (SPR) | Carboxyl-functionalized molybdenum disulfide (carboxyl-MoS2) nanocomposites-modified surface plasmon resonance (SPR) sensing surface | Antibody | 0.05 pg/mL–100 ng/mL | 0.05 pg/mL | [114] |
CYFRA21-1 DNA | Electrochemical biosensor | Carboxyl-functionalized graphene oxide (GO-COOH) and copper oxide nanowires (CuO NWs) nanocomposite | cDNA probe | 1 µM to 1 pM | 0.118 pM | [116] |
CYFRA21-1 | Electronic biosensor | Reduced graphene oxide (rGO)/melamine (MEL)/antibodies/bovine serum albumin (BSA) | Antibody | 1 pg/mL to 800 ng/mL | 0.04 pg/mL | [117] |
CYFRA21-1 | Electrochemiluminescence immunosensor | Electrochemically induced atom transfer radical polymerization (eATRP) | Antibody | 1 fg/mL to 1 μg/mL | 0.8 fg/mL | [118] |
CYFRA21-1 | Immunofluorescence sensor | Carbon dots decorated with ZnO nanocomposite as a fluorescence probe | Antibody | 0.01–100 ng/mL | 0.008 ng/mL | [119] |
CYFRA21-1 | Immunochromatographic sensor | Fluorescent europium chelate nanosphere-based immunochromatographic test strip | Antibody | 0–100 ng/mL | 1.164 ng/mL | [120] |
CEA | Photoelectrochemical immunosensor | Pillar [5] arene functionalized Au and polyaniline–bismuth oxybromide heterojunction (Au@WP5/PANI-BiOBr) | Antibody | 0.01–50 ng/mL | 3 pg/mL | [126] |
CEA | Electrochemical immunosensors | Metal–organic framework (Ce-MOF) skeleton precursor coated with hyaluronic acid (HA). Silver nanoparticles (Ag NPs) and horseradish peroxidase (HRP)-modified antibody. (Ce-MoF @HA/Ag-HRP-Ab2) | Antibody | 1 pg/mL to 80 ng/mL | 0.02 pg/mL | [127] |
CEA | Electrochemical immunosensors | Magnetic-force-assisted electrochemical sandwich immunoassay (MESIA) | Antibody | 0.5–200 ng/mL | 0.5 ng/mL | [128] |
CEA | Electronic biosensor | Reduced graphene oxide (rGO)/melamine (MEL)/antibodies/bovine serum albumin (BSA) | Antibody | 1 pg/mL to 800 ng/mL | 0.148 pg/mL | [117] |
CEA | Flexible free-standing electrochemical biosensor | AuNps were deposited on the polypyrrole (PPy) nanocomposite film electrode | Aptamer | 0.1 ng/mL to 1 µg/mL | 0.033 ng/mL | [129] |
CEA | Fluorescence aptasensor | CuNps intercalated into the dsDNA duplex between CEA aptamer and cDNA aptamer | Aptamer | 0.01–2 ng/mL | 0.0065 ng/mL | [131] |
CEA | Fluorescence sensor | DNA walker cascade amplification strategy of exonuclease (Exo) III-assisted target recycling amplification (ERA). N-methylmesoporphyrin IX (NMM) assisted fluorescence signals | 10 pg/mL to 100 ng/mL | 0.12 pg/mL | [132] | |
CEA | Paper-based colorimetric lateral flow assay | Polydopamine-modified AuNps | Antibody | 0.05 to 50 ng/mL | 0.05 ng/mL | [133] |
CEA | SPR immunosensors | Biofunctionalized AuNPs | Antibody | 0.1 ng/mL | [134] | |
CA-15-3 | Electrochemical immunosensor | mercaptosuccinic acid self-assembled on gold screen-printed electrode (AuSPE) surface | Antibody | 1–1000 U/mL | 0.95 U/mL | [138] |
CA19-9 | Electrochemical immunosensor | Hybrid self-assembled membrane modified with a gold electrode | Antibody | 0.05–500 U/mL | 0.01 U/mL | [139] |
CA-125 | Fluorescence sensor | Nano-gold coated by Schiff base doped in a sol–gel matrix | Quenching efficiency of CD125 | 2 to 127 U/mL | 1.25 U/mL | [140] |
CA-125 | Fluorescence resonance energy transfer (FRET) | Carbon quantum dots (CQDs), fluorescence quenching by CA125 | Quenching efficiency of CD125 | 0.01 to 129 U/mL | 0.66 U/mL | [141] |
IL-10 | Electrochemical biosensor | An array of nanofilm semiconducting/metal electrode interfaces, functionalized with specific capture probes | Host immune response | 1 pg/mL | [143] | |
IL-10 | Phthalocyanine-based stochastic sensors | Modified graphite paste with Ni and Cu complexes of phthalocyanine (PhCN) | Ni and Cu (PhCN) complexes | 4.5 × 10−7–4.5 × 10−15 g/mL | 45 ng/mL for Ni 45 pg/mL for Cu | [144] |
IL-10 | Localized surface plasmon resonance (LSPR) | Colloidal gold (Au) nanoparticle/nanoimprinted Au strips (roll-to-roll nanoimprinting process to generate nano grating on the polyethylene terephthalate (PET) film) | Antibodies | - | - | [146] |
Il-10 | Electrochemical biosensor | Hafnium oxide was functionalized using 11-(triethoxysilyl) undecanal (TESUD) by chemical vapor deposition | Antibody | 0.1–20 pg/mL | 0.1 pg/mL | [147] |
Il-10 | Electrochemical biosensor | Polypyrrole (PPy)-modified silicon nitride (Si3N4) substrates | Antibody | 1 to 50 pg/ml | 0.347 pg/mL | [148] |
VEGF | Electrochemical immunosensor | Poly(3,4-ethylenedioxythiophene) (PEDOT)/gold nanoparticle (Au NP) composite | Antibody | 1–20 pg/mL | 0.5 pg/mL | [150] |
VEGF | Origami-paper-based electrochemical immunosensor | New methylene blue (NMB), amino-functional single-walled carbon nanotubes (NH2-SWCNTs), and gold nanoparticles (AuNPs) nanocomposite | Antibody | 0.01 ng/mL and 100 ng/mL | 10 pg/mL | [151] |
VEGF | Field-effect transistor | Polypyrrole nanotubes conjugated with anti-VEGF RNA aptamer | Aptamer | 400 fM | [153] | |
VEGF | Fluorescence-linked immunosorbent assay (FLISA) | Three-dimensional microfluidic incubation chamber | Antibody | 1 ng/mL | [152] | |
VEGF | (CL-ELISA) | H2O2-sensitive TGA-CdTe quantum dots | Antibody | 2–3500 pg/mL | 0.5 pg/mL | [154] |
VEGF | Fluorescence immunochromatographic | Quantum-dot-microsphere-labeled anti-VEGF antibody was used as a fluorescence probe | Antibody | 25 to 1600 pg/mL | 21 pg/mL | [157] |
Annexin II | Electrochemical immunosensor | Electropolymerized conducting polymer (poly-terthiophene carboxylic acid, poly-TTCA) on AuNPs/glassy carbon electrode/dendrimer/anti-Annexin II antibody and hydrazine on the Den/AuNP-modified surface | Antibody | 0.1–1 ng/mL | 0.05 ng/mL | [159] |
ENO1 | Electrochemical sandwich immunosensor | Polyethylene-glycol-modified disposable screen printer electrode | Antibody | 1 pg/mL to 1 ng/mL | 11.9 fg/mL | [163] |
Ferritin | Lateral flow immunoassay | Anti-ferritin monoclonal antibody immobilized cotton thread/gold nanoparticle trimer–antibody conjugate | Antibody | 20 to 20,000 ng/mL | 10 ng/mL | [167] |
Ferritin | Immunochromatographic assay | Anti-ferritin monoclonal antibody immobilized cotton thread/MWCNT-antibody conjugate | Antibody | 100–5000 ng/mL | 50 ng/mL | [168] |
Ferritin | Electrochemical immunoassay | Anti-ferritin monoclonal antibody immobilized cotton thread/gold nanorod and antibody conjugates (GNR-dAb) | Antibody | 5–5000 ng/mL | 1.58 ng/mL | [169] |
Ferritin | Field-effect transistor | Horn-like polycrystalline silicon nanowire field-effect transistor (poly-Si NW FET) | Antibody | 50 pg/mL–500 ng/mL | 50 pg/mL | [171] |
Ferritin | Electrochemical immunosensor | Biosurfactant stabilized/functionalized tungsten disulfide (WS2-B) quantum dots (QDs). CV and DPV methods are used | Antibody | 10–1500 ng/mL | 6.048 ng/mL (CV) 3.8 ng/mL (DPV) | [172] |
Ferritin | Electrochemical immunosensor | Immunoprecipitation and electrochemical signaling principle in microfabricated electrodes | Antibody | 0.1 ug/mL–1 mg/mL | [173] | |
Ferritin | Paper-based electrochemical immunosensor | GO modified working electrode by inkjet printing | Antibody | of 1 to 1000 ng/mL | 0.19 ng/mL | [175] |
Ferritin | Lab-on-a-chip/electrochemical immunosensor | Amine-functionalized GO-modified screen printing electrode (SPE)/submerged in microfluidic flow cell | Antibody | 7.81 to 500 ng/mL | 0.413 ng/mL | [176] |
Nitrated ceruloplasmin | Lateral flow test strip fluorescence assay | Quantum-dot-conjugated antibody as a fluorescent probe | Antibody | 1 ng/mL–10 µg/mL | 1 ng/mL 8 ng/ml | [181] |
FBP | Quartz crystal microbalance biosensor | Folate-BSA conjugate adsorbed on the gold-coated quartz sensor | 30 nM | [183] | ||
FBP | Photoelectrochemical | Polydopamine (PDA) coated TiO2 nanotube array/amino-group-terminated 8-arm poly(ethylene glycol) (PEG)-Folic acid | Folic acid | 0.001 to 500 ng/mL | 0.0002 ng/mL | [184] |
AFP | Electrochemical immunosensor | Carbon nanotubes (CNTs) modified glassy carbon electrode/HRP functionalized gold nanorods (AuNR) composite (HRPeAuNRs) | Antibody | 0.1 to 100 ng/mL | 30 pg/mL | [185] |
AFP | Graphene field-effect transistor (G-FET) | 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) functionalized G-FET | Antibody | 0.1 ng/mL | [186] | |
chitosan, glutaraldehyde (GA) and AFP antigen layer-by-layer coating on the glassy carbon electrode by the surface imprinting procedure in the place of the antibody (AFP-MIP) | AFP-MIP | 0.8 ng/mL to 10 μg/mL | 96 pg/mL | [187] | ||
AFP | Fluorescent immunosensor | CuNp-induced reaction between a weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol produces a strongly fluorescent compound | Antibody | 0.025 to 5 ng/mL | 12 pg/mL | [188] |
AFP | Metal-enhanced fluorescence sensor | Gold-capped magnetic (Fe3O4) nanoparticles (GMPs)/enhanced fluorescence signal | Gold-capped magnetic (Fe3O4) nanoparticles (GMPs) | 0.05 to 1000 ng/mL | 0.38 pg/mL | [189] |
AFP | Electrochemical aptasensor | Screen-printed graphene–carbon paste electrode (SPGE) modified with Platinum nanoparticles on carboxylated-graphene oxide (PtNPs/GO-COOH) | Antibody | 3 to 30 ng/mL | 1.22 ng/mL | [193] |
Methylated DNA | Electrochemical biosensor | Stem–loop structured DNA probe labeled with thiol and methylene blue | cDNA probe | - | 4 fM | [42] |
p53 gene methylation | Electrochemical sensor | Peptide nucleic acid (PNA) | cPeptide nucleic acid (PNA) | 50 pM–96 nM | 18 pM | [44] |
Gene-specific DNA methylation | Electrochemical sensor | Fe3O4/Ntrimethyl chitosan/gold (Fe3O4/TMC/Au) nanocomposite for tagging the DNA probe and polythiophene as sensing element | cDNA probe | 10 fM–5 nM | 2 fM | [45] |
Site Specific DNA methylation | Electrochemical sensor | Anti-5-methylcytosine antibody was immobilized with GO/horseradish peroxidase-labeled IgG (HRP-IgG) | Antibody | 1 fM–10 nM | 1 fM | [49] |
DNA methylation | Colorimetry | NaCl-induced AuNp aggregation | Complementary DNA probe | 80 fM to 80 pM | 80 fM | [51] |
Cytosine methylation sites | FRET | FRET between upconversion nanoparticles (UCNP) and gold nanorods (AuNR) | Complementary DNA probe | - | 7 pM | [59] |
MTase activity | Fluorescence sensor | SYBR Green-1/dsDNA interaction in the presence of carbon nanoparticles | Intercalation of SYBR Green1in dsDNA duplex | 0.5–100 u/mL | 0.1 u/mL | [61] |
methylated DNA | Fluorescence sensor | Capped CdTe quantum dots as a fluorescence prob | quantum dot intercalation into unmethylated DNA | 0.1 nM–1 µM | 60 pM | [62] |
Mir10b Mir16 Mir191 | FRET sensors | Competitive DNA displacement: DNA labeled with FAM-labeled cDNA/D/short DNA labeled fluorescence quencher | cDNA/MiR hybridization | 0.2–250 nM | MiR10b: 97 pM, MiR16; 10, Mir 191: 1 pM | [70] |
MiR21 and miR205 | Personal glucometer | Duplex-specific nuclease-assisted CRISPR-Cas12a/sucrose to glucose/Glucometer | Complementary DNA | 10 pM–100 nM | MiR21; 2.4 pM Mir205: 1.1 nM | [71] |
MiR21, MiR 141 and Let-7a | Digital flow cytometry | Digital flow cytometry-ligation rolling circle amplification (dFC-LRCA)/miR into nono-flower balls (NFB) | Padlock DNA probe | 10–4000 pM | miR21: 3.09 pM, MiR141: 1.58 pM, Let-7a: 1.34 pM | [72] |
miR-155 | Electrochemical sensor | AuNps modified screen-printed carbon electrode (SPCE) was an immobilized hairpin DNA probe | Complementary DNA | - | 3.57 fM | [77] |
miR-155, miR-21, and miR-16 | Electrochemical | Reduced graphene oxide/poly(2-aminobenzylamine)/gold nanoparticles/porous hollow silver–gold nanoparticles (PHSGNPs) tagged with different metal ions | Complementary DNA | 1 fM to 10 nM | MiR-155:0.98 fM, MiR21: 3.58 fM, MiR16: 0.25 fM | [79] |
SAA1 | Localized surface plasmon resonance (LSPR) and interferometry | Nanoporous anodic aluminum oxide (AAO) generated by two-step electrochemical anodization process. Immobilized SAA1 antibody on the gold coated AAO surface | Antibody | 10 ag–1 µg/mL | 100 ag/mL | [201] |
SAA | Electrochemical biosensor | Multi-walled carbon nanotubes (MWCNTs), manganese oxide nanospheres (MnO2NSs), and cobalt oxide nanoparticles (Co3O4NPs) nanocomposite coated over the screen-printed electrode (SPE) by molecularly imprinted polymer technique | Molecularly imprinted polymer (MIP) for SAA | 0.01 pM–1 µM | 0.01 pM | [202] |
SAA | Nephelometric immunoassay | Anti-SAA antibody-coated latex agglutination | Antibody | 0.17–10 mg/mL | - | [203] |
NSE | Electrochemical | Interaction of anti-NSE antibody with 5,10,15,20- tetra(4-aminophenyl) porphyrin (Zr-TAPP) complex. | Antibody | 100 fg–2 ng/mL | 7.1 fg/mL | [206] |
NSE | Surface plasmon-enhanced fluorescence (SPF) | A mussel-inspired polydopamine (PDA) coated disposable silver plasmonic functionalized chip | Antibody | 1 ng/mL to 100 ng/mL | 0.5 ng/mL in buffer 1.4 ng/mL in human serum | [207] |
NSE | Paper-based lateral flow strip (PLFS) and surface-enhanced Raman scattering (SERS) | Au nanostar, Raman Reporter, silica sandwich nanoparticles integrated nanocomposite | Antibody | 1 ng/mL to 0.05 mg/mL | 0.08 ng/mL | [208] |
NSE | Electrochemical | Anti-Nse antibody immobilized on three-dimensional macroporous reduced graphene oxide/polyaniline (3DM rGO/PANI) film | Antibody | 0.5 pg/mL to 10 ng/mL | 0.1 pg/mL | [209] |
NSE | Electrochemical | Separation of CuS-Ab2 filter from the large-size Fe3O4-Ab1/NSE/CuS-Ab2 immunocomplex; the free CuS-Ab2 undergo electron transfer processes between Cu2+ and Cu+ at the gold electrode surface and generate current | Antibody | 100 fg/mL to 50 ng/mL | 33 fg/mL | [210] |
NSE | Surface plasmon resonance (SPR) based aptasensor | Anti-Nse aptamer immobilized on the SPR sensor chip | Aptamer | 3.9 nM to 1 µM | 3.9 nM | [105] |
NSE | Chemiluminescent aptasensor | NSE complexed aptamer immobilized on the magnetic beads/primary mouse NSE antibody and alkaline phosphatase (ALP) labeled secondary goat antimouse antibodies/ALP triggered AMPPD chemiluminescence | Aptamer/antibody | 1 to 100 ng/mL | 0.1 ng/mL | [212] |
NSE | Field-effect transistor (FET) | Anti-NSE antibody immobilized FET sensor chip | Antibody | 10 ng/mL | [213] | |
SCCA | Electrochemiluminescence (ECL) | Magnetic graphene oxide (Fe3O4@GO)/AuNPs/g-C3N4 | Antibody | 0.001 to 10 ng/mL | 0.4 pg/mL | [216] |
SCCA | Electrochemiluminescence (ECL) | Molecular imprinting by lectropolymerization of ZnSe Qds encapsulated in Fe(III)-MIL-88B-NH2 and generated Fe(III)-MIL-88B H2@ZnSeQDs | Antibody | 0.0001 to 100 ng/mL | 31 fg/mL | [217] |
SCCA | Reusable LSPR | Triangle-shaped silver nanoparticle array/nanosphere lithography/self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (MUA) | Antibody | 0.1 to 1000 pM | 0.128 pM | [218] |
HSA70 | Electrochemical immunosensor | Gold-coated plastic chip electrode (PCE) platform | Antibody | 0.01–1000 ng/mL | 3.5 pg/mL | [229] |
HSP60 | Quartz crystal microbalance (QCM) | QCM coated with HSP60 specific capture antibody and detection antibody of modified AuNps | Antibody | 10 pg/mL–100 µg/mL | 83 pg/mL | [230] |
HSP70 | Electrochemical | AuNp modified ITO coated polyethylene terephthalate (PET) electrodes | Antibody | 1–166 fg/mL | 0.0618 fg/mL | [231] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnappan, R.; Mir, T.A.; Alsalameh, S.; Makhzoum, T.; Alzhrani, A.; Alnajjar, K.; Adeeb, S.; Al Eman, N.; Ahmed, Z.; Shakir, I.; et al. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers 2023, 15, 3414. https://doi.org/10.3390/cancers15133414
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, Adeeb S, Al Eman N, Ahmed Z, Shakir I, et al. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers. 2023; 15(13):3414. https://doi.org/10.3390/cancers15133414
Chicago/Turabian StyleChinnappan, Raja, Tanveer Ahmad Mir, Sulaiman Alsalameh, Tariq Makhzoum, Alaa Alzhrani, Khalid Alnajjar, Salma Adeeb, Noor Al Eman, Zara Ahmed, Ismail Shakir, and et al. 2023. "Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review" Cancers 15, no. 13: 3414. https://doi.org/10.3390/cancers15133414
APA StyleChinnappan, R., Mir, T. A., Alsalameh, S., Makhzoum, T., Alzhrani, A., Alnajjar, K., Adeeb, S., Al Eman, N., Ahmed, Z., Shakir, I., Al-Kattan, K., & Yaqinuddin, A. (2023). Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers, 15(13), 3414. https://doi.org/10.3390/cancers15133414