Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
- A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies achieved an accuracy of 0.901 using Support Vector Machine (SVM) [24].
- A feasibility study utilized a deep convolutional neural network (CNN) with transfer learning to predict rectum toxicity in cervical cancer radiotherapy, achieving an AUC of 0.89 [14].
- An observational study predicting radiotherapy impact on late bladder toxicity in prostate cancer patients used univariate logistic regression, achieving an AUC of 0.626 [6].
- Various studies have focused on predicting urinary toxicity in prostate cancer radiotherapy using different models, such as the international prostate symptoms score model, logistic and Cox regression, the edited nearest neighbor algorithm together with the regularized discriminant analysis classifier, and others [16,18,19].
- In radiotherapy for cervical cancer, radiomics analysis of 3D dose distributions has been employed to predict toxicity rates, achieving AUCs ranging from 0.57 to 0.89 [13].
2. Materials and Methods
2.1. Patient Selection
2.2. Treatment
2.3. Data
2.4. Statistical Method
2.5. Deep Learning Model for Permutation Feature Analysis
2.6. Permutation Feature Importance Analysis
2.7. Lightweight Deep Learning Model
2.8. Performance Comparison
3. Results
3.1. General Study Characteristics
3.2. Logistic Regression Results
3.3. Permutation Feature Importance: Permutation Analysis
3.4. Deep Learning Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chihikara, B.S.; Parang, K. Global cancer statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Eifel, P.J.; Winter, K.; Morris, M.; Levenback, C.; Grigsby, P.W.; Cooper, J.; Rotman, M.; Gershenson, D.; Mutch, D.G. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of Radiation Therapy Oncology Group trial (rtog) 90-01. J. Clin. Oncol. 2004, 22, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Collaboration CfCCM-A. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: A systematic review and meta-analysis of individual patient data from 18 randomized trials. J. Clin. Oncol. 2008, 26, 5802–5812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung Uk, L.; Young Ae, K.; Young-Ho, Y.; Yeon-Joo, K.; Myong Cheol, L.; Sang-Yoon, P.; Sang-Soo, S.; Ji Eun, P.; Joo-Young, K. General health status of long-term cervical cancer survivors after radiotherapy. Strahlenther. Onkol. 2017, 193, 543–551. [Google Scholar] [CrossRef]
- Manea, E.; Escande, A.; Bockel, S.; Khettab, M.; Dumas, I.; Lazarescu, I.; Fumagalli, I.; Morice, P.; Deutsch, E.; Haie-Meder, C.; et al. Risk of late urinary complications following image guided adaptive brachytherapy for locally advanced cervical cancer: Refining bladder dose-volume parameters. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 411–420. [Google Scholar] [CrossRef]
- Catucci, F.; Alitto, A.R.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Martino, A.; Mazzarella, C.; Fionda, B.; Frascino, V.; Piras, A.; et al. Predicting radiotherapy impact on late bladder toxicity in prostate cancer patients: An observational study. Cancers 2021, 13, 175. [Google Scholar] [CrossRef]
- Carillo, V.; Cozzarini, C.; Rancati, T.; Avuzzi, B.; Botti, A.; Borca, V.C.; Cattari, G.; Civardi, F.; Esposti, C.D.; Franco, P.; et al. Relationships between bladder dose–volume/surface histograms and acute urinary toxicity after radiotherapy for prostate cancer. Radiother. Oncol. 2014, 111, 100–105. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.J.; Kim, J.Y.; Lim, Y.K.; Jeong, C.; Jeong, J.; Kim, M.; Lim, M.C.; Seo, S.S.; Park, S.Y. Toxicities and dose–volume histogram parameters of mri-based brachytherapy for cervical cancer. Brachytherapy 2017, 16, 116–125. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, J.Y.; Kim, T.H.; Lim, Y.K.; Yoon, M.G.; Joo, J.N.; Park, S.Y. Dosimetric evaluation of magnetic resonance imaging-based intracavitary brachytherapy for cervical cancer. Technol. Cancer Res. Treat. 2014, 13, 243–251. [Google Scholar] [CrossRef]
- Thor, M.; Bentzen, L.; Hysing, L.B.; Ekanger, C.; Helle, S.I.; Karlsdóttir, Á.; Muren, L.P. Prediction of rectum and bladder morbidity following radiotherapy of prostate cancer based on motion-inclusive dose distributions. Radiother. Oncol. 2013, 107, 147–152. [Google Scholar] [CrossRef]
- Ospina, J.D.; Zhu, J.; Chira, C.; Bossi, A.; Delobel, J.B.; Beckendorf, V.; Dubray, B.; Lagrange, J.L.; Correa, J.C.; Simon, A.; et al. Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Acosta, O.; Drean, G.; Ospina, J.D.; Simon, A.; Haigron, P.; Lafond, C.; de Crevoisier, R. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys. Med. Biol. 2013, 58, 2581–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, F.; Bourbonne, V.; Visvikis, D.; Miranda, O.; Gujral, D.M.; Gouders, D.; Dissaux, G.; Pradier, O.; Tixier, F.; Jaouen, V.; et al. Radiomics analysis of 3d dose distributions to predict toxicity of radiotherapy for cervical cancer. J. Pers. Med. 2021, 11, 398. [Google Scholar] [CrossRef]
- Zhen, X.; Chen, J.; Zhong, Z.; Hrycushko, B.; Zhou, L.; Jiang, S.; Albuquerque, K.; Gu, X. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: A feasibility study. Phys. Med. Biol. 2017, 62, 8246–8263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, H.; Zhong, Z.; Wang, Z.; Hrycushko, B.; Zhou, L.; Jiang, S.; Albuquerque, K.; Gu, X.; Zhen, X. Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy. Radiat. Oncol. 2018, 13, 125. [Google Scholar] [CrossRef]
- Improta, I.; Palorini, F.; Cozzarini, C.; Rancati, T.; Avuzzi, B.; Franco, P.; Degli Esposti, C.; Del Mastro, E.; Girelli, G.; Iotti, C.; et al. Bladder spatial-dose descriptors correlate with acute urinary toxicity after radiation therapy for prostate cancer. Phys. Med. 2016, 32, 1681–1689. [Google Scholar] [CrossRef]
- Mylona, E.; Acosta, O.; Lizee, T.; Lafond, C.; Crehange, G.; Magné, N.; Chiavassa, S.; Supiot, S.; Ospina Arango, J.D.; Campillo-Gimenez, B.; et al. Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 343–354. [Google Scholar] [CrossRef]
- Mylona, E.; Lebreton, C.; Fontaine, P.; Supiot, S.; Magne, N.; Crehange, G.; de Crevoisier, R.; Acosta, O. Comparison of machine learning algorithms and oversampling techniques for urinary toxicity prediction after prostate cancer radiotherapy. In Proceedings of the 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; IEEE Publications. IEEE: Piscataway, NJ, USA, 2019; Volume 2019, pp. 964–971. [Google Scholar] [CrossRef]
- Mylona, E.; Cicchetti, A.; Rancati, T.; Palorini, F.; Fiorino, C.; Supiot, S.; Magne, N.; Crehange, G.; Valdagni, R.; Acosta, O.; et al. Local dose analysis to predict acute and late urinary toxicities after prostate cancer radiotherapy: Assessment of cohort and method effects. Radiother. Oncol. 2020, 147, 40–49. [Google Scholar] [CrossRef]
- Hathout, L.; Folkert, M.R.; Kollmeier, M.A.; Yamada, Y.; Cohen, G.N.; Zelefsky, M.J. Dose to the bladder neck is the most important predictor for acute and late toxicity after low-dose-rate prostate brachytherapy: Implications for establishing new dose constraints for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Pella, A.; Cambria, R.; Riboldi, M.; Jereczek-Fossa, B.A.; Fodor, C.; Zerini, D.; Torshabi, A.E.; Cattani, F.; Garibaldi, C.; Pedroli, G.; et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med. Phys. 2011, 38, 2859–2867. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Egleston, B.; Alcantara, P.; Li, L.; Pollack, A.; Horwitz, E.M.; Buyyounouski, M.K. A novel method for predicting late genitourinary toxicity after prostate radiation therapy and the need for age-based risk-adapted dose constraints. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, C.; Kelly, C.; Thirion, P.; Fitzpatrick, K.; Armstrong, J. A method for the prediction of late organ-at-risk toxicity after radiotherapy of the prostate using equivalent uniform dose. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yen, A.; Zhou, Z.; Shen, C.; Albuquerque, K.; Hrycushko, B. A machine-learning–based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy 2019, 18, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Eftekhar, B.; Mohammad, K.; Ardebili, H.E.; Ghodsi, M.; Ketabchi, E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med. Inf. Decis. Mak. 2005, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, K.; Purushotham, S.; Jiang, B.; Mandelbaum, R.S.; Takiuchi, T.; Liu, Y.; Roman, L.D. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am. J. Obstet. Gynecol. 2019, 220, 381.e1–381.e14. [Google Scholar] [CrossRef]
- Abouzari, M.; Rashidi, A.; Zandi-Toghani, M.; Behzadi, M.; Asadollahi, M. Chronic subdural hematoma outcome prediction using logistic regression and an artificial neural network. Neurosurg. Rev. 2009, 32, 479–484. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef]
- Moore, N.S.; McWilliam, A.; Aneja, S. Bladder cancer radiation oncology of the future: Prognostic modelling, radiomics, and treatment planning with artificial intelligence. Semin. Radiat. Oncol. 2023, 33, 70–75. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, S.; Valdes, G.J.M.P. Machine learning for radiation outcome modeling and prediction. Med. Phys. 2020, 47, e178–e184. [Google Scholar] [CrossRef]
- Luo, Y.; Tseng, H.H.; Cui, S.; Wei, L.; Ten Haken, R.K.; El Naqa, I. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open 2019, 1, 20190021. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (rtog) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from gynaecological (GYN) gec-estro working Group (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.; Barillot, I.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from gynaecological (gyn) gec estro working group (ii): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.C.; Shin, K.H.; Park, S.Y.; Kim, J.Y. 3D CT-based high-dose-rate brachytherapy for cervical cancer: Clinical impact on late rectal bleeding and local control. Radiother. Oncol. 2010, 97, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kim, J.-Y.; Kim, Y.-J.; Yoo, H.J.; Kim, S.H.; Kim, S.-K.; Lim, M.C.; Kang, S.; Seo, S.-S.; Park, S.-Y. The size of the metastatic lymph node is an independent prognostic factor for the patients with cervical cancer treated by definitive radiotherapy. Radiother. Oncol. 2013, 108, 168–173. [Google Scholar] [CrossRef]
- Koom, W.S.; Sohn, D.K.; Kim, J.-Y.; Kim, J.W.; Shin, K.H.; Yoon, S.M.; Kim, D.Y.; Yoon, M.; Shin, D.; Park, S.Y. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: Preliminary demonstration of correlation between dose–volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1446–1454. [Google Scholar] [CrossRef]
- Noh, J.M.; Park, W.; Kim, Y.S.; Kim, J.-Y.; Kim, H.J.; Kim, J.; Kim, J.H.; Yoon, M.S.; Choi, J.H.; Yoon, W.S. Comparison of clinical outcomes of adenocarcinoma and adenosquamous carcinoma in uterine cervical cancer patients receiving surgical resection followed by radiotherapy: A multicenter retrospective study (KROG 13-10). Gynecol. Oncol. 2014, 132, 618–623. [Google Scholar] [CrossRef]
- Kingma, D.P.; Adam, B.J. A method for stochastic optimization. arXiv 2014, arXiv:14126980. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Uzair, M.; Noreen, J. Effects of hidden layers on the efficiency of neural networks. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ljubicic, M.L.; Madsen, A.; Juul, A.; Almstrup, K.; Johannsen, T.H. The application of principal component analysis on clinical and biochemical parameters exemplified in children with congenital adrenal hyperplasia. Front. Endocrinol. 2021, 12, 652888. [Google Scholar] [CrossRef]
- Zhang, Z.; Castelló, A. Principal components analysis in clinical studies. Ann. Transl. Med. 2017, 5, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, U.C.; Rai, S.; Kulkarni, A.; Gupta, A. Prediction of outcome of treatment of acute severe ulcerative colitis using principal component analysis and artificial intelligence. JGH Open 2020, 4, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.; Kim, H.; Kim, J. Deep learning in radiation oncology. Prog. Med. Phys. 2020, 31, 111–123. [Google Scholar] [CrossRef]
- Appelt, A.L.; Elhaminia, B.; Gooya, A.; Gilbert, A.; Nix, M. Deep learning for radiotherapy outcome prediction using dose data–a review. Clin. Oncol. (R Coll. Radiol.) 2022, 34, e87–e96. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.; Dou, D. Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond. Knowl. Inf. Syst. 2022, 64, 3197–3234. [Google Scholar] [CrossRef]
Layer Type | In Features | Out Features | Bias | Batch Normalization | Activation Function |
---|---|---|---|---|---|
Fully connected layer | 16 | 36 | FALSE | TRUE | * Leaky ReLU |
Fully connected layer | 36 | 72 | FALSE | TRUE | Leaky ReLU |
Fully connected layer | 72 | 144 | FALSE | TRUE | Leaky ReLU |
Fully connected layer | 144 | 72 | FALSE | TRUE | Leaky ReLU |
Fully connected layer | 72 | 36 | FALSE | TRUE | Leaky ReLU |
Fully connected layer | 36 | 1 | FALSE | TRUE | Sigmoid |
Variable | Total (N = 281) | Training Set (N = 199) | Test Set (N = 82) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
AGE | mean ± std | 62.1 | ±14.0 | 63.4 | ±13.4 | 61.5 | ±14.2 | 0.2920 (3) | |
Pathology | 1; | squamous | 224 | (79.7%) | 63 | (76.8%) | 161 | (80.9%) | 0.4708 (1) |
2; | adenoca | 23 | (8.2%) | 6 | (7.3%) | 17 | (8.5%) | ||
3; | adenosquamous | 10 | (3.6%) | 5 | (6.1%) | 5 | (2.5%) | ||
4; | Other | 24 | (8.5%) | 8 | (9.8%) | 16 | (8.0%) | ||
FIGO stage | 1; | Ia1, Ia2, Ib1, Ib2 | 53 | (18.9%) | 17 | (20.7%) | 36 | (18.1%) | 0.7285 (1) |
2; | IIa1, IIa2, Iib | 161 | (57.3%) | 44 | (53.7%) | 117 | (58.8%) | ||
3; | IIIa, IIIb, Iva, Ivb | 67 | (23.8%) | 21 | (25.6%) | 46 | (23.1%) | ||
TNM stage | 1; | T1a1, T1a2, T1b1, T1b2 | 56 | (19.9%) | 17 | (20.7%) | 39 | (19.6%) | 0.9752 (1) |
2; | T2a1, T2a2, T2b | 184 | (65.5%) | 53 | (64.6%) | 131 | (65.8%) | ||
3; | T3a, T3b, T4 | 41 | (14.6%) | 12 | (14.6%) | 29 | (14.6%) | ||
CCRT | 0; | RT alone | 22 | (7.8%) | 4 | (4.9%) | 18 | (9.0%) | 0.2372 (1) |
1; | CCRT | 259 | (92.2%) | 78 | (95.1%) | 181 | (91.0%) | ||
Concurrent chemotherapy regimen | 1; | cisplatin | 231 | (89.2%) | 72 | (92.3%) | 159 | (87.8%) | 0.7583 (2) |
(CCRT 259 case) | 2; | 5FU + cisplatin | 3 | (1.2%) | 0 | (0.0%) | 3 | (1.7%) | |
3; | carboplatin | 19 | (7.3%) | 5 | (6.4%) | 14 | (7.7%) | ||
4; | other | 6 | (2.3%) | 1 | (1.3%) | 5 | (2.8%) | ||
Number of concurrent chemotherapy cycle | 0; | Cycle 3 or less | 26 | (10.0%) | 7 | (9.0%) | 19 | (10.5%) | 0.7083 (1) |
(CCRT 259 case) | 1; | Cycle 3 or more | 233 | (90.0%) | 71 | (91.0%) | 162 | (89.5%) | |
Adjuvant chemotherapy | 0; | No | 260 | (92.5%) | 79 | (96.3%) | 181 | (91.0%) | 0.1185 (1) |
1; | Yes | 21 | (7.5%) | 3 | (3.7%) | 18 | (9.0%) | ||
Tumor size (cm)(MRI axial) | median (min–max) | 4.2 | (1.3–10) | 4.3 | (2.3–8.5) | 4.2 | (1.3–10) | 0.6955 (3) | |
EBRT total dose EQD2(3) (Gy) | median (min–max) | 48.4 | (20–73.1) | 48.4 | (43.2–68.3) | 48.4 | (20–73.1) | 0.2765 (3) | |
GTV D100 (cGy) | median (min–max) | 570.5 | (112.3–1336) | 552.4 | (194–1187.8) | 584.2 | (112.3–1336) | 0.1644 (3) | |
BPICRU EQD2(3) (Gy) | median (min–max) | 23.5 | (0–93.2) | 26.9 | (0–93.2) | 22.5 | (0–90.7) | 0.1775 (3) | |
BD0.1cc EQD2(3) (Gy) | median (min–max) | 58.3 | (12.6–202.4) | 59.7 | (25–174) | 57.6 | (12.6–202.4) | 0.2659 (3) | |
BD1cc EQD2(3) (Gy) | median (min–max) | 46.1 | (10–141.7) | 48.9 | (20.5–111.1) | 45.6 | (10–141.7) | 0.1906 (3) | |
BD2cc EQD2(3) (Gy) | median (min–max) | 41.3 | (6.3–120.5) | 43.6 | (9.8–97.8) | 39.8 | (6.3–120.5) | 0.2492 (3) | |
BD5cc EQD2(3) (Gy) | median (min–max) | 33.5 | (1.3–91.5) | 35.2 | (3.8–78.9) | 33 | (1.3–91.5) | 0.1944 (3) |
Variable | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |||
AGE | 0.997 (0.975–1.019) | 0.803 | ||||
Pathology | 1; | squamous | 1 (ref) | |||
2; | adenoca | 0.769 (0.238–2.483) | 0.661 | |||
3; | adenosquamous | 1.667 (0.270–10.303) | 0.583 | |||
4; | Other | 0.357 (0.078–1.634) | 0.185 | |||
FIGO stage | 1; | Ia1, Ia2, Ib1, Ib2 | 1 (ref) | |||
2; | IIa1, IIa2, Iib | 0.937 (0.406–2.164) | 0.879 | |||
3; | IIIa, IIIb, Iva, Ivb | 1.024 (0.388–2.706) | 0.962 | |||
TNM stage | 1; | T1a1, T1a2, T1b1, T1b2 | 1 (ref) | |||
2; | T2a1, T2a2, T2b | 0.820 (0.375–1.794) | 0.620 | |||
3; | T3a, T3b, T4 | 0.716 (0.241–2.127) | 0.548 | |||
CCRT | 0; | RT alone | 1 (ref) | |||
1; | CCRT | 1.336 (0.42–4.252) | 0.624 | |||
Concurrent chemotherapy regimen | 1; | cisplatin | 1 (ref) | |||
(CCRT 181 case) | 2; | 5FU + cisplatin | 5.066 (0.448–57.267) | 0.190 | ||
3; | carboplatin | 0.422 (0.091–1.962) | 0.271 | |||
4; | other | 0.633 (0.069–5.821) | 0.687 | |||
Concurrent chemotherapy cycle | 0; | Cycle 3 or less | 1 (ref) | 1 (ref) | ||
(CCRT 181 case) | 1; | Cycle 3 or more | 0.481 (0.181–1.277) | 0.142 | 0.440 (0.162–1.194) | 0.107 |
Adjuvant chemotherapy | 0; | No | 1 (ref) | |||
1; | Yes | 1.385 (0.493–3.897) | 0.537 | |||
Tumor size (cm)(MRI axial) | 1.011 (0.828–1.234) | 0.918 | ||||
EBRT total dose EQD2(3) (Gy) | 1.006 (0.951–1.065) | 0.831 | ||||
GTV D100 (cGy) | 1.001 (0.999–1.003) | 0.186 | 1.002 (1.000–1.004) | 0.136 | ||
BPICRU EQD2(3) (Gy) | 1.005 (0.985–1.025) | 0.651 | ||||
BD0.1cc EQD2(3) (Gy) | 1.008 (0.995–1.020) | 0.232 | ||||
BD1cc EQD2(3) (Gy) | 1.012 (0.993–1.031) | 0.213 | ||||
BD2cc EQD2(3) (Gy) | 1.016 (0.996–1.036) | 0.114 | 1.047 (0.939–1.168) | 0.406 | ||
BD5cc EQD2(3) (Gy) | 1.018 (0.993–1.043) | 0.163 | 0.961 (0.841–1.100) | 0.566 |
Model | Accuracy | Precision | Recall | F1-Score | * AUROC |
---|---|---|---|---|---|
Statistical model | 0.85 | 0.08 | 0.5 | 0.14 | 0.43 |
Deep learning model: fold 1 | 0.78 | 0.62 | 0.38 | 0.47 | 0.76 |
Deep learning model: fold 2 | 0.73 | 0.85 | 0.35 | 0.50 | 0.86 |
Deep learning model: fold 3 | 0.76 | 0.69 | 0.36 | 0.47 | 0.84 |
Deep learning model: fold 4 | 0.70 | 0.69 | 0.30 | 0.42 | 0.83 |
Deep learning model: fold 5 | 0.88 | 0.54 | 0.64 | 0.58 | 0.77 |
Deep-learning model: voting method (threshold = 3) | 0.91 | 0.85 | 0.69 | 0.76 | 0.81 |
Leightweight deep learning model: fold 1 | 0.93 | 0.99 | 0.83 | 0.92 | 0.93 |
Leightweight deep learning model: fold 2 | 0.88 | 0.94 | 0.81 | 0.87 | 0.88 |
Leightweight deep learning model: fold 3 | 0.90 | 0.99 | 0.81 | 0.89 | 0.90 |
Leightweight deep learning model: fold 4 | 0.97 | 0.94 | 0.99 | 0.98 | 0.97 |
Leightweight deep learning model: fold 5 | 0.91 | 0.98 | 0.85 | 0.86 | 0.89 |
Deep-learning model: voting method (threshold = 3) | 0.93 | 0.94 | 0.88 | 0.90 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, W.; Han, M.; Jeong, S.; Oh, E.S.; Lee, S.U.; Lee, S.B.; Shin, D.; Lim, Y.K.; Jeong, J.H.; Kim, H.; et al. Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients. Cancers 2023, 15, 3463. https://doi.org/10.3390/cancers15133463
Cheon W, Han M, Jeong S, Oh ES, Lee SU, Lee SB, Shin D, Lim YK, Jeong JH, Kim H, et al. Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients. Cancers. 2023; 15(13):3463. https://doi.org/10.3390/cancers15133463
Chicago/Turabian StyleCheon, Wonjoong, Mira Han, Seonghoon Jeong, Eun Sang Oh, Sung Uk Lee, Se Byeong Lee, Dongho Shin, Young Kyung Lim, Jong Hwi Jeong, Haksoo Kim, and et al. 2023. "Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients" Cancers 15, no. 13: 3463. https://doi.org/10.3390/cancers15133463
APA StyleCheon, W., Han, M., Jeong, S., Oh, E. S., Lee, S. U., Lee, S. B., Shin, D., Lim, Y. K., Jeong, J. H., Kim, H., & Kim, J. Y. (2023). Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients. Cancers, 15(13), 3463. https://doi.org/10.3390/cancers15133463