Dilemmas in the Clinical Management of pT1 Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Suboptimal Histological Criteria Lead to Overtreatment
2.1. Risk Factors with Consensus
- ○
- Lymphatic and/or vascular invasion: LVI is the risk factor most strongly correlated with LNM and poor outcome [14,15,16] but is also known for high interobserver variability [17]. LVI can be assessed using hematoxylin and eosin staining with or without immunohistochemistry. A meta-analysis reported a clear benefit of using immunohistochemistry for predicting LMN, with an increase in the detection of LVI from 14.3% to 35.7%, but it is used only in doubtful cases in clinical practice [18];
- ○
- Poorly differentiated histology: Similar to LVI, PD is an established risk factor, with recent evidence suggesting that it is an independent risk factor associated with poor prognosis [16]. As with LVI, PD has high interobserver variability, with the lowest value of kappa (0.07) in a concordance study of histological assessment in pT1 CRC [19]. Due to highly variable reporting of the tumor grade according to the three-tiered system (G1–G3), the latest version of the WHO classification [20] recommends a two-tiered system, where G1 and G2 are combined as low grade and G3 is considered high grade. This change is based on the similar prognosis for G1 and G2 tumors and improved reproducibility. However, variability remains in how this new system is applied in clinical practice [21,22];
- ○
- Tumor budding: Defined as a single tumor cell or cell cluster of four tumor cells or less extending at the invasive margin of the cancer. TB is an established predictor of LNM in pT1 CRC according to the guidelines [23]. Nevertheless, it is reported in less than 50% of published studies [22]. Also, TB and tumor grade are different concepts, and there is no consensus in the guidelines on the grade of TB that confers a worse prognosis.
2.2. Risk Factors without Consensus
- ○
- Deep submucosal invasion: Recent evidence calls into question whether DSI confers a risk, given that it seems to not be an independent risk factor for LNM. A recent meta-analysis published by a Dutch T1 CRC group [24] that included 67 studies (21,238 patients) showed that DSI, as a solitary risk factor, only has an absolute risk of LNM of 2.6% and was not a significant predictor of LNM in a multivariable meta-analysis (odds ratio [OR], 1.73; 95% confidence interval [CI], 0.96–3.12), in contrast to a significant association of LNM with PD (OR, 2.14; 95% CI, 1.39–3.28), high-grade TB (OR, 2.83; 95% CI, 2.06–3.88), and LVI (OR, 3.16; 95% CI, 1.88–5.33) (24). The authors concluded that DSI should be reconsidered as a strong indicator for oncological surgery;
- ○
- Resection margin: A positive margin (R1) is considered a risk factor in most guidelines, although the definition of this item is controversial. The different definitions of an R1 margin include cancer that is within the diathermy margin, ≤0.1 mm from the margin, ≤1 mm from the margin, and ≤2 mm from the margin [22]. In addition, the definition of a positive margin may depend on the morphology (sessile or pedunculated polyp) [11,12,13]. The most common definition for R1 is <1 mm, based on studies showing a risk of residual disease of 6.1–21% [25], but recent evidence questions this suggestion, as it shows similar risk for residual disease in patients with resection margins between 0.1 mm (2.9%; 95% CI, 1.0–6.7%) and 1 mm (0.6%; 95% CI, 0.1–2.1%), in the absence of other histological risk factors [26].
Author | Year | N | Histological Risk Criteria | Residual Disease | Endoscopic Resection | Resection Margin |
---|---|---|---|---|---|---|
Overwater Dutch cohort [6] | 2018 | 339 | High-risk histology | 52/339 (15.3%) | Incomplete ER 39/339 (11.5%) | NA |
Richards Scottish BSP cohort [31] | 2018 | 186 | NA 1 | 41/186 (22%) | Incomplete ER 189/485 (39%) | NA |
Eun Hye Oh Korean cohort [32] | 2021 | 464 | High-risk histology | 29/464 (6.8%) | Incomplete ER 40/464 (8.6%) | 261/464 (56.3%) Rx/R1 29 cases of residual disease: Rx/R1 |
Levic Danish CRC group [28] | 2019 | 268 | NA (low and high risk, unknown proportion) | 22/268 (8.2%) | Incomplete ER excluded | 22/218 (10%) Rx/R1 |
Yamaoka Japanese cohort [27] | 2020 | 244 | High-risk histology | 11/244 (4.5%) | Incomplete ER excluded | 54/244 (22.1%) Rx/R1 |
Backes Dutch cohort [30] | 2017 | 358 | Low risk: 19 (13.6%) High risk: 287 (58.8%) Missing: 57 | 11/358 (3.1%) | Incomplete ER excluded | 241/358 (67.3%) Rx/R1 |
Gijsbers Dutch cohort 2 [26] | 2022 | 171 | Low risk: No LVI No PD | 5/171 (2.9%) | Incomplete ER excluded | Free margin 0.1–1 mm |
351 | 2/351 (0.6%) | Free margin > 1 mm |
3. CRC pT1 Survival Appears to Depend on Histology, Not Treatment
4. Overtreatment Leads to a Higher Chance of Adverse Events
- ○
- Endoscopic intermuscular dissection (EID): Involves dissection between the circular and longitudinal layers of the muscolaris propria for rectal tumors. In a prospective cohort study of 67 lesions, en bloc resection was possible in 96% of cases (95% CI, 89–99%), with R0 in 81% (95% CI, 70–89%). Eight AEs were reported (12%): six minor AEs treated conservatively, one case of delayed bleeding, and one of rectal stenosis that required dilatation [51];
- ○
- Endoscopic full-thickness resection (eFTR): With an over-the-scope device, this technique has emerged as a local treatment option for pT1 CRCs, with the possibility of en bloc transmural resection that allows for more accurate histological assessment [52,53]. It is currently used in daily practice as the primary treatment for pT1 tumors < 3 cm, with a technical success of 89%. It is also used as a rescue treatment for previous incomplete R1/Rx-resected pT1 and is technically feasible in 85%, with promising short-term results. Regarding AEs, eFTR has a similar rate of AEs and bleeding and a slightly higher perforation rate than conventional endoscopic resection techniques (Table 4) [53].
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Levin, T.R.; Corley, D.A.; Jensen, C.D.; Schottinger, J.E.; Quinn, V.P.; Zauber, A.G.; Lee, J.K.; Zhao, W.K.; Udaltsova, N.; Ghai, N.R.; et al. Effects of Organized Colorectal Cancer Screening on Cancer Incidence and Mortality in a Large Community-Based Population. Gastroenterology 2018, 155, 1383–1391.e5. [Google Scholar] [CrossRef]
- Toes-Zoutendijk, E.; Kooyker, A.I.; Elferink, M.A.; Spaander, M.C.W.; Dekker, E.; De Koning, H.J.; Lemmens, V.E.; Van Leerdam, M.E.; Lansdorp-Vogelaar, I.; LECO working group. Stage distribution of screen-detected colorectal cancers in the Netherlands. Gut 2018, 67, 1745–1746. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.F.A.; Patnick, J.; Nickerson, C.; Coleman, L.; Rutter, M.D.; von Wagner, C.; English Bowel Cancer Screening Evaluation Committee. Outcomes of the Bowel Cancer Screening Programme (BCSP) in England after the first 1 million tests. Gut 2012, 61, 1439–1446. [Google Scholar] [CrossRef]
- Grainville, T.; Bretagne, J.-F.; Piette, C.; Rousseau, C.; Bordet, M.; Cosson, M.; Lièvre, A. Management of T1 colorectal cancers detected at screening colonoscopy: A study from the French national screening programme. Dig. Liver Dis. 2020, 52, 909–917. [Google Scholar] [CrossRef]
- Overwater, A.; Kessels, K.; Elias, S.G.; Backes, Y.; Spanier, B.W.M.; Seerden, T.C.J.; Pullens, H.J.M.; van den Blink, A.; Offerhaus, G.J.A.; van Bergeijk, J.; et al. Endoscopic resection of high-risk T1 colorectal carcinoma prior to surgical resection has no adverse effect on long-term outcomes. Gut 2018, 67, 284–290. [Google Scholar] [CrossRef]
- Belderbos, T.D.; van Erning, F.N.; de Hingh, I.H.; van Oijen, M.G.; Lemmens, V.E.; Siersema, P.D. Long-term Recurrence-free Survival After Standard Endoscopic Resection Versus Surgical Resection of Submucosal Invasive Colorectal Cancer: A Population-based Study. Clin. Gastroenterol. Hepatol. 2017, 15, 403–411.e1. [Google Scholar] [CrossRef] [Green Version]
- Ueno, H.; Mochizuki, H.; Hashiguchi, Y.; Shimazaki, H.; Aida, S.; Hase, K.; Matsukuma, S.; Kanai, T.; Kurihara, H.; Ozawa, K.; et al. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004, 127, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, Y.; Muro, K.; Saito, Y.; Ito, Y.; Ajioka, Y.; Hamaguchi, T.; Hasegawa, K.; Hotta, K.; Ishida, H.; Ishiguro, M.; et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int. J. Clin. Oncol. 2020, 25, 1–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Hassan, C.; Wysocki, P.T.; Fuccio, L.; Seufferlein, T.; Dinis-Ribeiro, M.; Brandão, C.; Regula, J.; Frazzoni, L.; Pellise, M.; Alfieri, S.; et al. Endoscopic surveillance after surgical or endoscopic resection for colorectal cancer: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Digestive Oncology (ESDO) Guideline. Endoscopy 2019, 51, 266–277. [Google Scholar] [PubMed] [Green Version]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Shaukat, A.; Kaltenbach, T.; Dominitz, J.A.; Robertson, D.J.; Anderson, J.C.; Cruise, M.; Burke, C.A.; Gupta, S.; Lieberman, D.; Syngal, S.; et al. Endoscopic Recognition and Management Strategies for Malignant Colorectal Polyps: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2020, 159, 1916–1934.e2. [Google Scholar] [CrossRef] [PubMed]
- Rönnow, C.F.; Arthursson, V.; Toth, E.; Krarup, P.M.; Syk, I.; Thorlacius, H. Lymphovascular Infiltration, Not Depth of Invasion, is the Critical Risk Factor of Metastases in Early Colorectal Cancer: Retrospective Population-based Cohort Study on Prospectively Collected Data, Including Validation. Ann. Surg. 2022, 275, e148–e154. [Google Scholar] [CrossRef]
- Ebbehøj, A.L.; Jørgensen, L.N.; Krarup, P.M.; Smith, H.G. Histopathological risk factors for lymph node metastases in T1 colorectal cancer: Meta-analysis. Br. J. Surg. 2021, 108, 769–776. [Google Scholar] [CrossRef]
- Ozeki, T.; Shimura, T.; Ozeki, T.; Ebi, M.; Iwasaki, H.; Kato, H.; Inaguma, S.; Okuda, Y.; Katano, T.; Nishie, H.; et al. The Risk Analyses of Lymph Node Metastasis and Recurrence for Submucosal Invasive Colorectal Cancer: Novel Criteria to Skip Completion Surgery. Cancers 2022, 14, 822. [Google Scholar] [CrossRef] [PubMed]
- Smits, L.J.H.; Vink-Börger, E.; Lijnschoten, G.; Focke-Snieders, I.; van der Post, R.S.; Tuynman, J.B.; Grieken, N.C.T.; Nagtegaal, I.D. Diagnostic variability in the histopathological assessment of advanced colorectal adenomas and early colorectal cancer in a screening population. Histopathology 2022, 80, 790–798. [Google Scholar] [CrossRef]
- Ervine, A.J.; McBride, H.A.; Kelly, P.J.; Loughrey, M.B. Double immunohistochemistry enhances detection of lymphatic and venous invasion in early-stage colorectal cancer. Virchows Arch. 2015, 467, 265–271. [Google Scholar] [CrossRef]
- Davenport, A.; Morris, J.; Pritchard, S.A.; Salmo, E.; Scott, M.; Haboubi, N.Y. Interobserver variability amongst gastrointestinal pathologists in assessing prognostic parameters of malignant colorectal polyps: A cause for concern. Tech. Coloproctology 2016, 20, 647–652. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; the WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Rosty, C.; Webster, F.; Nagtegaal, I.D.; Dataset Authoring Committee for the development of the ICCR Dataset for Pathology Reporting of Colorectal Excisional Biopsy. Pathology Reporting of Colorectal Local Excision Specimens: Recommendations from the International Collaboration on Cancer Reporting (ICCR). Gastroenterology 2021, 161, 382–387. [Google Scholar] [CrossRef]
- Gijsbers, K.; de Graaf, W.; Moons, L.M.; ter Borg, F. High practice variation in risk stratification, baseline oncological staging, and follow-up strategies for T1 colorectal cancers in the Netherlands. Endosc. Int. Open 2020, 08, E1117–E1122. [Google Scholar] [CrossRef]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef] [Green Version]
- Zwager, L.W.; Bastiaansen, B.A.; Montazeri, N.S.; Hompes, R.; Barresi, V.; Ichimasa, K.; Kawachi, H.; Machado, I.; Masaki, T.; Sheng, W.; et al. Deep Submucosal Invasion Is Not an Independent Risk Factor for Lymph Node Metastasis in T1 Colorectal Cancer: A Meta-Analysis. Gastroenterology 2022, 163, 174–189. [Google Scholar] [CrossRef]
- Hassan, C.; Zullo, A.; Risio, M.; Rossini, F.P.; Morini, S. Histologic Risk Factors and Clinical Outcome in Colorectal Malignant Polyp: A Pooled-Data Analysis. Dis. Colon Rectum 2005, 48, 1588–1596. [Google Scholar] [CrossRef]
- Gijsbers, K.M.; van der Schee, L.; van Veen, T.; van Berkel, A.M.; Boersma, F.; Bronkhorst, C.M.; Didden, P.D.; Haasnoot, K.J.; Jonker, A.M.; Kessels, K.; et al. Impact of ≥ 0.1-mm free resection margins on local intramural residual cancer after local excision of T1 colorectal cancer. Endosc. Int. Open 2022, 10, E282–E290. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Imai, K.; Shiomi, A.; Kagawa, H.; Hino, H.; Yamakawa, Y.; Yamaguchi, T.; Kinugasa, Y.; Kishida, Y.; Ito, S.; et al. Endoscopic resection of T1 colorectal cancer prior to surgery does not affect surgical adverse events and recurrence. Surg. Endosc. 2020, 34, 5006–5016. [Google Scholar] [CrossRef] [PubMed]
- Levic, K.; Bulut, O.; Hansen, T.P.; Gögenur, I.; Bisgaard, T. Malignant colorectal polyps: Endoscopic polypectomy and watchful waiting is not inferior to subsequent bowel resection. A nationwide propensity score-based analysis. Langenbeck’s Arch. Surg. 2019, 404, 231–242. [Google Scholar] [CrossRef]
- Yeh, J.-H.; Tseng, C.-H.; Huang, R.-Y.; Lin, C.-W.; Lee, C.-T.; Hsiao, P.-J.; Wu, T.-C.; Kuo, L.-T.; Wang, W.-L. Long-term Outcomes of Primary Endoscopic Resection vs Surgery for T1 Colorectal Cancer: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 2813–2823.e5. [Google Scholar] [CrossRef]
- Backes, Y.; Cappel, W.H.D.V.T.N.; van Bergeijk, J.; ter Borg, F.; Schwartz, M.P.; Spanier, B.W.M.; Geesing, J.M.J.; Kessels, K.; Kerkhof, M.; Groen, J.N.; et al. Risk for Incomplete Resection after Macroscopic Radical Endoscopic Resection of T1 Colorectal Cancer: A Multicenter Cohort Study. Am. J. Gastroenterol. 2017, 112, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.; Ventham, N.; Mansouri, D.; Wilson, M.; Ramsay, G.; Mackay, C.; Parnaby, C.; Smith, D.; On, J.; Speake, D.; et al. An evidence-based treatment algorithm for colorectal polyp cancers: Results from the Scottish Screen-detected Polyp Cancer Study (SSPoCS). Gut 2018, 67, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.H.; Kim, N.; Hwang, S.W.; Park, S.H.; Yang, D.-H.; Ye, B.D.; Myung, S.-J.; Yang, S.-K.; Yu, C.S.; Kim, J.C.; et al. Comparison of long-term recurrence-free survival between primary surgery and endoscopic resection followed by secondary surgery in T1 colorectal cancer. Gastrointest. Endosc. 2021, 94, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, M.A.M.; Gimon, T.I.M.; Ronksley, P.E.; Buie, W.D.M.; MacLean, A.R.M. Classic and Novel Histopathologic Risk Factors for Lymph Node Metastasis in T1 Colorectal Cancer: A Systematic Review and Meta-analysis. Dis. Colon Rectum 2021, 64, 1139–1150. [Google Scholar] [CrossRef]
- Kudo, S.-E.; Ichimasa, K.; Villard, B.; Mori, Y.; Misawa, M.; Saito, S.; Hotta, K.; Saito, Y.; Matsuda, T.; Yamada, K.; et al. Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology 2021, 160, 1075–1084.e2. [Google Scholar] [CrossRef]
- Wada, Y.; Shimada, M.; Murano, T.; Takamaru, H.; Morine, Y.; Ikemoto, T.; Saito, Y.; Balaguer, F.; Bujanda, L.; Pellise, M.; et al. A Liquid Biopsy Assay for Noninvasive Identification of Lymph Node Metastases in T1 Colorectal Cancer. Gastroenterology 2021, 161, 151–162.e1. [Google Scholar] [CrossRef]
- Antonelli, G.; Vanella, G.; Orlando, D.; Angeletti, S.; Di Giulio, E. Recurrence and cancer-specific mortality after endoscopic resection of low- and high-risk pT1 colorectal cancers: A meta-analysis. Gastrointest. Endosc. 2019, 90, 559–569.e3. [Google Scholar] [CrossRef]
- Dang, H.; Dekkers, N.; le Cessie, S.; van Hooft, J.E.; van Leerdam, M.E.; Oldenburg, P.P.; Flothuis, L.; Schoones, J.W.; Langers, A.M.; Hardwick, J.C.; et al. Risk and Time Pattern of Recurrences After Local Endoscopic Resection of T1 Colorectal Cancer: A Meta-analysis. Clin. Gastroenterol. Hepatol. 2020, 20, e298–e314. [Google Scholar] [CrossRef]
- Nian, J.; Tao, L.; Zhou, W. Prior endoscopic resection does not affect the outcome of secondary surgery for T1 colorectal cancer, a systematic review and meta-analysis. Int. J. Color. Dis. 2021, 37, 273–281. [Google Scholar] [CrossRef]
- Tian, Y.; Rong, L.; Ma, Y. Surgical resection after endoscopic resection in patients with T1 colorectal cancer: A meta-analysis. Int. J. Color. Dis. 2021, 36, 457–466. [Google Scholar] [CrossRef]
- Peery, A.F.; Cools, K.S.; Strassle, P.D.; McGill, S.K.; Crockett, S.D.; Barker, A.; Koruda, M.; Grimm, I.S. Increasing Rates of Surgery for Patients with Nonmalignant Colorectal Polyps in the United States. Gastroenterology 2018, 154, 1352–1360.e3. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, S.E.M.; Backes, Y.; Hilbink, M.; Seerden, T.C.J.; Kessels, K.; de Vos Tot Nederveen Cappel, W.H.; Groen, J.N.; Wolfhagen, F.H.J.; Geesing, J.M.J.; Borg, F.T.; et al. Periprocedural adverse events after endoscopic resection of T1 colorectal carcinomas. Gastrointest. Endosc. 2020, 91, 142–152.e3. [Google Scholar] [CrossRef]
- Watanabe, D.; Toyonaga, T.; Ooi, M.; Yoshizaki, T.; Ohara, Y.; Tanaka, S.; Kawara, F.; Ishida, T.; Morita, Y.; Umegaki, E.; et al. Clinical outcomes of deep invasive submucosal colorectal cancer after ESD. Surg. Endosc. 2018, 32, 2123–2130. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, H.S.; Lee, H.J.; Kim, J.; Yang, D.H.; Yu, C.S.; Kim, J.C.; Byeon, J.S. Long-Term Outcomes of Endoscopic Versus Surgical Resection of Superficial Submucosal Colorectal Cancer. Dig. Dis. Sci. 2015, 60, 2785–2792. [Google Scholar] [CrossRef]
- DEL Genio, G.; Lucido, F.S.; Gambardella, C. Technical aspects of endoscopic submucosal dissection (esd). from lateral to longitudinal dissection: A new approach to treat colonic tumors. Arq. de Gastroenterol. 2021, 58, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Bronsgeest, K.; Huisman, J.F.; Langers, A.; Boonstra, J.J.; Schenk, B.E.; Cappel, W.H.D.V.T.N.; Vasen, H.; Hardwick, J.C.H. Safety of endoscopic mucosal resection (EMR) of large non-pedunculated colorectal adenomas in the elderly. Int. J. Color. Dis. 2017, 32, 1711–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeer, N.C.A.; Backes, Y.; Snijders, H.S.; Bastiaannet, E.; Liefers, G.J.; Moons, L.M.G.; Van De Velde, C.J.H.; Peeters, K.C.M.J.; the Dutch T1 Colorectal Cancer Working Group. National cohort study on postoperative risks after surgery for submucosal invasive colorectal cancer. BJS Open 2019, 3, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Oria, O.; Golia D’Auge, T.; Baiocco, E.; Vincenzoni, C.; Mancini, E.; Bruno, V.; Chiofalo, B.; Mancari, R.; Vizza, R.; Cutillo, G. The role of preoperative frailty assessment in patients affected by gynecological cancer: A narrative review. Ital. J. Gynaecol. Obstet. 2022, 34, 76–83. [Google Scholar] [CrossRef]
- Skouras, T.; Bond, A.; Gaglia, A.; Bonnett, L.; Lim, M.J.; Sarkar, S. Outcomes and adverse factors for endoscopic mucosal resection (EMR) of colorectal polyps in elderly patients. Front. Gastroenterol. 2020, 12, 95–101. [Google Scholar] [CrossRef]
- Alkhamis, A.; Warner, C.; Park, J.; Marecik, S.; Davis, N.; Mellgren, A.; Nordenstam, J.; Kochar, K. Modified frailty index predicts early outcomes after colorectal surgery: An ACS-NSQIP study. Color. Dis. 2019, 21, 1192–1205. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Nunes, P.; Libânio, D.; Bastiaansen, B.A.J.; Bhandari, P.; Bisschops, R.; Bourke, M.J.; Esposito, G.; Lemmers, A.; Maselli, R.; Messmann, H.; et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2022. Endoscopy 2022, 54, 591–622. [Google Scholar] [CrossRef]
- Moons, L.M.G.; Bastiaansen, B.A.J.; Richir, M.C.; Hazen, W.L.; Tuynman, J.; Elias, S.G.; Schrauwen, R.W.M.; Vleggaar, F.P.; Dekker, E.; Bos, P.; et al. Endoscopic intermuscular dissection for deep submucosal invasive cancer in the rectum: A new endoscopic approach. Endoscopy 2022, 54, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Kuellmer, A.; Mueller, J.; Caca, K.; Aepli, P.; Albers, D.; Schumacher, B.; Glitsch, A.; Schäfer, C.; Wallstabe, I.; Hofmann, C.; et al. Endoscopic full-thickness resection for early colorectal cancer. Gastrointest. Endosc. 2019, 89, 1180–1189.e1. [Google Scholar] [CrossRef]
- Zwager, L.W.; Bastiaansen, B.A.J.; van der Spek, B.W.; Heine, D.N.; Schreuder, R.M.; Perk, L.E.; Weusten, B.L.A.M.; Boonstra, J.J.; van der Sluis, H.; Wolters, H.J.; et al. Endoscopic full-thickness resection of T1 colorectal cancers: A retrospective analysis from a multicenter Dutch eFTR registry. Endoscopy 2021, 54, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.J.S.; Hompes, R.; Mortensen, N.; Cunningham, C. Modern management of T1 rectal cancer by transanal endoscopic microsurgery: A 10-year single-centre experience. Color. Dis. 2018, 20, 586–592. [Google Scholar] [CrossRef]
- Lee, L.; Burke, J.P.; deBeche-Adams, T.; Nassif, G.; Martin-Perez, B.; Monson, J.R.T.; Albert, M.R.; Atallah, S.B. Transanal Minimally Invasive Surgery for Local Excision of Benign and Malignant Rectal Neoplasia: Outcomes From 200 Consecutive Cases with Midterm Follow Up. Ann. Surg. 2018, 267, 910–916. [Google Scholar] [CrossRef]
- McCarty, T.R.; Bazarbashi, A.N.; Hathorn, K.E.; Thompson, C.C.; Aihara, H. Endoscopic submucosal dissection (ESD) versus transanal endoscopic microsurgery (TEM) for treatment of rectal tumors: A comparative systematic review and meta-analysis. Surg. Endosc. 2019, 34, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Sagae, V.M.T.; Ribeiro, I.B.; de Moura, D.T.H.; Brunaldi, V.O.; Logiudice, F.P.; Funari, M.P.; Baba, E.R.; Bernardo, W.M.; de Moura, E.G.H. Endoscopic submucosal dissection versus transanal endoscopic surgery for the treatment of early rectal tumor: A systematic review and meta-analysis. Surg. Endosc. 2020, 34, 1025–1034. [Google Scholar] [CrossRef]
- Dekkers, N.; Boonstra, J.J.; Moons, L.M.G.; Hompes, R.; Bastiaansen, B.A.; Tuynman, J.B.; Koch, A.D.; Weusten, B.L.A.M.; Pronk, A.; Neijenhuis, P.A.; et al. Transanal minimally invasive surgery (TAMIS) versus endoscopic submucosal dissection (ESD) for resection of non-pedunculated rectal lesions (TRIASSIC study): Study protocol of a European multicenter randomised controlled trial. BMC Gastroenterol. 2020, 20, 225. [Google Scholar] [CrossRef]
Lymphovascular Invasion | Degree of Differentiation | Submucosal Invasion | Resection Margin | Tumor Budding | |
---|---|---|---|---|---|
JSCCR 2019 [9] | Yes | Poorly differentiated, signet ring or mucinous adenocarcinoma | >1000 μm (T1b) | Yes: Positive vertical margin 1 | Budding grade 2/3 |
NCCN 2021 [12] | Yes | Poorly differentiated | Not described | Yes: Positive type unspecified | Yes, suggested Unspecified grade |
ESMO 2020 [10] | Yes | Poorly differentiated | Haggit 4 (pedunculated) No clear recommendation for sessile and flat lesions | No risk 2 | Budding grade 2/3 |
ESGE-ESDO 2019 [11] | Yes | Poorly differentiated | ≥1000 μm Haggit 4 in pedunculated SM2–3 in non-pedunculated | Yes: Positive margin (<1 mm) or cannot be assesed | Intense tumor budding Unspecified grade |
ASGE 2020 [13] | Yes | Poorly differentiated | >1000 μm in non-pedunculated No risk in pedunculated | Yes: Positive margin in non-pedunculated <1 mm in pedunculated | Yes: Unspecified grade Only in non-pedunculated |
Author | High-Risk Status | Low-Risk Status | Total |
---|---|---|---|
Antonelli 2019 [36] | 5 studies 571 patients | 7 studies 650 patients | 8 studies |
Recurrence 9.5% (6.7–13.3%) Mortality from CRC 3.8% (2.4–5.4%) | Recurrence 1.2% (0.6–2.5%) Mortality from CRC 0.6% (0.2–1.7%) | Recurrence 4.9% Mortality from CRC 1.5% | |
Dang 2022 [37] | 28 studies 1499 patients | 36 studies 1023 patients | 71 studies 5167 patients |
Recurrence 7.0% (4.9–9.9%) Mortality from CRC 4.5% (3.2–6.3%) | Recurrence 0.7% (0.4–1.2%) Mortality from CRC 0.1% (0.0–0.7%) | Recurrence 3.3% (2.6–4.3%) Mortality from CRC 1.7% (1.2–2.25%) |
Author | Year | N | Type of ER | All AEs | Bleeding | Perforation | PPES | 30-Day Mortality |
---|---|---|---|---|---|---|---|---|
Van de Ven [41] | 2020 | 1069 | EMR, ESD, snare resection | 59/1069 (5.5%) | 40/1069 (3.7%) | 13/1069 (1.2%) | 6/1069 (0.6%) | 0% |
Levic [28] | 2019 | 692 | Unknown | 21/692 (3%) | 18/692 (2.5%) | 2/692 (0.3%) | NA | NA |
Yamaoka [27] | 2020 | 244 | EMR, ESD, snare resection | NA | NA | 3/244 (1.2%) | NA | NA |
Eun Hye Oh [32] | 2021 | 464 | EMR, hybrid ESD, ESD | NA | NA | 13/464 (2.8%) | NA | NA |
Watanabe [42] | 2018 | 110 | ESD | 7/110 1 (6.3%) | 2/110 (1.8%) | 5/110 (4.5%) | NA | NA |
Grainville [5] | 2020 | 126 | Snare resection, EMR | 13/126 2 (10.3%) | 11/126 (8.7%) | 1/126 (0.8%) | NA | NA |
Overwater [6] | 2018 | 339 | Snare resection, EMR, ESD, TEM | 22/339 (6.5%) | 14/339 (4.1%) | 7/339 (2.1%) | 1/339 (0.3%) | 1/339 3 (0.3%) |
Kim [43] | 2015 | 87 | EMR, ESD | 5/87 (5.7%) | NA | 2/87 (2.3%) | 1/87 (1.1%) | NA |
Belderbos [7] | 2017 | 370 | Snare resection, EMR | NA | NA | NA | NA | 5/370 (1.4%) |
Zwager [44] | 2021 | 320 | eFTR | 26/320 (8.1%) | 11/320 (3.4%) | 11/320 (3.4%) | NA | 0% |
Author | Year | N | Type of Surgery | Mortality | Morbidity | Major Morbidity (Clavien–Dindo ≥ III) | Anastomotic Leak |
---|---|---|---|---|---|---|---|
Richards [31] | 2018 | 186 | Colectomy + TEMS (4%) | 0% | 60/186 (32%) | 21/186 (11%) | 7/186 (3.8%) |
Yamaoka [27] | 2020 | 548 | Colectomy | NA | 75/548 (13.7%) | 24/548 (4.4%) | 9/548 (1.6%) |
Grainville [5] | 2020 | 163 | Colectomy + local excision (7%) | NA | 41/163 (25.1%) | 12/163 (7.4%) | NA |
Overwater [6] | 2018 | 602 | Colectomy | 15/602 (2.5%) | 159/602 (26.4%) | NA | 26/602 (4.3%) |
Veermer [46] | 2019 | 5170 | Colectomy | 87/5170 (1.7%) | 1219/5170 (23.6%) | 427/5170 (8.3%) | 176/5170 (3.7%) |
Levic [28] | 2019 | 268 | Colectomy Subsequent bowel resection | 10/268 (3.7%) | 55/268 (20.5%) | 41/268 (15.3%) | 19/268 (7.1%) |
Belderbos [7] | 2017 | 725 | Colectomy | 23/725 (3.2%) | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffalon, D.; Daca-Alvarez, M.; Saez de Gordoa, K.; Pellisé, M. Dilemmas in the Clinical Management of pT1 Colorectal Cancer. Cancers 2023, 15, 3511. https://doi.org/10.3390/cancers15133511
Zaffalon D, Daca-Alvarez M, Saez de Gordoa K, Pellisé M. Dilemmas in the Clinical Management of pT1 Colorectal Cancer. Cancers. 2023; 15(13):3511. https://doi.org/10.3390/cancers15133511
Chicago/Turabian StyleZaffalon, Diana, Maria Daca-Alvarez, Karmele Saez de Gordoa, and María Pellisé. 2023. "Dilemmas in the Clinical Management of pT1 Colorectal Cancer" Cancers 15, no. 13: 3511. https://doi.org/10.3390/cancers15133511
APA StyleZaffalon, D., Daca-Alvarez, M., Saez de Gordoa, K., & Pellisé, M. (2023). Dilemmas in the Clinical Management of pT1 Colorectal Cancer. Cancers, 15(13), 3511. https://doi.org/10.3390/cancers15133511