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Simple Summary: Lung cancer is one of the most common cancers and can be difficult to treat.
One of the treatment methods uses drugs that target a protein called the epidermal growth factor
receptor, but the results vary from patient to patient. In this research, we used a technique called
radiomics, which involves analyzing detailed scans of the patients’ tumors, to see if we can predict
who will respond best to these drugs. We reviewed previous studies and found that this method
was promising, with patients showing certain patterns on their scans more likely to have longer
periods without disease progression. However, more research is needed to confirm these findings
and develop reliable methods of using these scans in clinical practice.

Abstract: In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine
kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A
comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111
patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics
quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed
a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87–4.19),
suggesting that patients with certain radiomics features had a significantly higher risk of disease
progression. Additionally, we calculated the pooled Harrell’s concordance index and area under
the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of
radiomics. Despite these promising results, further studies with consistent and robust protocols are
needed to confirm the prognostic role of radiomics in NSCLC.

Keywords: non-small cell lung cancer; radiomics; EGFR tyrosine kinase inhibitors; treatment
outcome; computed tomography

1. Introduction
1.1. Overview of Lung Cancer and Its Global Burden

Lung cancer, characterized by uncontrolled growth of abnormal cells in the lungs,
remains one of the leading causes of cancer-related deaths worldwide [1]. The two major
types of lung cancer are non-small cell lung cancer (NSCLC), accounting for approximately
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85% of cases, and small cell lung cancer (SCLC), accounting for the remaining 15% [2].
According to the World Health Organization, lung cancer is responsible for over 1.7 million
deaths annually, making it a significant public health concern [3]. Factors contributing
to lung cancer incidence include tobacco smoking, exposure to radon gas, asbestos, and
air pollution, as well as genetic predisposition [4]. Despite advances in early detection
and treatment strategies, the overall five-year survival rate of patients with lung cancer
remains relatively low [5]. This highlights the need for improved diagnostic and prognostic
tools, such as radiomics, to better predict treatment outcomes and guide personalized
therapy decisions for patients receiving targeted therapies such as tyrosine kinase inhibitors
(TKIs) [6].

1.2. Role of Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment

Tyrosine kinase inhibitors (TKIs) have emerged as effective targeted therapies for lung
cancer, particularly for patients with non-small cell lung cancer (NSCLC) harboring specific
genetic mutations [7]. These small-molecule drugs inhibit the activity of tyrosine kinases, a
group of enzymes responsible for the activation of several cellular processes, including cell
growth, proliferation, and survival [8]. In lung cancer, certain genetic mutations, including
those in the epidermal growth factor receptor (EGFR), lead to overactivation of tyrosine
kinases, promoting tumor progression and malignancy [9].

EGFR plays a crucial role in the regulation of cell proliferation, differentiation, and
survival. Mutations or overexpression of EGFR have been identified in several types
of cancers, including a significant proportion of NSCLCs. These mutations lead to the
constitutive activation of the EGFR pathway, driving cell proliferation and inhibiting
apoptosis, thus promoting tumorigenesis [10,11]. Simultaneously, the PI3K/AKT/mTOR
pathway, another critical signal transduction system, is frequently dysregulated in many
types of cancers, including NSCLC. This pathway, when activated, promotes cell growth,
proliferation, survival, and metabolism. Aberrations in this pathway, often occurring
due to mutations in the PIK3CA gene or loss of the tumor suppressor PTEN, can lead to
overactivation of the PI3K/AKT/mTOR pathway, promoting tumorigenesis [12,13].

TKIs, including gefitinib, erlotinib, afatinib, and osimertinib, have been approved for
the treatment of NSCLC [14]. These drugs target these overactive kinases, thereby blocking
the signals that contribute to tumor growth, and are particularly effective in patients with
EGFR mutations, ALK rearrangements, and ROS1 rearrangements [15]. By targeting the
specific molecular drivers of lung cancer, TKIs offer a personalized and potentially less
toxic alternative to traditional chemotherapy [16].

However, not all patients respond equally to TKI therapy, and some may eventually
develop resistance [17]. This challenge underlines the importance of exploring other targets
like the PI3K/AKT/mTOR pathway and the application of combinatorial treatments. As a
result, there is growing interest in identifying prognostic factors, such as radiomic features,
that can help predict treatment outcomes and optimize therapeutic strategies for lung
cancer patients treated with TKIs [18].

1.3. Importance of Radiomics in Predicting Treatment Outcomes

Radiomics is a rapidly evolving field that focuses on the extraction and analysis of
quantitative imaging features from medical images, such as computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission tomography (PET) scans [19].
These features, often referred to as radiomic signatures, can provide valuable insights into
the underlying biology, heterogeneity, and treatment response of tumors [18]. By harness-
ing the power of advanced computational algorithms and machine learning techniques,
radiomics has the potential to significantly improve the accuracy and precision of cancer
prognosis and predict treatment outcomes [6].

In the context of lung cancer treated with TKIs, radiomics offers several advantages
for predicting patient outcomes. First, it allows for non-invasive assessment of tumor
characteristics, which may help identify patients who are more likely to respond to TKI
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therapy [20]. Second, radiomic signatures may serve as early biomarkers of treatment
response, enabling clinicians to monitor therapeutic efficacy and adjust treatment plans
accordingly [21]. Finally, the integration of radiomic features with clinical and molecular
data can lead to the development of comprehensive prognostic models; that can help guide
personalized treatment decisions for patients with lung cancer [22].

As the field of radiomics continues to grow, its potential to improve prognostic ac-
curacy and precision in lung cancer patients treated with TKIs is becoming increasingly
evident [23]. Ongoing research and advancements in this area hold promise for enhancing
the overall management of lung cancer and optimizing the use of targeted therapies such
as TKIs [24].

1.4. Objectives of the Meta-Analysis

Recently, a surge in studies has focused on the potential clinical implications of ra-
diomic features extracted from computed tomography (CT) images in patients with non-
small cell lung cancer (NSCLC). These investigations emphasize the correlation between
radiomic features and the response or outcomes following EGFR-TKI targeted therapy
interventions. The primary objective of this research was to conduct a comprehensive
systematic review of the current landscape of radiomic studies, particularly in the context
of predicting the response or outcomes for NSCLC patients receiving targeted therapy.
This review encompasses an evaluation of the quality of radiomic studies, utilizing the
Quality in Prognosis Studies (QUIPS) tool for image mining research and the radiomics
quality scoring (RQS) tool as benchmarks. Moreover, quantitative analysis was performed
to evaluate the effectiveness of radiomics in forecasting the response and outcomes of
targeted therapy in this cohort of patients.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.1.1. Databases and Search Terms

This systematic review and meta-analysis were conducted in accordance with the
PRISMA guidelines [25]. The study has not been registered. To ensure meticulous ad-
herence to these guidelines, checklists corresponding to PRISMA were utilized and are
presented in Supplemental Table S1. To identify relevant studies for this meta-analysis, a
comprehensive literature search was conducted using the following electronic databases:
PubMed, Embase, Web of Science, and the Cochrane Library. The search strategy included
a combination of keywords and Medical Subject Headings (MeSH) terms related to lung
cancer, tyrosine kinase inhibitors, radiomics, and prognosis. The search terms included
lung cancer, non-small cell lung cancer, NSCLC, Tyrosine kinase inhibitors, TKIs, Gefitinib,
Erlotinib, Afatinib, Osimertinib, Radiomics, radiomic features, radiomic signature, texture
analysis, prognosis, survival, treatment outcome, response, and prediction. The search was
conducted from the inception of each database (i.e., the earliest record) to the date of the
database search (4 April 2023). The search strategy was adapted for each database, and
additional studies were identified by searching the references of the included articles and
relevant reviews. The detailed search strategy for this systematic review and meta-analysis
is provided in the Supplemental Table S2.

2.1.2. Inclusion and Exclusion Criteria

Studies were included in the meta-analysis if they met the following criteria: (a) study
design: original research articles, including retrospective and prospective studies,
(b) population: adult patients (≥18 years old) with NSCLC treated with EGFR-TKIs,
(c) intervention: radiomics analysis using CT scans, and (d) outcome measures: association
between radiomic features and treatment outcomes, including treatment response and
progression-free survival (PFS). The exclusion criteria were as follows: (a) studies not
published in English, (b) review articles, conference abstracts, case reports, editorials, and
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supplementary materials, (c) insufficient data or lack of relevant outcome measures, and
(d) studies with overlapping or duplicate patient populations.

Two independent reviewers (T. W. and M. H.) screened the titles and abstracts, fol-
lowed by a full-text assessment to determine eligibility for inclusion. Any discrepancies
between the reviewers were resolved through discussion or consultation with a third
reviewer, if necessary.

2.2. Data Extraction and Quality Assessment
2.2.1. Data Extraction Process

For each included study, relevant data were extracted by two independent reviewers
using a standardized data extraction form. The extracted information included the follow-
ing: (a) study characteristics: authors, year of publication, study duration, study country,
study design, and sample size, (b) patient demographics: age, sex, stage of lung cancer,
(c) EGFR-TKI therapy details: type of EGFR-TKI used, (d) radiomic features: imaging
modality, software, segmentations, feature extraction methods, and radiomic signatures,
(e) clinical and molecular data: smoking history and other relevant clinical factors, and
(f) outcome measures: progression-free survival. Any discrepancies in data extraction were
resolved through discussion or consultation with a third reviewer, if necessary.

2.2.2. Quality Assessment

The methodological quality of the included studies was appraised using the Quality in
Prognosis Studies (QUIPS) tool, which assesses the risk of bias and applicability concerns
in prognostic studies [26], as well as the radiomics quality score (RQS), a radiomics-specific
quality assessment tool [6]. The QUIPS tool encompasses six domains: study participation,
study attrition, prognostic factor measurement, outcome measurement, study confounding,
and statistical analysis and reporting. Each domain was examined for the risk of bias, while
applicability concerns were addressed for the first three domains. The 16-component RQS
tool evaluates the validity and potential bias of radiomics studies. Each study was assigned
a score for each RQS component, and scores were then summed to obtain a total score.
Two independent reviewers (T. W. and M. H.) undertook the quality assessment, and any
discrepancies were resolved through discussion or, if necessary, consultation with a third
reviewer.

2.3. Meta-Analysis

Three meta-analyses were performed with the included studies: (1) a meta-analysis of
studies investigating the use of radiomics to compare PFS of target therapy between high-
and low-risk groups in the validation datasets, which was measured by the pooled hazard
ratio (HR) and a 95% confidence interval (CI) using the random-effects model; and (2) a
meta-analysis of predictive performance of radiomics models using the area under curve
(AUC) for median progression-free survival and Harrell’s Concordance Index (c-index) for
progression-free survival using a fixed effects model. The AUC is derived from the receiver
operating characteristic (ROC) curve, which is a graphical representation of a model’s true
positive rate (sensitivity) against its false positive rate (1-specificity) at various threshold
settings. The AUC quantifies the overall performance of a model with a value of 1 indicating
perfect classification; a value of 0.5 suggests no better performance than random chance.
Harrell’s concordance index is a measure of the performance of biomarkers or models in
which the outcome is a time-to-event measure that includes censored data [27]. Multiple
c-indices or the AUC were reported for a given dataset (e.g., due to multiple machine
learning methods being utilized for model development within the same manuscript); the
best-performing model that included radiomics features within the model was chosen for
inclusion in the meta-analysis. The hazard ratio was transformed to logarithms scale, while
the c-index and AUC were treated as the expected values, and the 95% CI was used to
back-calculate the SD with the corresponding T-score from a Student’s T Distribution with
n-1 degrees of freedom. If a single study did not provide a 95% CI or SD, a standard error
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of the mean (SE) was reported instead. The SD was calculated by multiplying the square
root of the sample size by the SE.

2.4. Statistical Analysis

Heterogeneity between studies was assessed using Cochran’s Q test and quantified
using the I2 statistic. The I2 statistic measures the percentage of variability in effect es-
timates attributable to heterogeneity rather than sampling error. I2 values of 25%, 50%,
and 75% were indicative of low, moderate, and high heterogeneity, respectively. If signifi-
cant heterogeneity was detected (I2 > 50%), a random-effects model (DerSimonian–Laird
method) was used employed for the meta-analysis. Otherwise, a fixed-effects model was
used (Mantel–Haenszel method). Combined effects were calculated, and a two-sided
p value < 0.05 was considered to indicate statistical significance [28]. Publication bias was
assessed only if there were more than 10 studies, as more than 10 studies were required to
detect funnel plot asymmetry [29]. All analyses were performed using Review Manager
(RevMan) [Computer program], version 5.4, Cochrane Collaboration; 2020.

3. Results
3.1. Study Selection and Characteristics
3.1.1. Flow Diagram of Study Selection

Figure 1 presents the flow diagram outlining the study selection process for this
systematic review and meta-analysis. The initial search across databases and additional
sources yielded 806 articles. After removing duplicates, 633 articles were retained for
further assessment. Titles and abstracts of these articles were screened, resulting in the
exclusion of 602 articles. Subsequently, 31 full-text articles were thoroughly examined
for eligibility, with 19 articles being excluded for reasons detailed in Figure 1. Ultimately,
12 studies were included in this systematic review and meta-analysis [30–41].
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3.1.2. Characteristics of Included Studies

The 12 studies enrolled a total of 3111 patients with advanced NSCLC treated with
EGFR-TKI [30–41]. The basic characteristics of the studies are summarized in Tables 1 and 2.
All of the 12 studies were retrospective. The median patient age ranged from 55 to
67.5 years, and the proportion of patients who were female ranged from 51.2% to 64%. The
majority of patients had adenocarcinoma. CT was performed before beginning EGFR-TKI
treatment. All of the studies used progression-free survival as the endpoint, and the median
PFS ranged from 8.1 to 13.1 month.
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Table 1. Basic characteristics of studies included in the systematic review and meta-analysis.

Author Dataset Study
Duration Country Study

Design Patients Age (Years) Female (%) Smoker (%) Stage Adeno (%) EGFR-TKI Median PFS
(Years)

Chia-Feng L
(2023) [30] D 2018~2019 Taiwan Retrospective 270 67.5 158 (59) 69 (26) IIIB~IV 263 (97.4) First line First,

second Gen 11.5

X. B. Z
(2023) [31]

D 2015~2020 China Retrospective 131 NR 74 (57) 33 (25) II~IV 131 (100) First, second,
third Gen 11.1

E 2015~2020 China Retrospective 41 NR 24 (59) 9 (22) II~IV 41 (100) First, second,
third Gen 13.1

Jian-man Z
(2022) [32] D 2016~2019 China Retrospective 100 NR 64 (64) 23 (23) IIIB~IV 100 (100) First line EGFR

TKI 10

Kexue D
(2022) [33]

D 2010~2021 China Retrospective 478 58 286 (60) 112 (23) IV 451 (94) First, second,
third Gen NA

E 2010~2021 China Retrospective 92 60 52 (57) 22 (24) IV 86 (93) First, second,
third Gen NA

Shuo W
(2022) [34] D 2009~2018 China Retrospective 600 59 349 (58.2) 150 (25) I~IV 574 (95.7) First line First

Gen 11.42

Meilin J
(2022) [35]

D 2013~2018 China Retrospective 187 55 107 (57.2) 57 (30.5) III~IV 187 (100) First Generation 12
V 2018~2019 China Retrospective 38 57 23 (60.5) 12 (31.6) III~IV 38 (100) First Generation 11.8

Runping H
(2021) [36]

D 2013~2017 China Retrospective 239 61 142 (59.4) 55 (23) IIIA~
IVB 239 (100) First line EGFR

TKI 9

V 2013~2017 China Retrospective 100 61 68 (68) 17 (17) IIIA~
IVB 100 (100) First line EGFR

TKI 9

Xin T (2021)
[37] D 2017~2021 China Retrospective 273 57 167 (61.2) 55 (20.1) IV NA Osimertinib 13.3

Jiangdian S
(2021) [38]

D 2010~2017 China Retrospective 145 NA 87 (60) 60 (41) IV 135 (93) First, second,
third Gen 9.9

E 2010~2017 China Retrospective 101 NA 60 (59) 21 (21) IV 99 (98) First, second,
third Gen 9.2

E 2010~2017 China Retrospective 96 NA 55 (57) 17 (18) IV 92 (96) First, second,
third Gen 8.2

Jiangdian S
(2018) [39]

D NA China Retrospective 117 NA 73 (62) 53 (45) IV NA EGFR-TKI 8.1
E NA China Retrospective 101 NA 60 (59) 21 (21) IV NA EGFR-TKI 9.2
E NA China Retrospective 96 NA 55 (57) 17 (17) IV NA EGFR-TKI 8.2

Marco R
(2018) [40] D 2008~2016 Italy Retrospective 55 66 29 (58) 23 (46) IV 55 (100) First line EGFR

TKI 10.5

Hyungjin K
(2017) [41] D 2005~2015 Korean Retrospective 48 61 25 (51.2) 22 (45.8) NA NA First line EGFR

TKI 9.7

D, development dataset; V, validation dataset; E, external validation dataset; NA, not applicable; Adeno, adenocarcinoma; EGFR-TKI, epidermal growth factor receptor tyrosine kinase
inhibitor; Gen, generation; PFS, progression-free survival.
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Table 2. Summary of details of radiomic and image analyses.

Author Segmentation VOI Clinical Feature Software Radiomics Validation Classifier Endpoints

Chia-Feng L (2023)
[30] Manual Primary tumor N, M, histology,

TP, MCV
Multimodal
Radiomics
Platform

Radiomics Split sample DeepSurv PFS

X. B. Z (2023) [31] Semi-
automatically Primary tumor None

Syngo.via Frontier,
Radiomics,

version 1.2.5,
Siemens

Healthineers

Delta Radiomics External
validation

Random survival
forest PFS

Jian-man Z (2022)
[32] Manual ROI

age, sex, stage,
smoking,

mutations, TKI,
outcome

Pyradiomics Radiomics Cross validation logistic regression
model PFS

Kexue D (2022)
[33] Manual Primary tumor None

EfficientNetV2
architecture (deep

learning)

Deep learning
Radiomics

External
validation

EfficientNetV2
architecture PFS

Shuo W (2022) [34] NA Whole lung None FAIS (deep
learning)

Deep learning
Radiomics Split sample LASSO-Cox PFS

Meilin J (2022) [35] Manual ROI None Pyradiomics Radiomics Split sample Cox-proportional
hazard PFS

Runping H (2021)
[36] Manual ROI

age, sex, smoking,
clinical stages,

molecular status

3D CNN (deep
learning)

Deep learning
Radiomics Split sample 3D CNN PFS

Xin T (2021) [37] Manual ROI PS and M NA Radiomics Cross validation stepwise
regression PFS

Jiangdian S (2021)
[38] NA Whole slice None BigBiGAN Deep learning

Radiomics
External

validation LASSO-Cox PFS

Jiangdian S (2018)
[39] Manual Primary tumor smoke, N programmed

algorithms Radiomics External
validation LASSO-Cox PFS

Marco R (2018)
[40] Manual ROI None TexRAD Radiomics Cross validation Cox-proportional

hazard PFS

Hyungjin K (2017)
[41] Manual Primary tumor

age, baseline
tumor diameter,
and treatment

response

Medical Imaging
Solution for

Segmentation and
Texture Analysis

Delta Radiomics Cross validation Cox-proportional
hazard PFS

NA, not applicable; VOI, volume of interest; N, N staging; M, M staging; TP, total protein; MCV, mean corpuscular volume; TKI, tyrosine kinase inhibitor; PS, performance status;
LASSO-Cox, Least Absolute Shrinkage and Selection Operator- Cox proportional hazards, CNN, convolution neural network; PFS, progression-free survival.
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3.1.3. Radiomics and Image Analysis

The radiomic and image analysis details of the included studies are presented in
Table 2. In terms of the region of interest selection, tumor segmentation was performed
in ten studies [30–33,35–37,39–41], while two studies did not include tumor segmenta-
tion [34,38]. For the studies with segmented tumors, primary tumors alone were segmented
in five studies [30,31,33,39,41], while the others defined regions of interest [32,35–37,40].
Clinical features were incorporated into six studies [30,32,36,37,39,41]. Traditional hand-
crafted radiomics methods were used in six studies [30,32,35,37,39,40], and temporal
changes in radiomics were accounted for in two studies [31,41]. Deep learning models
were employed for the extraction of deep learning radiomics in four studies [33,34,36,38].
External validation of the models was conducted in only four studies [31,33,38,39]. Con-
ventional statistical methods were utilized for radiomic analysis in all studies, except for
three studies that employed deep learning [30,33,36] and machine learning techniques [31].

3.2. Quality Assessment Results

Quality in Prognosis Studies (QUIPS) assessment of the 12 studies is shown in
Figure 2 [30–41]. The assessment of individual studies showed that there were low risk
bias and fair application concerns for most of the assessed criteria, except for higher risk of
study participants and confounding measurement in three studies. Statistical analysis and
reporting also showed high risk of bias in one study (Figure 2a). A summary of the risk of
bias for all studies is shown in Figure 2b.

Table 3 presents the individual and total RQS scores for all included studies as evalu-
ated by two reviewers. The mean score for the 12 studies was 11.67 (range: 9–15). A majority
of the studies provided well-documented image acquisition protocols. Baseline scans were
used for image acquisition in all studies, with two studies [31,41] incorporating additional
imaging at follow-up time points. Manual segmentation was employed in nine studies
(75%), and semi-automatic segmentation was used in one study (8.3%), while two studies
(12.6%) did not use segmentation methods. Feature dimension reduction or adjustment
was conducted in all studies, and for deep learning studies, it was assumed that the models
inherently possessed feature selection characteristics. Clinical features were integrated
into the radiomic models in six studies (50%) [30,32,36,37,39,41], and five of these studies
suggested that the combination of clinical data and radiomic features could enhance the
models’ predictive performance. The clinical characteristics included age, gender, smoking,
histology, Eastern Cooperative Oncology Group (ECOG) performance status, M staging,
N staging, EGFR mutation, clinical staging, and blood tests. The correlation between
tumor biology and radiomic features was investigated and discussed in one study (8.3%).
Most studies carried out cutoff analysis to stratify patients into low- and high-risk groups.
Regarding model assessment, discrimination statistics were frequently provided, while
calibration statistics were less frequently mentioned. Validation of radiomics signatures
was conducted in 12 studies (100%), with 4 studies (25%) utilizing external datasets from
other institutions. Nine studies demonstrated clinical utility, and three performed cost-
effectiveness analyses. In terms of open science and data availability, three of the included
studies made their code open source, contributing to the transparency and reproducibility
of their findings [33,38,39]. The utilization of open-source approaches in these studies,
which includes providing access to code, models, and some data, markedly contributes to
the transparency and reproducibility of the research. In the study by Kexue D et al. [33], an
EfficientNetV2-based Survival Benefit Prediction System (ESBP) was developed. They pro-
vided a comprehensive set of resources including code for training, validation, and testing,
tools for CT image reading and processing, and a subset of their anonymized dataset. This
allows for reproducibility of their results and potential application or adaptation of their
methodology by other researchers, bolstering the reusability of their model. On the other
hand, the study by Jiangdian S in 2021 [38] focused on providing the code for training their
deep learning model, although the weights of the trained model or data were not explicitly
provided. In addition, the study also shared code for extracting the radiomic features used
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in their analysis. Although the final model was not directly provided, with the provided
code and similar data, researchers can reproduce their methodology and calculate the
desired outcomes. In another instance, one study surpassed standard practices by openly
sharing both the calculated features and representative regions of interest (ROIs) [39]. This
significantly enhances the reusability of their models and allows for a deeper and more
comprehensive analysis by other researchers.
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Table 3. Details of radiomic quality score.
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[30]
0 0 0 0 3 2 1 0 0 1 1 2 0 0 0 0 10

X. B. Z
(2023) [31] 1 1 0 1 3 3 1 0 0 1 1 2 0 0 0 0 14

Jian-man Z
(2022) [32] 1 1 0 0 3 2 0 0 0 0 1 2 0 0 0 0 10

Kexue D
(2022) [33] 0 1 0 0 3 3 1 0 0 1 1 2 0 0 0 2 14

Shuo W
(2022) [34] 1 0 0 0 3 3 0 1 0 1 0 0 0 0 0 0 9

Meilin J
(2022) [35] 1 0 0 0 3 2 1 0 0 1 1 2 0 0 0 0 11

Runping H
(2021) [36] 1 0 0 0 3 2 1 0 0 1 0 2 0 0 0 0 10

Xin T
(2021) [37] 1 1 0 1 3 2 1 0 0 1 0 2 1 0 0 0 13

Jiangdian
S (2021)

[38]
1 0 0 0 3 3 1 0 0 1 1 2 1 0 0 1 14

Jiangdian
S (2018)

[39]
0 1 0 0 3 4 1 0 0 1 1 2 1 0 0 1 15

Marco R
(2018) [40] 1 0 0 1 3 2 1 0 0 0 1 2 0 0 0 0 11

Hyungjin
K (2017)

[41]
1 0 0 1 3 2 1 0 0 0 1 2 0 0 0 0 11

3.3. Radiomic Features and Prognostic Performance

The patients could be stratified into low- and high-risk groups by radiomic models.
The first meta-analysis of comparing the target therapy outcome between the two groups
showed that the pooled HR was 2.80 (95% CI 1.87–4.19, p < 0.001) for PFS (seven studies;
Figure 3a). The I2 statistic implied moderate heterogeneity among the studies (I2 = 71%,
p = 0.002). The second and third meta-analysis, which evaluated the predictive power of
prognosis model with the AUC and c-index, showed the pooled AUC was 0.73 (95% CI
0.70–0.76, p < 0.001) for median PFS and the c-index was 0.71 (95% CI 0.68–0.74, p < 0.001)
(four studies; Figure 3c). The I2 statistic implied low heterogeneity among the studies
(I2 = 0%, p = 0.69; I2 = 0%, p = 0.46 for the AUC and c-index).
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4. Discussion
4.1. Quality of Radiomic Studies: QUIPS and RQS Evaluation

In our systematic review, we assessed the quality of the included radiomic studies
using the Quality in Prognosis Studies (QUIPS) tool and the radiomics quality score (RQS).
These evaluations provided insights into the methodological rigor and reproducibility
of the studies, which are essential for establishing the reliability and generalizability of
the findings. Overall, the mean RQS of the included studies was 11.67 (range: 9–15),
indicating a moderate level of quality. Most studies have reported well-documented image
acquisition protocols, and the majority have employed segmentation methods, such as
manual or semi-automatic approaches. Feature dimension reduction or adjustment was
performed in all studies, with deep learning models assumed to possess inherently feature
selection characteristics. Additionally, half of the studies integrated clinical features into
radiomic models, which suggested that combining clinical data with radiomic features
could improve predictive performance. However, there were some limitations to the quality
assessment. Notably, only four studies employed external datasets for validation, and only
a few studies discussed the correlation between tumor biology and radiomic features or
demonstrated the clinical utility and none addressed cost-effectiveness of the radiomic
models. The limited availability of open science and data sharing is also concerning.



Cancers 2023, 15, 3542 12 of 15

4.2. Summary of Main Findings of Meta-Analysis

This meta-analysis focused on assessing the role of radiomics in predicting treatment
outcomes and response in NSCLC patients receiving targeted therapies, specifically EGFR-
TKIs. Our results demonstrated that radiomic models can effectively stratify patients into
low- and high-risk groups. The high-risk group was associated with poorer progression-
free survival (PFS) than the low-risk group. Furthermore, quantitative evaluation of the
predictive performance of radiomic models, as measured by the area under the curve
(AUC) and concordance index (c-index), was generally satisfactory. The pooled hazard
ratio (HR) for PFS between the low- and high-risk groups was 2.40 (95% CI 1.89–2.80,
p < 0.001), indicating that the high-risk group had a significantly worse PFS outcome. The
I2 statistic revealed high heterogeneity among studies (I2 = 71%). The pooled AUC for
the radiomic models in predicting median PFS was 0.73 (95% CI 0.70–0.76, p < 0.001), and
the pooled c-index was 0.71 (95% CI 0.68–0.74, p < 0.001). These values suggest that the
radiomic models exhibited a good predictive performance. The I2 statistic for both the
AUC and c-index showed low heterogeneity among the studies (I2 = 0%). Overall, these
findings highlight the potential utility of radiomic models in identifying high-risk patients
with receiving EGFR-TKIs, which could contribute to personalized treatment strategies
and improve patient outcomes.

4.3. Clinical Implications

To the best of our knowledge, this is the first systematic review and meta-analysis
to focus on the application of radiomics in the prognosis of NSCLC treated with targeted
therapy. The findings of our study have several noteworthy implications for the manage-
ment of patients with NSCLC receiving targeted therapies. The ability to stratify patients
based on their risk profiles, as demonstrated by radiomic models, allows healthcare pro-
fessionals to make more informed treatment decisions. This approach can potentially
facilitate personalized treatment plans that consider each patient’s unique risk factors
and tumor characteristics [42,43]. Moreover, the integration of radiomic signatures with
clinical and molecular data can contribute to the development of comprehensive prognostic
models [21,44]. These models can provide a more accurate prediction of treatment response
and outcomes, thereby guiding the optimization of therapeutic strategies for NSCLC pa-
tients treated with EGFR-TKIs [45,46]. It is important to note that external validation and
standardized protocols are essential to ensure the reliability and reproducibility of radiomic
models [19]. Future studies should emphasize the need for standardized image acquisition,
preprocessing, and feature extraction methods, as well as rigorous validation strategies to
improve the clinical utility of radiomic models in the management of NSCLC [47,48].

4.4. Future Directions and Study Limitations

To further advance the field of radiomics in predicting treatment outcomes for NSCLC
patients receiving targeted therapies, future studies should address the limitations iden-
tified in this review. These include increasing the use of external validation datasets,
exploring the biological relevance of radiomic features, and enhancing data-sharing prac-
tices. Moreover, the incorporation of emerging technologies, such as artificial intelligence
and machine learning algorithms, can potentially improve the accuracy and predictive
power of radiomic models. The quantitative outcomes from this systematic review and
meta-analysis highlight the potential of radiomic models in predicting treatment outcomes
in NSCLC patients receiving targeted therapies. For instance, the pooled hazard ratio (HR)
for PFS was 2.80, with a 95% confidence interval (CI) of 1.87–4.19 (p < 0.001). Furthermore,
the pooled AUC and c-index values were 0.73 (95% CI: 0.70–0.76, p < 0.001) and 0.71 (95%
CI: 0.68–0.74, p < 0.001), respectively, suggesting satisfactory predictive performance of the
radiomic models.

In addition to the current focus on tyrosine kinase inhibitors, it is equally pertinent
to consider the potential role of other EGFR inhibitors such as monoclonal antibodies
(mAbs) like cetuximab and panitumumab in NSCLC treatment. These mAbs have shown
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promise in clinical settings, and it would be insightful to examine their clinical implications
through radiomic analysis. Future research should endeavor to integrate these therapies
into radiomic predictive models, which could potentially widen the scope of personalized
treatment strategies for NSCLC patients. Furthermore, these future investigations could
also shed light on the comparative efficacy and therapeutic value of TKIs versus mAbs,
enhancing our understanding and management of NSCLC.

Despite our comprehensive analysis, there are some limitations to consider. First, the
number of studies included was relatively small, which may have limited the generalizabil-
ity of our findings. Additionally, the limited number of studies may have contributed to
potential country bias, where certain regions are overrepresented while others are under-
represented. Second, we observed high heterogeneity in some meta-analyses, which could
be due to differences in study populations, imaging protocols, or radiomic methodologies.
Finally, the inclusion of studies published only in English may have introduced language
bias and potentially excluded relevant findings from non-English publications.

5. Conclusions

In summary, our systematic review and meta-analysis demonstrated the potential of
radiomics in predicting treatment outcomes and responses in patients with NSCLC receiv-
ing targeted therapies such as EGFR-TKIs. Radiomic models effectively stratify patients
into low and high-risk groups, providing a valuable tool for guiding personalized treat-
ment decisions. However, the quality of the included studies varied, with some limitations
identified in terms of external validation, biological relevance, and data-sharing practices.
To further advance the field of radiomics and optimize its utility in clinical practice, future
studies should address these limitations and focus on integrating emerging technologies,
such as artificial intelligence and machine learning algorithms. Moreover, large-scale,
multicenter studies with diverse populations would help validate and generalize radiomic
models, ensuring their applicability across various clinical settings. Ultimately, the contin-
ued development and refinement of radiomic models hold the promise of improving the
overall management of NSCLC patients and optimizing the use of targeted therapies such
as EGFR-TKIs. By harnessing the predictive power of radiomics, clinicians can better tailor
treatment strategies to individual patients, potentially enhancing treatment efficacy and
patient long-term outcomes in the long run.
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