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Simple Summary: This study focuses on the integration of 99mTc Sestamibi SPECT/CT and radiomics
analysis to characterize benign renal oncocytic neoplasia. Our research includes renal tumors with
histopathological analysis (conducted by independent pathologists) serving as the ground truth.
Radiomics data were extracted from contrast-enhanced CT images to build machine-learning models.
The combined SPECT/radiomics model achieved higher accuracy (95%) than the radiomics-only
model (75%) and visual evaluation of 99mTc Sestamibi SPECT/CT alone (90.8%). This approach
promises the improvement of diagnostic accuracy in renal tumor characterization and the reduction
in unnecessary surgery for benign tumors.

Abstract: The increasing evidence of oncocytic renal tumors positive in 99mTc Sestamibi Single Photon
Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development
of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined
radiomics analysis with the uptake of 99mTc Sestamibi on SPECT/CT to differentiate benign renal
oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected.
Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were
trained using the radiomics features alone and combined with the results from the visual evaluation
of 99mTc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher
accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-
only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of 99mTc Sestamibi
SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values
of SPECT/radiomics, radiomics-only, and 99mTc Sestamibi SPECT/CT-only models were 100%,
85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and
94.6%, respectively. Feature importance analysis revealed that 99mTc Sestamibi uptake was the
most influential attribute in the combined model. This study highlights the potential of combining
radiomics analysis with 99mTc Sestamibi SPECT/CT to improve the preoperative characterization
of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the
visual evaluation of 99mTc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that

Cancers 2023, 15, 3553. https://doi.org/10.3390/cancers15143553 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15143553
https://doi.org/10.3390/cancers15143553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-2731-933X
https://orcid.org/0000-0003-2964-315X
https://orcid.org/0000-0001-7563-732X
https://doi.org/10.3390/cancers15143553
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15143553?type=check_update&version=1


Cancers 2023, 15, 3553 2 of 13

the integration of 99mTc Sestamibi SPECT/CT and radiomics data provides improved diagnostic
performance, with minimal false positive and false negative results.

Keywords: 99mTc Sestamibi SPECT/CT; artificial intelligence; machine learning; radiomics; renal cell
carcinoma; renal oncocytoma; renal oncocytic neoplasia; XGboost

1. Introduction

Accumulating evidence exists nowadays that indolent renal tumors appear posi-
tive in 99mTc Sestamibi Single Photon Emission Tomography/Computed Tomography
(SPECT/CT) [1–4]. Detecting clinically benign renal tumors using 99mTc-Sestamibi SPECT/CT
could safely reduce the overtreatment of those tumors. Compared to traditional CT, 99mTc-
Sestamibi SPECT/CT is a hybrid imaging method that combines the depiction 99mTc-
Sestamibi with CT image acquisition. The broad spectrum of renal oncocytic tumors is
reflected in the latest update of the 5th World Health Organization (WHO) edition of kidney
tumor pathology [5,6]. Apart from the well-studied tumors like renal oncocytoma (RO)
and chromophobe renal cell carcinoma (chRCC), new entities like hybrid oncocytic chromo-
phobe tumors (HOCT) [7] and low-grade oncocytic tumors (LOT) [8] are getting established
via modern histopathologic, immunohistochemical, and molecular methods and clinical
evidence. The establishment of new and emerging renal entities [9] requires, however, an
understanding of the diagnostic nuances of clinical oncologists and pathologists [10] in
differentiating such renal oncocytic neoplasia. According to the latest guidelines from the
WHO, the new and emerging renal entities impose an updated approach to the diagnostic
performance of this examination method, namely 99mTc-Sestamibi SPECT/CT.

Previous research of our group has uncovered metabolic differences between tumors
positive on 99mTc Sestamibi SPECT/CT, contributing to the expansion of the renal oncocytic
neoplasia [11]. Renal tumors positive on 99mTc Sestamibi SPECT/CT examination are
potentially benign (RO and LOT) [12,13] or indolent (HOCT) [2] with no proven metastatic
potential. The high negative predictive value (~90%) of this hybrid imaging method,
can reduce the overtreatment of low-grade oncocytic neoplasia [14] by proposing a cost-
effective oncological investigation model of renal neoplasia [15]. Kidney tumors negative
on 99mTc Sestamibi SPECT/CT examination could be managed with surgery. In contrast,
those that are positive could be followed by an active surveillance program [16], avoiding
unnecessary surgery [17].

The preoperative differentiation of benign renal oncocytic neoplasms, chRCC, and
other RCC types remains a diagnostic challenge for conventional radiological methods [18].
Modern radiomics advances [19] and the implementation of artificial intelligence mod-
els [20] contribute to the non-invasive characterization of renal neoplasia but not in a
definitive way. The latest study of our group [2] visually evaluated the performance of
99mTc Sestamibi SPECT/CT examination in 57 renal tumors resulting in sensitivity and
specificity of 88% and 85%, respectively, in the characterization of RO and HOCT when
clustered together. Further, an increase in sensitivity and specificity of this method would
further reduce the false positive and false negative findings, increasing the method’s
reliability and ultimately avoiding unnecessary surgery for such benign tumors.

Radiomics analysis provides a detailed evaluation of the regions of interest in medical
images, allowing for the quantification and analysis of image characteristics imperceptible
to the experienced human eye. It represents the image-based equivalent of other traditional
-omics methods (e.g., metabolomics, transcriptomics, genomics, proteomics, etc.) and has
the potential to offer an image-based characterization of complex tissues. Areas of interest
in medical images, such as CT or MRI, are segmented, and high-dimensional data are
extracted to provide a high-fidelity analysis of the examined tissues. This includes a series
of “semantic” and “agnostic” features. Semantic features such as the size and shape of a
lesion are features common in radiology reports, whereas agnostic features include texture
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details that attempt to quantify tumor heterogeneity [21]. This strategy could be used as an
image-based biopsy for tumors [22], alone or in combination with other biological tumor
traits such as the uptake of 99mTc Sestamibi. Many radiomics studies have been published
attempting to differentiate between benign and malignant renal tumors. Nonetheless, most
were based on prior WHO classifications of renal tumors, thus neglecting newly recognized
tumor types with different biologic characteristics. In addition, most reported unacceptably
high false positive and false negative findings that hindered their introduction into the
clinical practice [23]. Thus, identifying strategies to increase the diagnostic accuracy of
radiomics would be an important addition to existing radiomics models.

This study attempted to combine the diagnostic performance of radiomics analysis
and 99mTc Sestamibi SPECT/CT in differentiating RO, HOCT, and LOT from RCC. The aim
was to increase the specificity of existing radiomics methods by integrating 99mTc Sestamibi
uptake information while utilizing an up-to-date version of renal tumor classification. This
combined SPECT/radiomics model was compared to a model based only on radiomics and
the one that utilized visual 99mTc Sestamibi SPECT/CT evaluation for the characterization
of benign and indolent renal oncocytic neoplasia.

2. Materials and Methods

The research project was conducted at the Nuclear Medicine Department of Karolin-
ska University Hospital, Huddinge, following ethical approval from the Regional Ethical
Review Board and the local Radiation Safety Committee. Written informed consent was
obtained from all participants in this study. This study spanned from September 2015 to
September 2019 and involved a non-randomized, exploratory research design. Eligible
candidates were discussed at the kidney tumor multidisciplinary conference in the hos-
pital’s Radiology Department, excluding patients with advanced-stage renal tumors or
metastatic disease.

2.1. Patients and 99mTc Sestamibi SPECT/CT Imaging

A total of 57 consecutive renal tumors from 52 patients were prospectively collected
as part of the MIDOR Project (Swedish innovation agency, VINNOVA), as published pre-
viously by our group [2]. Following a standardized imaging protocol [24], participants
who agreed to participate underwent a 99mTc-Sestamibi SPECT/CT examination before
nephrectomy or renal biopsy. The visual evaluation of 99mTc-Sestamibi uptake was per-
formed independently by two experienced readers for all 57 tumors [2]. The uptake was
categorized as Sestamibi-positive if it visually exceeded the uptake in the normal renal
parenchyma and as Sestamibi-negative if it was equal to or lower than the uptake in the
normal parenchyma [2]. A priori sample size estimation was performed using a linear
regression model type, significance set at 0.05, an average of 10 model predictors, power of
0.8, and an effect size of 0.3, which yielded a minimum sample size of 48 samples.

2.2. Pathological Diagnosis

Two independent pathologists conducted the histopathological analysis of the exam-
ined renal tumors. They reviewed hematoxylin and eosin (H&E) and immunohistochemical
(IHC) slides of the tumors in a blinded manner, without knowledge of any imaging evalua-
tion. The confirmed or updated histopathological diagnoses, determined via consensus,
were used as the ground truth for correlation with the radiomics and SPECT/CT results [2].
Furthermore, a third expert urologic pathologist blindly evaluated all chRCC included
in the MIDOR study that evaluated the metabolic differences between Sestamibi-positive
and Sestamibi-negative chRCCs [2,11]. The correlation of the histopathologic analysis with
metabolomics and SPECT/CT results resulted in the inclusion of a renal tumor group of
LOT, an emerging benign entity. The tumors in this study have been grouped based on this
contemporary diagnostic evaluation, in which HOCT and LOT are considered in the same
group as RO.
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2.3. CT-Based Radiomics Analysis

Contrast-enhanced CT examinations in the venous phase of 54 of 57 renal tumors were
retrieved to extract radiomics data. Due to insufficient CT material (lack of venous phase
images), 3 of 57 tumor cases were not included in the radiomics analysis. Each tumor was
manually segmented by two experienced readers in image segmentation using 3D Slicer v.
4.11.20 for Windows (Slicer.org (accessed on 8 July 2023)); radiomics data were extracted
using the PyRadiomics module of 3DSlicer. Original and texture features (grey level co-
occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level
size zone matrix, neighboring grey tone difference matrix), and their wavelet and Laplacian
of Gaussian transformations were also extracted. Voxels were resized to 1 × 1 × 4 mm,
and a uniform bin width of 32 was used to homogenize the image information. A total of
944 features were extracted from each volume of interest. Radiomics feature stability during
segmentation was assessed, and only features with a coefficient of variation <10% between
duplicate segmentations were utilized, leading to a final dataset of 700 features. Data were
randomly split 70%/30% into training and validation sets. Each set was subjected to scaling,
elimination of correlated features, and Boruta tree-based feature selection.

2.4. Machine Learning

Features identified as significant by Boruta were used for XGBoost classifier con-
struction. Two XGboost models were trained: (a) one only with radiomics features and
(b) one with the addition of 99mTc Sestamibi uptake as an extra model feature (referred
to further as SPECT/radiomics). XGboost was chosen based on its superior performance
on tabular data, which validated it as one of the most successful machine-learning mod-
els in data science competitions using tabular data (https://github.com/dmlc/xgboost/
blob/master/demo/README.md#machine-learning-challenge-winning-solutions, ac-
cessed on 12 June 2023). XGboost combines a set of weak learners (decision trees) to
construct a powerful classifier. Details about the structure of XGboost and relevant code
for the replication of the model can be found in the documentation of the R package
(https://xgboost.readthedocs.io/en/stable/R-package/index.html, accessed on 2 July
2023). The model can also be used in python with the xgboost package. Models were
trained with 5-fold cross-validation in the training set and hyperparameter optimization
with random search (n = 1000). Classifier performance was evaluated with areas under
the curve (AUC) of receiver operating characteristics (ROC) curves and the respective 95%
confidence intervals. Confidence intervals were calculated via bootstrapping (n = 10,000).
Optimal probability thresholds were defined from ROC curves to maximize sensitivity,
specificity, accuracy, F1-scores, positive predictive values (PPV), and negative predictive
values (NPV). AUC of different ROC curves were statistically compared using bootstrap-
ping. Weight importance of features for XGboost classification was analyzed and presented
on feature importance graphs. Weight importance quantifies the contribution of each
feature to the final classification based on the number of times it was used to split the data
on the ensemble trees composing the XGboost model. The more frequently a feature is used
for splitting, the higher its weight importance. Significance was considered with p-values
less than 0.05. Model training was performed with R programming language (v 4.2.2 as
implemented in R Studio v2023.06 for Mac), using an Apple M1 Max 64 Gb system with
MacOs Ventura 13.3.1. The outline of the radiomics arm of our study design is illustrated
in Figure 1.

https://github.com/dmlc/xgboost/blob/master/demo/README.md#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/blob/master/demo/README.md#machine-learning-challenge-winning-solutions
https://xgboost.readthedocs.io/en/stable/R-package/index.html
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Figure 1. Flowchart outlining the design of the radiomics arm of this study. White arrows indicate a
renal tumor of the inferior pole of the left kidney with visible 99mTc Sestamibi SPECT/CT uptake
(Sestamibi-positive) (created with biorender.com, accessed on 12 June 2023).

3. Results

3.1. Tumor Characteristics in 99mTc Sestamibi SPECT/CT

The visual evaluation of 99mTc-Sestamibi SPECT/CT examinations was performed for
the whole dataset of 57 tumors. A total of 19 tumors were included in the benign oncocytic
group that contained 11 RO, 5 HOCT, and 3 LOT. When clustering RO, HOCT, and LOT,
the method yielded a sensitivity of 89.5% and a specificity of 92.1%. Only 2 of 19 tumors in
the benign category were negative for 99mTc Sestamibi. In contrast, the majority of other
tumors were negative for 99mTc Sestamibi, with only three chromophobe RCCs displaying
uptake. The negative predictive value of this hybrid molecular method reached 94.6%, with
a positive predictive value of 85%, Table 1.

3.2. Radiomics Analysis

Radiomics data were extracted for the 54 tumors where venous phase images were
available. Two groups were evaluated: (a) group only with radiomics data and (b) group
where 99mTc Sestamibi SPECT/CT uptake was included together with the radiomics fea-
tures (SPECT/radiomics group). Following collinearity correction, Boruta feature selection
yielded 12 significant features in the SPECT/radiomics group, including the uptake of
99mTc Sestamibi (Figure 2A). In the radiomics-only group, Boruta identified 10 significant
radiomics features used for subsequent model building (Figure 2B).

biorender.com
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Table 1. Visual evaluation of 99mTc-Sestamibi uptake on 57 solid renal tumors resulting in 89.4%
sensitivity and 92% specificity in detecting RO, HOCT, and LOT. Histological types in bold font
represent the benign oncocytic group. HOCT: Hybrid oncocytic chromophobe tumor. LOT: Low-
grade oncocytic tumor.

Histological Types
of Renal Tumors

Number of Renal
Tumors

99mTc-Sestamibi
Positive, n (%)

99mTc-Sestamibi
Negative, n (%)

Renal Oncocytoma 11 9 (82%) 2 (18%)
HOCT 5 5 (100%) 0
LOT 3 3 (100%) 0
Chromophobe RCC 8 3 (37.5%) 5 (62.5%)
Clear Cell RCC 13 0 13 (100%)
Papillary RCC 9 0 9 (100%)
Clear cell Papillary
Renal Cell Tumor 4 0 4 (100%)

Collision RCC 1 0 1 (100%)
B-cell Lymphoma 1 0 1 (100%)
Metanephric
adenoma 1 0 1 (100%)

Angiomyolipoma 1 0 1 (100%)
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Figure 2. Boruta feature selection results in the SPECT/radiomics (A) and radiomics-only (B) groups.
RF: radiomics features; SPECT/CT: uptake (±) of 99mTc Sestamibi on SPECT/CT. Blue box, red,
yeallow and green plots represent shadow, not important, tentative and confirmed important at-
tributes, respectively.

The features identified by Boruta were then used to build two XGboost classifiers. The
combined SPECT/radiomics classifier achieved an AUC of 98.3 (95%CI 93.7% to 100%),
which was significantly higher (p = 0.048) than the AUC of the radiomics-only model with
an AUC of 75% (95%CI 49.7% to 100%) (Figure 3). The combined SPECT/radiomics method
also demonstrated higher sensitivity and specificity than the visual evaluation of 99mTc
Sestamibi SPECT/CT alone. However, the NPV of the SPECT-only method was still higher
than the respective NPV of the combined SPECT/radiomics classifier (94.6% vs. 85.71%,
respectively). Detailed performance metrics for all methods are presented in Table 2.
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Figure 3. Receiver operating characteristics (ROC) curves of the combined SPECT/radiomics (red
line) and the radiomics-only (blue line) XGboost models. AUC: area under the curve; CI: confi-
dence interval.

Table 2. Performance metrics various methods.

AUC Accuracy F1-Score Sensitivity Specificity PPV NPV

SPECT &
Radiomics

98.3%
(93.7–100%) 95% 90% 90% 100% 100% 85.71%

Radiomics 75%
(49.7–100%) 71.67% 70.59% 60% 83.3% 85.71% 55.56%

Visual
evaluation of 99mTc

Sestamibi
SPECT/CT

90.8%
(82.5–99.1%) 90.8% 87.2% 89.5% 92.1% 85% 94.6%

Feature importance analysis demonstrated that 99mTc Sestamibi uptake was the most
important attribute that influenced the prediction of the combined model, along with eight
wavelets and one original radiomics feature (Figure 4A). In the radiomics-only model,
seven wavelet transformations of texture features and two wavelet transformations of
original features were found to determine the performance of the model (Figure 4B).
Individual values of important radiomics features from the combined SPECT/radiomics
model can be found in Figure 5. As shown in Figure 5, the values of only five of nine
important features differed significantly between these two groups, highlighting the need
for inclusive multivariate models where interactions and simultaneous level changes of the
features can be important for the final prediction.
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Figure 5. Individual radiomics feature values were important for classifying the combined
SPECT/radiomics model. Barplots represent normalized feature values in the benign (pink) and ma-
lignant (cyan); six wavelet transformations of texture features (A–E,I), two wavelet transformations
of first-order features (G,H), and one original texture radiomics feature (F) are compared between the
benign and malignant group. Boxplot statistics have been derived with the geom_boxplot function of
the ggplot2 package in R; y-axis: standardized relative value of radiomics features; dots represent
outlier data beyond the end of the whiskers *: p < 0.05.

4. Discussion

In this study, we combined the radiomics analysis with 99mTc Sestamibi SPECT/CT to
optimize the preoperative differentiation between malignant renal tumors and a group of
benign oncocytic neoplasms. A combined SPECT/radiomics machine-learning classifier
was developed, which achieved better performance compared to the radiomics-only classi-
fier and the exclusive visual evaluation using 99mTc Sestamibi SPECT/CT. Importantly, we
used a contemporary approach in diagnosing oncocytic renal tumors, that included LOT,
as a recently recognized benign entity.

Many radiomics studies have been published attempting to differentiate between
benign and malignant renal tumors. A systematic review of such studies identified 52 pub-
lications until 2021 which attempted such a differentiation, highlighting great heterogeneity
between radiomics methodologies and the overall low quality of the studies [23]. Pub-
lished CT-based radiomics studies reported AUCs between 67% and 93% [25–30] and
utilized a variety of machine-learning models, including regression models [31], random
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forests [28], and gradient-boosting algorithms [29], using histopathology as the ground
truth [20]. The study by Deng et al. [32], which utilized one of the largest cohorts of
such patients (n = 501), demonstrated an AUC of ~62% for the differentiation between
benign and malignant tumors based on texture features. Our results are comparable to
those published in the literature, indicating that radiomics alone can distinguish benign
oncocytic neoplasia with an AUC of ~75%. This performance was, however, significantly
increased by combining the 99mTc Sestamibi uptake as an additional parameter, resulting
in increased diagnostic accuracy and improved positive and negative predictive value
over the radiomics-only approach. The addition of non-radiomics parameters to a mul-
tivariable model has been previously suggested by Lambin et al. [33], as a method to
optimize the predictive model development. We found that the uptake of 99mTc Ses-
tamibi distinguished the metabolic behavior of the renal tumors and discriminated specif-
ically a group of benign oncocytic neoplasms. Consequently, the addition of 99mTc Ses-
tamibi SPECT/CT has been recently incorporated for the evaluation of renal tumors in
the 2023 version of the Swedish national guidelines for the management of renal cancer
(https://cancercentrum.se/samverkan/cancerdiagnoser/njure/vardprogram/, accessed
on 12 June 2023). Therefore, integrating 99mTc-Sestamibi SPECT/CT for the preoperative
clinical examination could guide clinical decisions toward active surveillance or surgical
intervention.

Combined SPECT/radiomics methodology achieved better sensitivity and specificity
than the visual evaluation of 99mTc Sestamibi uptake. This is important because such a
combined method can reduce the false positive and the false negative findings, which may
lead to unnecessary surgery delays or increase unnecessary surgeries, affecting patient
morbidity and mortality. Nonetheless, the NPV of 99mTc-Sestamibi SPECT/CT alone
was higher than the NPV of the combined method. This could be attributed to the fact
that radiomics features alone bear a very low NPV (~55%), which dilutes the excellent
NPV of 99mTc-Sestamibi SPECT/CT visual evaluation. As demonstrated in our previous
work and by other research groups, most ROs are Sestamibi-positive [14]. Therefore,
a combined SPECT/radiomics model could be of clinical value in cases where 99mTc-
Sestamibi SPECT/CT falsely indicates signs of malignancy.

Radiomics-only and combined SPECT/radiomics models are based mainly on wavelet
transformations of texture features. This is likely because the wavelet transformations of
original images decompose the image using low and high-band filters, and bypass varia-
tions in noise profiles, which may introduce a degree of examination variance. In addition,
wavelet transformations are known to enhance line and edge patterns on images [34],
which are present, for example, on irregular surfaces, fibrotic areas, and calcifications,
in renal tumors [35]. Similar wavelet features have been previously shown to be impor-
tant in the radiomics analysis of areas containing irregular lines such as the band lines of
avascular bone necrosis [36]. The fact that such texture features were important for the
classification is also in line with the current literature, as demonstrated by Bhandari et al.
in a systematic review of radiomics for renal tumor analysis [37]. The authors pointed
out that texture features have been important in most of the selected studies, and they
identified the need for well-designed prospective studies to assess the value of radiomics
in classifying renal neoplasia. CT is adequate for the analysis of the fine structure of hard
and soft materials [38–40], being an excellent method for the extraction of fine radiomics
information. These features can be used with in silico approaches that are important in sim-
ulating conditions and data that are not readily available in research and clinical practice,
reducing experimental time and associated costs [41–43]. The analysis of individual levels
of important features showed differences between tumor groups, with some of the features
reaching statistical significance. This highlights the importance of using multivariate analy-
sis and multivariate prediction models because single feature values cannot sufficiently
discriminate the tumor-imaging complexity.

This work has certain strengths and limitations. First, it includes a prospectively
collected dataset with histopathologically proven ground truth, including the most recent

https://cancercentrum.se/samverkan/cancerdiagnoser/njure/vardprogram/
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classification of renal tumors, according to the WHO. In addition, it integrated radiomics
evaluation with 99mTc Sestamibi uptake as an additional parameter, resulting in a multi-
faceted renal tumor evaluation. The limitations include the lack of an external validation
dataset and the limited sample size. However, the number of evaluated tumors is higher
than the sample size required to achieve a power of 80% with a statistical significance
of 0.05, determined using sample size calculation. We hope that our initial results will
prompt further studies for external validation of the proposed algorithm that will confirm
the method’s applicability and usefulness in routine clinical practice to reduce unnecessary
surgeries for benign renal tumors.

5. Conclusions

This study describes a machine-learning method that combined 99mTc Sestamibi
SPECT/CT and radiomics data to preoperatively distinguish benign oncocytic renal neo-
plasms. In contrast to existing radiomics studies, we have utilized the most up-to-date
pathological classification of renal tumors where benign RO is grouped with HOCT and
LOT. The utilization of the 99mTc Sestamibi SPECT/CT method follows the recently adopted
practices introduced into clinical practice guidelines.

The results of this study demonstrate that the integration of 99mTc Sestamibi SPECT/CT
and radiomics data provides improved diagnostic performance, with minimal false positive
and false negative results, reaching an accuracy of 95%. We hope that further external
validations of our algorithm will confirm the method’s applicability in various clinical
settings and will reduce the overtreatment of benign renal tumors. CT-based radiomics
could also supplement 99mTc Sestamibi SPECT/CT examinations for accurate preoperative
characterization of renal neoplasia.
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