The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Data Collection
2.3. Standard Treatment and Tumor Progression Determination
2.4. MRI Scan and Tumor Resection
2.5. Tumor Volumetric Analysis
2.6. Statistical Analysis
3. Results
3.1. General Information
3.2. Volumetric Analysis
3.3. Impact Factors Leading to Subtotal Resection
3.4. Progression-Free Survival
3.5. Karnofsky Performance Status
3.6. Surgery-Related Functional Deficits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubben, P.L.; ter Meulen, K.J.; Schijns, O.E.; ter Laak-Poort, M.P.; van Overbeeke, J.J.; van Santbrink, H. Intraoperative MRI-guided resection of glioblastoma multiforme: A systematic review. Lancet Oncol. 2011, 12, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Waqas, M.; Shamim, M.S. Role of Intra-operative MRI (iMRI) in Improving Extent of Resection and Survival in Patients with Glioblastoma Multiforme. J. Pak. Med. Assoc. 2017, 67, 1121–1123. [Google Scholar] [PubMed]
- Lo, Y.T.; Lee, H.; Shui, C.; Lamba, N.; Korde, R.; Devi, S.; Chawla, S.; Nam, Y.; Patel, R.; Doucette, J.; et al. Intraoperative Magnetic Resonance Imaging for Low-Grade and High-Grade Gliomas: What Is the Evidence? A Meta-Analysis. World Neurosurg. 2021, 149, 232–243.e3. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Sylvester, P.T.; Yahanda, A.T.; Vellimana, A.K.; Dunn, G.P.; Evans, J.; Rich, K.M.; Dowling, J.L.; Leuthardt, E.C.; Dacey, R.G.; et al. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: A multicenter-registry comparative study to conventional surgery. J. Neurosurg. 2021, 135, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, M.; Vaz, G.; Lawson, T.M.; Docquier, M.A.; van Maanen, A.; Duprez, T.; Raftopoulos, C. Glioblastoma surgery with and without intraoperative MRI at 3.0T. Neurochirurgie 2014, 60, 143–150. [Google Scholar] [CrossRef]
- Hatiboglu, M.A.; Weinberg, J.S.; Suki, D.; Rao, G.; Prabhu, S.S.; Shah, K.; Jackson, E.; Sawaya, R. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: A prospective volumetric analysis. Neurosurgery 2009, 64, 1073–1081; discussion 1081. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Cabrera-Aldana, E.E.; Jusue-Torres, I.; Wijesekera, O.; Olivi, A.; Rahman, M.; Quinones-Hinojosa, A. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg. 2014, 82, e257–e265. [Google Scholar] [CrossRef]
- Salvati, M.; Bruzzaniti, P.; Relucenti, M.; Nizzola, M.; Familiari, P.; Giugliano, M.; Scafa, A.K.; Galletta, S.; Li, X.; Chen, R.; et al. Retrospective and Randomized Analysis of Influence and Correlation of Clinical and Molecular Prognostic Factors in a Mono-Operative Series of 122 Patients with Glioblastoma Treated with STR or GTR. Brain Sci. 2020, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Oszvald, A.; Guresir, E.; Setzer, M.; Vatter, H.; Senft, C.; Seifert, V.; Franz, K. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age. J. Neurosurg. 2012, 116, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Coburger, J.; Wirtz, C.R.; Konig, R.W. Impact of extent of resection and recurrent surgery on clinical outcome and overall survival in a consecutive series of 170 patients for glioblastoma in intraoperative high field magnetic resonance imaging. J. Neurosurg. Sci. 2017, 61, 233–244. [Google Scholar] [CrossRef]
- Marchi, F.; Sahnane, N.; Cerutti, R.; Cipriani, D.; Barizzi, J.; Stefanini, F.M.; Epistolio, S.; Cerati, M.; Balbi, S.; Mazzucchelli, L.; et al. The Impact of Surgery in IDH 1 Wild Type Glioblastoma in Relation with the MGMT Deregulation. Front. Oncol. 2019, 9, 1569. [Google Scholar] [CrossRef]
- Gessler, F.; Bernstock, J.D.; Braczynski, A.; Lescher, S.; Baumgarten, P.; Harter, P.N.; Mittelbronn, M.; Wu, T.; Seifert, V.; Senft, C. Surgery for Glioblastoma in Light of Molecular Markers: Impact of Resection and MGMT Promoter Methylation in Newly Diagnosed IDH-1 Wild-Type Glioblastomas. Neurosurgery 2019, 84, 190–197. [Google Scholar] [CrossRef]
- Perrini, P.; Gambacciani, C.; Weiss, A.; Pasqualetti, F.; Delishaj, D.; Paiar, F.; Morganti, R.; Vannozzi, R.; Lutzemberger, L. Survival outcomes following repeat surgery for recurrent glioblastoma: A single-center retrospective analysis. J. Neurooncol. 2017, 131, 585–591. [Google Scholar] [CrossRef]
- Lamborn, K.R.; Chang, S.M.; Prados, M.D. Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 2004, 6, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Filippini, G.; Falcone, C.; Boiardi, A.; Broggi, G.; Bruzzone, M.G.; Caldiroli, D.; Farina, R.; Farinotti, M.; Fariselli, L.; Finocchiaro, G.; et al. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro Oncol. 2008, 10, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.M.; van de Bergh, J.; Hedderich, J.; Mehdorn, H.M.; Nabavi, A. Glioblastoma: Clinical characteristics, prognostic factors and survival in 492 patients. Clin. Neurol. Neurosurg. 2012, 114, 840–845. [Google Scholar] [CrossRef]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Senft, C.; Bink, A.; Franz, K.; Vatter, H.; Gasser, T.; Seifert, V. Intraoperative MRI guidance and extent of resection in glioma surgery: A randomised, controlled trial. Lancet Oncol. 2011, 12, 997–1003. [Google Scholar] [CrossRef]
- Gamboa, N.T.; Crabb, B.; Henson, J.C.; Cole, K.L.; Weaver, B.D.; Karsy, M.; Jensen, R.L. High-grade glioma imaging volumes and survival: A single-institution analysis of 101 patients after resection using intraoperative MRI. J. Neurooncol. 2022, 160, 555–565. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2017, 15, 112–125. [Google Scholar] [CrossRef]
- Rogers, C.M.; Jones, P.S.; Weinberg, J.S. Intraoperative MRI for Brain Tumors. J. Neurooncol. 2021, 151, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C.; et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
- Krieg, S.M.; Lioumis, P.; Makela, J.P.; Wilenius, J.; Karhu, J.; Hannula, H.; Savolainen, P.; Lucas, C.W.; Seidel, K.; Laakso, A.; et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir. 2017, 159, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Bloch, O.; Han, S.J.; Cha, S.; Sun, M.Z.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; Parsa, A.T. Impact of extent of resection for recurrent glioblastoma on overall survival: Clinical article. J. Neurosurg. 2012, 117, 1032–1038. [Google Scholar] [CrossRef]
- Pessina, F.; Navarria, P.; Cozzi, L.; Tomatis, S.; Riva, M.; Ascolese, A.M.; Santoro, A.; Simonelli, M.; Bello, L.; Scorsetti, M. Role of surgical resection in recurrent glioblastoma: Prognostic factors and outcome evaluation in an observational study. J. Neurooncol. 2017, 131, 377–384. [Google Scholar] [CrossRef]
- Haj, A.; Doenitz, C.; Schebesch, K.-M.; Ehrensberger, D.; Hau, P.; Putnik, K.; Riemenschneider, M.J.; Wendl, C.; Gerken, M.; Pukrop, T.; et al. Extent of Resection in Newly Diagnosed Glioblastoma: Impact of a Specialized Neuro-Oncology Care Center. Brain Sci. 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Hamisch, C.; Ruge, M.; Kellermann, S.; Kohl, A.C.; Duval, I.; Goldbrunner, R.; Grau, S.J. Impact of treatment on survival of patients with secondary glioblastoma. J. Neurooncol. 2017, 133, 309–313. [Google Scholar] [CrossRef]
- Kalra, B.; Kannan, S.; Gupta, T. Optimal adjuvant therapy in elderly glioblastoma: Results from a systematic review and network meta-analysis. J. Neurooncol. 2020, 146, 311–320. [Google Scholar] [CrossRef]
- Hirschberg, H.; Samset, E.; Hol, P.K.; Tillung, T.; Lote, K. Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim. Invasive Neurosurg. 2005, 48, 77–84. [Google Scholar] [CrossRef]
- Eljamel, M.S.; Mahboob, S.O. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagn. Photodyn. Ther. 2016, 16, 35–43. [Google Scholar] [CrossRef]
- Golub, D.; Hyde, J.; Dogra, S.; Nicholson, J.; Kirkwood, K.A.; Gohel, P.; Loftus, S.; Schwartz, T.H. Intraoperative MRI versus 5-ALA in high-grade glioma resection: A network meta-analysis. J. Neurosurg. 2020, 134, 484–498. [Google Scholar] [CrossRef]
- Orringer, D.; Lau, D.; Khatri, S.; Zamora-Berridi, G.J.; Zhang, K.; Wu, C.; Chaudhary, N.; Sagher, O. Extent of resection in patients with glioblastoma: Limiting factors, perception of resectability, and effect on survival. J. Neurosurg. 2012, 117, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Chaichana, K.L.; Jusue-Torres, I.; Navarro-Ramirez, R.; Raza, S.M.; Pascual-Gallego, M.; Ibrahim, A.; Hernandez-Hermann, M.; Gomez, L.; Ye, X.; Weingart, J.D.; et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014, 16, 113–122. [Google Scholar] [CrossRef]
- Grabowski, M.M.; Recinos, P.F.; Nowacki, A.S.; Schroeder, J.L.; Angelov, L.; Barnett, G.H.; Vogelbaum, M.A. Residual tumor volume versus extent of resection: Predictors of survival after surgery for glioblastoma. J. Neurosurg. 2014, 121, 1115–1123. [Google Scholar] [CrossRef] [Green Version]
- Ushio, Y.; Kochi, M.; Hamada, J.; Kai, Y.; Nakamura, H. Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol. Med. Chir. 2005, 45, 454–460; discussion 460–461. [Google Scholar] [CrossRef] [Green Version]
- Gerard, I.J.; Kersten-Oertel, M.; Petrecca, K.; Sirhan, D.; Hall, J.A.; Collins, D.L. Brain shift in neuronavigation of brain tumors: A review. Med. Image Anal. 2017, 35, 403–420. [Google Scholar] [CrossRef]
- Ille, S.; Schwendner, M.; Zhang, W.; Schroeder, A.; Meyer, B.; Krieg, S.M. Tractography for Subcortical Resection of Gliomas Is Highly Accurate for Motor and Language Function: ioMRI-Based Elastic Fusion Disproves the Severity of Brain Shift. Cancers 2021, 13, 1787. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [Green Version]
Patient Characteristics & Surgical Factors | ioMRI | Clinical Outcomes | |||
---|---|---|---|---|---|
Age (mean ± SD) | 60.1 ± 12.8 | ioMRI-related surgery pause time (mean ± SD min) | 45.2 ± 8.5 | Median PFS (months) | 7.5 (95%CI 5.84–9.10) |
Gender (male/female) | 119/53 | Duration of ioMRI scan (mean ± SD min) | 26.9 ± 7.9 | Preop-KPS (median, range) | 90(40–100) |
Newly diagnosed/Recurrence | 119/53 | ioMRI scan time/Surgery pause time (mean ± SD%) | 59.4 ± 13.8 | POD5-KPS (median, range) | 80(10–100) |
Duration of surgery (mean ± SD min) | 254.7 ± 65.6 | ioMRI scan time/Duration of surgery (mean ± SD%) | 11.2 ± 4.0 | POM3-KPS (median, range) | 80(30–100) (n = 117) |
Blood loss (mean ± SD mL) | 654.1 ± 601.2 | Surgery pause time/Duration of surgery (mean ± SD%) | 18.8 ± 5.6 | KPS change Preop to POD5 (median, range) | 0(−60–20) |
Size of craniotomy (mean ± SD cm2) | 36.8 ± 14.5 | Number of sequences (median, range) | 9(2–14) | KPS change Preop to POM3 (median, range) | 0(−50–30) (n = 117) |
Tx before TP (n = 103) | No Tx before TP (n = 46) | No Tx before Lost to FU (n = 23) | p-Value + | |||
---|---|---|---|---|---|---|
Only RTx | Only CTx | RTx & CTx | ||||
With additional resection (n = 43) | 1 (2.3%) | 5 (11.6%) | 15 (34.9%) | 15 (34.9%) | 7 (16.3%) | 0.51 |
Without additional resection (n = 129) | 9 (7.0%) | 19 (14.7%) | 54 (41.9%) | 31 (24.0%) | 16 (12.4%) |
With Additional Resection | Without Additional Resection | p-Value | Total | |
---|---|---|---|---|
Number (%) | 43(25.0%) | 129(75.0%) | - | 172 |
Preoperative tumor volume (mean ± SD cm3) | 28.8 ± 32.9 | 34.1 ± 34.2 | 0.37 ∆ | 32.8 ± 33.9 |
First resection volume (mean ± SD cm3) | 25.5 ± 29.9 | 33.4 ± 34.0 | 0.18 ∆ | 31.4 ± 33.1 |
EOR I (mean ± SD%) | 81.8 ± 19.6 | 98.0 ± 9.0 | <0.0001 ∆ | 93.9 ± 14.3 |
GTR rate before ioMRI (GTR/STR) | 37.2% (16/27) | 92.2% (119/10) | <0.0001 + | 78.5% (135/37) |
Residual volume on ioMRI (mean ± SD cm3) | 3.3 ± 6.5 | 0.7 ± 2.8 | 0.0003 ∆ | 1.3 ± 4.2 |
Volume of additional resection (mean ± SD cm3) | 3.0 ± 6.1 | - | - | 0.7 ± 3.3 |
EOR II (mean ± SD%) | 17.3 ± 18.8 | - | - | 4.3 ± 12.0 |
Residual volume postoperatively (mean ± SD cm3) | 0.3 ± 1.6 | 0.7 ± 2.8 | 0.41 ∆ | 0.6 ± 2.5 |
EOR III (mean ± SD%) | 99.1 ± 4.9 | 98.0 ± 9.0 | 0.45 ∆ | 98.3 ± 8.2 |
GTR rate postoperatively (GTR/STR) | 95.3% (41/2) | 92.2% (119/10) | 0.73 + | 93.0% (160/12) |
Univariate Analysis | Logistic Regression | |||||
---|---|---|---|---|---|---|
GTR (n = 133) | STR (n = 24) | p-Value | OR | 95%CI | p-Value | |
Age, median ± IQR | 60.0 ± 16.0 | 59.5 ± 13.0 | 0.68 ∆ | - | - | - |
Size of craniotomy, median ± IQR (cm2) | 37.0 ± 20.0 | 32.5 ± 19.0 | 0.26 ∆ | - | - | - |
Gender, n (%) | ||||||
Male (n = 108) | 89(82.4%) | 19(17.6%) | 0.34 + | - | - | - |
Female (n = 49) | 44(89.8%) | 5(10.2%) | ||||
Recurrent GBM, n (%) | ||||||
Yes (n = 46) | 32(69.6%) | 14(30.4%) | 0.0013 + | 3.047 | 1.165–7.974 | 0.023 |
No (n = 111) | 101(91.0%) | 10(9.0%) | 1.000 | |||
Tumor volume, n (%) | ||||||
<15 cm3 (n = 72) | 54(75.0%) | 18(25.0%) | 0.0032 + | 3.031 | 1.062–8.651 | 0.038 |
≥15 cm3 (n = 85) | 79(92.9%) | 6(7.1%) | 1.000 | |||
Eloquent area, n (%) | ||||||
Yes (n = 144) | 123(85.4%) | 21(14.6%) | 0.42 + | - | - | - |
No (n = 13) | 10(76.9%) | 3(23.1%) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age | 1.017 | 1.001–1.033 | 0.037 | 1.015 | 0.998–1.033 | 0.090 |
Gender (male/female) | 1.005 | 0.661–1.527 | 0.98 | 1.264 | 0.804–1.986 | 0.31 |
Recurrent GBM (yes/no) | 0.995 | 0.664–1.491 | 0.98 | 0.800 | 0.488–1.311 | 0.38 |
Tumor volume (cm3) | 1.001 | 0.996–1.006 | 0.81 | 0.999 | 0.993–1.005 | 0.84 |
Extent of resection (%) | 0.187 | 0.025–1.397 | 0.10 | 0.110 | 0.014–0.885 | 0.038 |
Resection after ioMRI (yes/no) | 1.165 | 0.738–1.840 | 0.51 | 0.898 | 0.543–1.483 | 0.67 |
Preoperative KPS | 0.981 | 0.966–0.995 | 0.0081 | 0.983 | 0.967–0.998 | 0.031 |
Adjuvant therapy before TP (yes/no) | 0.475 | 0.295–0.766 | 0.0023 | 0.421 | 0.236–0.751 | 0.0034 |
POD5-KPS (n = 172) | POM3-KPS (n = 117) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rank Correlation Coefficient | p-Value | Partial Rank Correlation Coefficient | p-Value | Rank Correlation Coefficient | p-Value | Partial Rank Correlation Coefficient | p-Value | |||
Age (mean ± SD) | 60.1 ± 12.8 | −0.162 | 0.0036 | −0.100 | 0.20 | 59.0 ± 11.2 | −0.220 | 0.0013 | −0.173 | 0.070 |
Gender (male/female) | 119/53 | −0.155 | 0.021 | −0.110 | 0.16 | 84/33 | −0.079 | 0.33 | - | - |
Recurrent tumor (yes/no) | 53/119 | −0.042 | 0.53 | - | - | 41/76 | 0.039 | 0.64 | - | - |
Duration of surgery (mean ± SD min) | 254.7 ± 65.6 | −0.214 | 0.0001 | −0.054 | 0.49 | 246.7 ± 61.7 | −0.173 | 0.011 | −0.042 | 0.66 |
ioMRI-related surgery pause time (mean ± SD min) | 45.2 ± 8.5 | 0.082 | 0.14 | - | - | 44.7 ± 9.3 | 0.073 | 0.29 | - | - |
Duration of ioMRI scan (mean ± SD min) | 26.9 ± 7.9 | 0.005 | 0.94 | - | - | 26.3 ± 8.8 | 0.079 | 0.25 | - | - |
Blood loss (mean ± SD mL) | 654.1 ± 601.2 | −0.209 | 0.0002 | −0.062 | 0.43 | 582.1 ± 480.1 | −0.137 | 0.050 | 0.009 | 0.93 |
Size of craniotomy (mean ± SD cm2) | 36.8 ± 14.5 | −0.220 | <0.0001 | −0.119 | 0.13 | 36.3 ± 14.3 | −0.121 | 0.075 | - | - |
Tumor volume (mean ± SD cm3) | 32.8 ± 33.9 | −0.244 | <0.0001 | −0.023 | 0.77 | 28.2 ± 31.9 | −0.201 | 0.0028 | −0.055 | 0.57 |
Resection after ioMRI (no/yes) | 129/43 | −0.075 | 0.27 | - | - | 87/30 | −0.225 | 0.0061 | −0.137 | 0.15 |
EOR after ioMRI (mean ± SD%) | 98.3 ± 8.2 | 0.211 | 0.0013 | 0.210 | 0.0067 | 98.5 ± 8.0 | 0.113 | 0.16 | - | - |
Tumor progression (yes/no) | 0/172 | - | - | - | - | 24/93 | 0.155 | 0.059 | - | - |
Preop-KPS (median, range) | 90(40–100) | 0.511 | <0.0001 | 0.460 | <0.0001 | 90 (40–100) | 0.471 | <0.0001 | 0.053 | 0.58 |
POD5-KPS (median, range) | 80(10–100) | 1 | - | - | - | 80 (30–100) | 0.708 | <0.0001 | 0.589 | <0.0001 |
POM3-KPS (median, range) | - | - | - | - | - | 80 (30–100) | 1 | - | - | - |
With Additional Resection (n = 37) | Without Additional Resection (n = 119) | p-Value + | |||||||
---|---|---|---|---|---|---|---|---|---|
POD5 | New motor deficits | No SRMD | New motor deficits | No SRMD | 0.058 | ||||
15 (40.5%) | 28 (23.5%) | ||||||||
POM3 | Permanent | Transient | Lost to FU | 22 (59.5%) | Permanent | Transient | Lost to FU | 91 (76.5%) | 0.063 |
9 (24.3%) | 0 (0%) | 6 (16.2%) | 11 (9.2%) | 3 (2.5%) | 14 (11.8%) |
With Additional Resection (n = 17) | Without Additional Resection (n = 42) | p-Value + | |||||||
---|---|---|---|---|---|---|---|---|---|
POD5 | New language deficits | No SRLD | New language deficits | No SRLD | 1.0 | ||||
7 (41.2%) | 18 (42.9%) | ||||||||
POM3 | Permanent | Transient | Lost to FU | 10 (58.8%) | Permanent | Transient | Lost to FU | 24 (57.1%) | 0.12 |
3 (17.6%) | 2 (11.8%) | 2 (11.8%) | 6 (14.3%) | 0 (0%) | 12 (28.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Ille, S.; Schwendner, M.; Wiestler, B.; Meyer, B.; Krieg, S.M. The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup. Cancers 2023, 15, 3563. https://doi.org/10.3390/cancers15143563
Zhang W, Ille S, Schwendner M, Wiestler B, Meyer B, Krieg SM. The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup. Cancers. 2023; 15(14):3563. https://doi.org/10.3390/cancers15143563
Chicago/Turabian StyleZhang, Wei, Sebastian Ille, Maximilian Schwendner, Benedikt Wiestler, Bernhard Meyer, and Sandro M. Krieg. 2023. "The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup" Cancers 15, no. 14: 3563. https://doi.org/10.3390/cancers15143563
APA StyleZhang, W., Ille, S., Schwendner, M., Wiestler, B., Meyer, B., & Krieg, S. M. (2023). The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup. Cancers, 15(14), 3563. https://doi.org/10.3390/cancers15143563