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Simple Summary: Chondrosarcomas are cartilage tumours that often harbour a mutation in one of
the isocitrate dehydrogenase (IDH) genes. IDH mutations are important drivers at the beginning of
cartilage tumour development, but their role in later stages remains unclear. However, other IDH
mutant tumour types do show an influence of this mutation on patient outcomes and therapies that
specifically kill these IDH mutant tumour cells. Factors that could explain this discrepancy in the
role of IDH mutations are differences in tumour type, elevated oncometabolite levels, the type of
model used in preclinical studies (natural vs. introduced IDH mutation), and additional (epi)genetic
alterations. The latter influence the downstream biological effects of an IDH mutation, and recent
studies have indeed identified subgroups within IDH wildtype and mutant chondrosarcomas. Future
studies should build upon these subgroups to improve the identification of effective treatments and
biomarkers that predict which patients will benefit from these therapies.

Abstract: Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour
isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these
mutations are key players in the early stages of cartilage tumour development, but their role in later
stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical
studies have not identified effective treatment modalities (in)directly targeting these mutations. In
contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors
as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations
seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference
in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous
vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the
(epi)genetic landscape in which the IDH mutation functions is an important factor to consider when
investigating potential therapeutic strategies or patient outcomes. These findings imply that the
dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed
exist within chondrosarcoma. Future studies should focus on the identification, characterisation,
and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant
chondrosarcoma.

Keywords: sarcoma; chondrosarcoma; isocitrate dehydrogenase mutation; IDH1; IDH2;
D-2-hydroxyglutarate

1. Introduction

Chondrosarcomas are malignant cartilage-producing tumours that account for 20%
of all malignant bone tumours [1,2]. Enchondromas are considered the benign precursor
lesions of chondrosarcoma, but progression towards malignant tumours is rarely seen
(<1%) outside the non-hereditary syndromes (i.e., Ollier disease and Maffucci syndrome)
that cause multiple cartilaginous neoplasms (enchondromatosis) [3,4]. Chondrosarcomas
arise predominantly in the third to sixth decades of life and can affect the long as well as
the flat bones, especially the femur, humerus, pelvis, and ribs, and occasionally the spine or
base of the skull. Pathological characteristics divide chondrosarcoma into several subtypes,
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including conventional chondrosarcoma (85%), dedifferentiated chondrosarcoma (10%),
and rare subtypes that include mesenchymal, clear cell, and periosteal chondrosarcoma
(5%). Based on the anatomical location, conventional chondrosarcoma can be further
subdivided into central (i.e., in the medulla of the bone) and peripheral (i.e., at the surface
of the bone) conventional chondrosarcoma (85% and 15%, respectively) [1,2].

Histological grading is defined by, among other factors, the mitotic count, the pres-
ence of spindle-shaped cells, cellularity, and the matrix production of the tumour, and it
is the most important factor to predict overall patient survival and metastatic potential.
Patients with well-differentiated tumours (i.e., atypical cartilaginous tumour (ACT) and
grade I) have an overall 10-year survival rate of 88–95% and rarely show metastasis forma-
tion [1]. However, high-grade tumours (i.e., grade II and III) show increased metastatic
potential (10–30% and 32–71%, respectively) and the overall 10-year survival rate of these
patients is severely decreased (58–86% and 26–55%, respectively) [2]. Dedifferentiated chon-
drosarcoma is a high-grade subtype of chondrosarcoma with the bimorphic histological
appearance of a conventional chondrosarcoma juxtaposed with a high-grade anaplastic
sarcoma [5]. It has a dismal prognosis, with 5-year overall survival of only 7–24%.

The worse prognosis of both high-grade conventional and dedifferentiated chon-
drosarcoma can be partially ascribed to the limited number of available treatment options.
Chondrosarcomas are intrinsically resistant towards chemo- and radiotherapy and targeted
therapeutic options are still lacking, leaving surgery as the only curative treatment op-
tion [6]. Hence, there is an urgent need to develop novel targeted therapeutic strategies,
especially for patients with metastasised and/or unresectable high-grade or dedifferenti-
ated chondrosarcomas.

In the last decade, recurrent heterozygous hotspot mutations in the arginine residues of
the isocitrate dehydrogenase 1 and −2 (IDH1 and IDH2) genes (p.R132 and p.R140/p.R172,
respectively) were identified in enchondroma (87%), central conventional chondrosarcoma
(~50%), and dedifferentiated chondrosarcoma (>80%) [7–10]. The high frequency of IDH1
and IDH2 (collectively referred to as IDH) mutations in benign cartilage tumours indicates
that these mutations occur early in tumourigenesis, suggesting that IDH mutations have
an important driver role in the formation of cartilage tumours. Indeed, the introduction
of an IDH mutation induces enchondroma-like lesions in mice [11]. Furthermore, the
IDH mutation or its produced oncometabolite stimulate chondrogenic differentiation while
inhibiting the osteogenic differentiation of mesenchymal stem cells, which are the presumed
cells of origin of cartilage tumours [12,13]. Despite their significant role in the early stages of
tumour development, the prognostic value of the IDH mutation in chondrosarcoma seems
controversial and (pre)clinical studies that have focused on the direct and indirect targeting
of the IDH mutation have not yielded novel treatment strategies. This review provides an
overview of the current knowledge of the role of IDH mutations in chondrosarcoma and
highlights similarities as well as differences between tumour types that frequently harbour
IDH mutations. Additionally, it will be discussed whether the IDH mutation should still be
considered as a promising therapeutic target or not.

2. Frequency and Prognostic Value of IDH1 and IDH2 Mutations

IDH mutations are also frequently observed in other tumour types, such as acute
myeloid leukaemia (AML), glioma, and cholangiocarcinoma [14]. Interestingly, the most
common variant differs between the above-stated tumour types (Table 1). Cartilage tumours
and cholangiocarcinoma mainly have IDH1 p.R132C variants (~60%), glioma predomi-
nantly harbours IDH1 p.R132H mutations (~90%), and AML often has IDH2 p.R140Q
mutations (~40%) [15,16]. None of the variants are exclusively observed in one tumour
type, suggesting that different point mutations can have a similar effect on tumourigenesis,
although the level of the oncometabolite D-2-hydroxyglutarate (D-2-HG) produced by
these variants differs [17–19]. The prognostic value of IDH mutations in these tumour
types is also diverse (Table 1), and only glioma patients have a clear favourable outcome
when their tumour harbours an IDH mutation [20–23]. Studies that were performed to
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determine the prognostic value of IDH mutations in chondrosarcoma show contradictory
results. While it was previously reported that IDH mutations do not predict outcomes [15],
other studies showed either a worse [24] or better [25] prognosis for IDH mutant (IDHMUT)
chondrosarcoma patients. The three patient cohorts were similar in size (n = 70 to 80)
and median age (50 to 60 years), but the chondrosarcoma subtype inclusion (conventional
versus addition of dedifferentiated and mesenchymal cases) and median follow-up time
(4.3 versus ≥10 years) differed, which might explain the discrepancy in results. Another
factor might be the type of technique used to assign patients to the IDHMUT subgroup. For
instance, Sanger sequencing is not sensitive enough to detect mutations when present in
less than <30% of the sequenced PCR product, leading to false-negative results in samples
with a low IDHMUT variant allele frequency or tumour cell percentage and thereby the
assignment of IDHMUT patients to the IDH wildtype (IDHWT) subgroup. Despite the lack
of prognostic value, the high occurrence rate of IDH mutations in all of these tumour types
suggests that they have an important role in driving tumourigenesis, already in the early
stages of tumour development.

Table 1. IDH mutations in different tumour types.

AML Glioma Cholangiocarcinoma Chondrosarcoma

Frequency of IDHMUT ~10–15%
[14]

>70%
[14]

~15–20%
[14]

~50%
[7–9]

Most common
IDHMUT variant

IDH2 p.R140Q (~40%)
Weak D-2-HG Producer

[16,17]

IDH1 p.R132H (~90%)
Weak D-2-HG Producer

[16,18]

IDH1 p.R132C (~60%)
Strong D-2-HG

Producer
[16,18]

IDH1 p.R132C (~60%)
Strong D-2-HG

Producer
[15,16,18]

IDHMUT inhibition
in vitro

Differentiation
[26]

No effect
[27]

No effect
[28]

Controversial
[27,29–31]

IDHMUT inhibition
clinical trials

~40% response,
secondary resistance

[32–35]

Less promising,
prolonged disease
control in subset

[36]

Less promising,
prolonged disease
control in subset

[37]

Durable disease control
in subset

[38]

IDHMUT effect
on outcome

No difference
(in MDS: worse

prognosis)
[20,21]

Better prognosis, due to
favourable response?

[22]

Beneficial?
[23]

Controversial
[15,24,25]

MDS: myelodysplastic syndrome.

3. Oncogenic Activities of IDH Mutations

Both IDH enzymes function in the tricarboxylic acid (TCA) cycle, where they convert
isocitrate into α-ketoglutarate (α-KG) and CO2. Mutated IDH enzymes acquire a neo-
morphic function, leading to the additional conversion of α-KG into the oncometabolite
D-2-HG [39]. The IDH1 p.R132C variant is one of the most efficient D-2-HG producers,
while both IDH1 p.R132H and IDH2 p.R140Q produce lower levels of the oncometabo-
lite [17–19]. As certain variants are more frequently observed in specific tumour types
(Table 1) [15,16], this could suggest that chondrosarcoma and cholangiocarcinoma rely
on high D-2-HG levels, while glioma and AML depend on relatively lower levels of
the oncometabolite.

Due to the high structural similarity between α-KG and its antagonist D-2-HG, the
oncometabolite is able to competitively bind α-KG-dependent enzymes, leading to the
overall inhibition of this class of enzymes [40,41]. The inhibition of α-KG-dependent
enzymes leads to widespread changes in the epigenomes and metabolomes of cells and
affects DNA repair and cellular growth signalling pathways (Figure 1) [42,43]. For instance,
the D-2-HG-mediated inhibition of α-KG-dependent DNA demethylases (family of TET
enzymes, including TET1/2) and histone demethylases (family of Jumonji enzymes, in-
cluding KDMA4A/B) leads to an overall DNA hypermethylation phenotype, as well as an
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aberrant histone methylation phenotype in IDH mutant tumours. IDHMUT enchondromas
and chondrosarcomas are indeed characterised by a CpG island methylator phenotype
(CIMP)-positive status, and DNA hypermethylation is present in primary IDHMUT chon-
drosarcomas [7,44,45]. The family of Jumonji enzymes is also involved in the regulation
of the Mechanistic Target Of Rapamycin Kinase (mTOR) signalling pathway, as well as
DNA repair via the homologous recombination pathway. Moreover, IDHMUT enzymes
have a reduced ability to produce NADPH and consume high levels of NADPH to produce
D-2-HG, resulting in severely reduced overall NADPH levels. This deficiency does not only
cause metabolic stress but will also lead to an increase in reactive oxygen species (ROS),
making IDHMUT tumours more vulnerable to DNA damage. Besides the induction of
metabolic stress, IDHMUT tumours also undergo metabolic rewiring, including alterations
in metabolites of the TCA cycle, a reduced dependency on glycolysis, and alterations in
lipid metabolism. Additionally, D-2-HG-mediated inhibition of the prolyl hydroxylase
domain proteins (EGLN1 and -2) leads to the upregulation of hypoxia-inducible factors
(e.g., HIF1α), resulting in a metabolic switch to maintain oxygen homeostasis. D-2-HG also
affects collagen maturation via the inhibition of proline and lysine hydroxylases (P4HA1-3
and PLOD1-3), leading to an impaired extracellular matrix structure. Thus, IDH muta-
tions have a wide variety of downstream biological effects; therefore, these mutations are
considered as the drivers in multiple tumour types.
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Figure 1. IDH mutations have a wide variety of downstream biological effects. Mutated IDH enzymes
produce D-2-HG, which is an oncometabolite that competitively binds α-KG-dependent enzymes.
Inhibition of this class of enzymes leads to widespread changes in the epigenomes and metabolomes
of cells and alterations in DNA repair pathways, extracellular matrix structure, and cellular growth
signalling pathways. Besides the inhibition of α-KG-dependent enzymes, IDH mutations also cause
metabolic stress, metabolic rewiring, the depletion of NADPH, and an increase in ROS.
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4. Inhibition of the IDHMUT Protein

To counteract the oncogenic activity of the IDH mutations, several inhibitors targeting
either IDH1 p.R132 variants (e.g., ivosidenib) or IDH2 p.R140 variants (e.g., enasidenib)
have been developed over the past couple of years [46]. In vitro studies and clinical trials
show that AML patients could benefit from IDHMUT protein inhibitors [26,32], although
some patients develop resistance against these inhibitors over time. This acquired re-
sistance is multi-factorial and can be caused by second-site mutations in IDHMUT genes
to prevent the binding of IDHMUT protein inhibitors, IDHMUT isoform switching to cir-
cumvent the effect of IDHMUT protein inhibitors, or novel acquired mutations in genes
encoding for receptor tyrosine kinases (RTKs) [33–35]. Direct inhibition of IDHMUT proteins
seems less promising for other tumour types that frequently harbour an IDH mutation
(Table 1) [27,28,36,37]. Especially in chondrosarcoma, the effect of IDHMUT protein in-
hibitors in in vitro assays seems controversial. While several studies have shown that
IDH1MUT protein inhibition does not affect the tumourigenic properties of chondrosar-
coma cell lines [27,29], other groups have shown that IDH1MUT protein inhibition causes
a decreased proliferation rate in chondrosarcoma cell lines at higher doses or with a dif-
ferent compound [30,31]. Recent results from a phase I clinical trial with the IDH1MUT

inhibitor ivosidenib showed that prolonged disease control (i.e., progression-free survival
of ~6 months) could be achieved in a subset of patients with advanced chondrosarcoma,
predominantly in patients with a minimal number of co-occurring mutations [38]. To-
gether, these results suggest that a subset of chondrosarcomas might have become in-
dependent of their IDH mutation over time and that the underlying biological changes
either have become static or are driven by other mutations that were acquired later during
tumour development.

5. Synthetic Lethal Interactions with the IDH Mutation

As IDHMUT protein inhibitors showed limited efficacy in in vitro assays and clinical
trials or acquired resistance was observed (Table 1), a large number of in vitro studies
were performed to determine whether directly targeting the downstream biological ef-
fects of IDH mutations would be more promising (Table 2). Indeed, multiple synthetic
lethal interactions with the IDH mutation were reported for AML and glioma, including
radiotherapy, chemotherapy, and agents that target poly(ADP-ribose) polymerase (PARP),
B-cell lymphoma 2 (Bcl-2) family members, Bromodomain and Extra-Terminal Motif (BET)
proteins, DNA methyltransferases (DNMTs), mTOR, Nicotinamide Phosphoribosyltrans-
ferase (NAMPT), and glutaminase [27,28,47–60]. However, chondrosarcoma cell lines are
variably sensitive to a selection of these therapies, but the effect seems irrespective of
the IDH mutation status, as IDHWT chondrosarcoma cell lines show similar treatment
responses [61–67].
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Table 2. Synthetic lethal interactions with the IDH mutation in in vitro models.

AML Glioma Cholangiocarcinoma Chondrosarcoma

Radiotherapy Molenaar 2018 [47] * Li 2013 [48]
Kessler 2015 [49] De Jong 2019 [61] *

Temozolomide Lu 2017 [50]
Tateishi 2017 [51] * Venneker 2019 [66] *

PARP inh. Sulkowski 2017 [52]
Molenaar 2018 [47] * Sulkowski 2017 [52] Wang 2020 [53] Venneker 2019 [66] *

Palubeckaitė [67] *

Bcl-2/Bcl-xL inh. Chan 2015 [54] Karpel-Massler 2017
[55] De Jong 2018 [62] *

BET inh. Chen 2013 [56] Fujiwara 2018 [28] Fujiwara 2018 [28] *
DNMT inh. Turcan 2013 [57] *
mTOR inh. Batsios 2019 [58] Addie 2019 [63] *

NAMPT inh. Tateishi 2015 [27] * Peterse 2017 [64] *
Glutaminolysis inh. Emadi 2014 [59] * Seltzer 2010 [60] Peterse 2018 [65] *

inh.: inhibitors, * endogenous IDHMUT models. Green: Sensitive; Red: Not sensitive; Yellow: Sensitive, but
irrespective of IDHMUT.

These contradictory findings on synthetic lethal interactions with the IDH mutation
might be ascribed to different factors. First, the cell of origin and the tumour microenviron-
ment (e.g., cartilaginous matrix formation and hypoxia in chondrosarcoma) of the distinct
tumour types that frequently harbour an IDH mutation are highly different and could
therefore influence the role that IDH mutations play in tumourigenesis. Second, the level
of the D-2-HG oncometabolite may also influence the downstream biological effects of IDH
mutations. The most common IDH variants in AML and glioma both produce relatively
low D-2-HG levels, whilst the most common point mutation in both cholangiocarcinoma
and chondrosarcoma produces relatively high levels of the oncometabolite (Table 1) [17–19].
It was recently shown that a lower level of DNA hypermethylation was observed for the
IDH1 p.R132H variant compared to non-p.R132H variants, irrespective of tumour type [16].
Lastly, the type of in vitro model (endogenous vs. artificially created) might influence
whether synthetic lethal interactions with the IDH mutation are present or not. The intro-
duction of an IDH mutation in a glioma model leads to reduced glutamine and glutamate
levels, but this change in TCA cycle metabolites is not present when endogenous IDHWT

and IDHMUT glioma models are compared [68]. Most synthetic lethal interactions with
the IDH mutation were indeed identified in generic cancer cell lines with an introduced
IDHMUT (Table 2). AML and glioma cell lines with an endogenous IDHMUT are scarce,
but the utilised chondrosarcoma cell lines do harbour endogenous IDH mutations and
this difference in model type could explain why synthetic lethal interactions with the IDH
mutation are absent in the chondrosarcoma in vitro studies. As IDH mutations occur early
during tumourigenesis, especially in chondrosarcoma, artificial models with an introduced
IDH mutation may not be representative of the role that IDH mutations normally play in
tumourigenesis. These studies also introduced the IDH mutation in generic cancer cell
lines that are easy to transfect (e.g., HeLa, HCT116, and U2OS cells), and these cell lines do
not represent the tumour types in which IDH mutations frequently occur. Moreover, most
studies generated models that overexpressed the IDHMUT protein, whilst the balanced
expression of IDHWT and IDHMUT is needed to retain efficient D-2-HG production [69].
Together, these considerations emphasise that the tumour type, the IDHMUT variant, and
the type of in vitro model should be taken into account when studying synthetic lethal
interactions with the IDH mutation, and that the underlying vulnerabilities may highly
differ between tumour types that frequently harbour an IDH mutation.

6. Putting the IDH Mutation into Context to Define Underlying Vulnerabilities

In addition to these factors, it was recently shown that the (epi)genetic landscape
in which IDHMUT and IDHWT are embedded is another important aspect to take into
consideration when defining underlying vulnerabilities in tumour types that frequently
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harbour an IDH mutation. Studies on AML and glioma have shown that the genetic and
epigenetic landscape in which IDHWT and IDHMUT function is highly heterogenous and
thereby influences the therapy response and patient outcome [70–81]. For instance, muta-
tions in TP53 and ATRX are the underlying denominator in defining which IDHWT and
IDHMUT gliomas respond to radiotherapy [70]; the overexpression of BCAT1 in IDHWT

AML leads to an IDHMUT-like DNA hypermethylation phenotype [71], and additional
mutations in DNMT3A cause reduced levels of DNA hypermethylation in IDHMUT AML
samples [74]. Furthermore, co-occurring (epi)genetic alterations such as CIMP status [78],
1p19q deletions [80], CDKN2A deletions [78,79], MET amplifications [78], PDGFRA am-
plifications [79], and TERT mutations [80] influence overall survival in IDHMUT glioma
patients. Moreover, IDHMUT AML patients with a co-occurring NPM1 mutation show
overall a better response to chemotherapy with or without venetoclax [81]. The influence of
co-occurring (epi)genetic alterations may also explain why distinct IDHMUT tumour types
differ in therapy sensitivity and underlines the need to use endogenous IDHMUT models, as
generic cancer cell lines with an introduced IDH mutation do not represent the (epi)genetic
landscape in which IDH mutations naturally exist. Thus, the IDH mutation status does
not solely define the underlying vulnerabilities, which is in line with previous findings
for chondrosarcoma [61–67], suggesting that a dichotomy between IDHWT and IDHMUT is
too simplistic.

Besides IDH mutations, chondrosarcomas frequently harbour mutations in TP53,
CDKN2A/B, COL2A1, YEATS2, NRAS, and TERT [82–86]. However, the rest of the previ-
ously observed co-occurring mutations seem to follow a more random pattern and are
present in less than 10% of the chondrosarcomas [25,83,84,87], leading to a highly hetero-
geneous genetic landscape in which IDHWT and IDHMUT function in chondrosarcoma.
Furthermore, IDHMUT chondrosarcomas are characterised by a global hypermethylation
phenotype that changes with increasing histological grade [44,45], and, based on methy-
lation profiles alone, several chondrosarcoma subgroups could be defined, even within
IDHWT and IDHMUT tumours [88]. Moreover, using chondrosarcoma transcriptome and
methylome data, it was previously shown that different molecular subtypes (i.e., high
mitotic state, 14q32 miRNA cluster loss of expression, and IDHMUT-induced DNA hyper-
methylation) exist, and that these are associated with patient outcomes [89]. Moreover,
(epi)genetic alterations in the TERT gene (i.e., hypermethylation and promotor mutations)
affect the survival probability of IDH1MUT chondrosarcoma patients, whilst this association
is absent in IDHWT and IDH2MUT patients [87]. Together, these findings show that the IDH
mutation status does not solely define the treatment response or outcome in chondrosar-
coma patients, suggesting that the dichotomy between IDHWT and IDHMUT is also too
simplistic for chondrosarcoma.

7. Conclusions and Future Directions

Although IDH mutations occur frequently in chondrosarcoma, their prognostic value
as well as therapeutic potential seem both ambiguous in chondrosarcoma (Table 1). This is
in line with the hypothesis that some chondrosarcomas become independent of their IDH
mutations over time and that additional mutations take over the driver role in later stages
of tumour development. Nevertheless, other tumour types that frequently harbour an
IDH mutation do show the prognostic value of the IDH mutation (glioma) and response to
IDHMUT protein inhibitors (AML) (Table 1). Additional mutations in RTKs could contribute
to secondary resistance to IDHMUT protein inhibitors [35], which complements the idea that
other mutations can take over the driver role of IDH mutations. As chondrosarcomas are
usually diagnosed relatively late due to minimal symptoms in the early stages of tumour
development, these additional mutations might have already occurred and may hamper
the efficacy of IDHMUT protein inhibitors. This is in line with the fact that an increase in
progression-free survival after treatment with an IDHMUT protein inhibitor (ivosidenib)
was predominantly observed in chondrosarcoma patients with a minimal number of co-
occurring mutations [38]. Thus, the role of IDH mutations most likely differs between
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distinct tumour types as well as stages of tumour development. Future studies should
investigate whether (the number of) additional mutations could be a potential predictive
biomarker for the response to IDHMUT inhibition in chondrosarcoma and other IDHMUT

tumour types.
This discrepancy in the role of IDH mutations is also reflected in the preclinical

studies that have investigated underlying vulnerabilities in IDHMUT tumour types (Table 2).
The contradicting results on synthetic lethal interactions with the IDH mutation between
tumour types might be ascribed to a difference in cell of origin, co-occurring (epi)genetic
alterations, D-2-HG levels, or the type of in vitro model. The latter could introduce variance
between IDHMUT tumour types that does not naturally exist, as these artificially created
IDHMUT most likely do not reflect the early onset of IDH mutations or the (epi)genetic
landscape in which these mutations are normally embedded. The endogenous IDHWT and
IDHMUT chondrosarcoma cell lines harbour additional genetic alterations (unpublished
data), including CDKN2A loss, and were derived from patients with high-grade (II and
III) and differentiated tumours, meaning that these cell lines are representative models for
the role of IDH mutations in more advanced tumour stages. This might explain why these
cell lines showed a limited response to IDHMUT inhibitors and showed a variable response
to treatments that were identified in other in vitro studies that utilised artificially created
models. Future preclinical studies should therefore exercise caution regarding the use of
artificially created IDHMUT models and should thoroughly characterise the (epi)genetic
landscape in which the IDH mutation was introduced, as well as confirming their findings
in models that harbour an endogenous IDH mutation.

Nevertheless, these artificially created IDHMUT models could provide valuable insight
into the influence of the (epi)genetic landscape on the downstream biological effects of IDH
mutations and thus on underlying therapeutic vulnerabilities. Future studies should ex-
pand on the identified subgroups and define novel (epi)genetic aberrations that distinguish
subgroups within IDHWT and IDHMUT chondrosarcomas, followed by the identification of
tailored targeted therapeutic strategies towards these subgroups. This will improve not
only the identification of effective treatment modalities but also the design of clinical trials
for high-grade chondrosarcoma patients (e.g., umbrella trial design) and the inclusion of
patients in basket trials.
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