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Simple Summary: Skin cancer is a major concern worldwide, and accurately identifying it is crucial
for effective treatment. we propose a modified deep learning model called SBXception, based on the
Xception network, to improve skin cancer classification. Using the HAM10000 dataset, consisting of
10,015 skin lesion images, the model achieved an impressive accuracy on a test set. SBXception also
showed significant improvements, requiring fewer parameters and reducing training time compared
to the original model. This study highlights the potential of modified deep learning models in
enhancing skin cancer diagnosis, benefiting society by improving treatment outcomes.

Abstract: Skin cancer is a major public health concern around the world. Skin cancer identification is
critical for effective treatment and improved results. Deep learning models have shown considerable
promise in assisting dermatologists in skin cancer diagnosis. This study proposes SBXception: a
shallower and broader variant of the Xception network. It uses Xception as the base model for
skin cancer classification and increases its performance by reducing the depth and expanding the
breadth of the architecture. We used the HAM10000 dataset, which contains 10,015 dermatoscopic
images of skin lesions classified into seven categories, for training and testing the proposed model.
Using the HAM10000 dataset, we fine-tuned the new model and reached an accuracy of 96.97% on a
holdout test set. SBXception also achieved significant performance enhancement with 54.27% fewer
training parameters and reduced training time compared to the base model. Our findings show that
reducing and expanding the Xception model architecture can greatly improve its performance in skin
cancer categorization.

Keywords: skin lesions; cancers; skin cancer; deep learning; machine learning

1. Introduction

Among other cancers, skin cancer is considered one of the deadliest diseases. Around
1.2 million people died in 2020 due to skin cancer only [1]. According to the WHO [1], skin
cancer was one of the most common cancers in terms of new cases in 2020, and the number
of new cases is increasing dramatically [2,3]. One of the common causes of skin cancer is
exposure of the skin to UV (ultraviolet) rays directly coming from the sun [4]. It is said that
such rays affect fair-skinned people and those with sensitive skin more than dark-skinned
ones [5].

Most deaths are caused by invasive melanoma, which constitutes only 1% of total
skin cancer cases. From historical data, it is found that melanoma skin cancer cases are
rising rapidly. According to the most recent report from the American Cancer Society,
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which provides data up until 2022 [6], it was estimated that approximately 99,780 cases
of melanoma cancer would have been diagnosed by the end of the year, with 57,180 cases
among men and 42,600 cases among women. The report also indicated that around
7650 deaths were expected due to melanoma cancer, with approximately 5080 deaths
among men and 2570 deaths among women.

To cure any cancer, it is best to detect it at an early stage, and skin cancer is no different.
Any unusual growth or new/changing skin spots must be evaluated. If there are any new
lesions or any change in a lesion’s appearance, whether in size, color, or shape, it should be
shown to a doctor and evaluated accordingly. To detect skin cancer, doctors use multiple
techniques, and one of the ways is visual detection [7]. A manual has been developed
by the American Center for the Study of Dermatology, and is used by doctors for initial
screening. This manual is called asymmetry, border, color, and diameter (ABCD). At the
initial stage, the doctor suspects a skin lesion on the patient’s body and recommends going
for a biopsy [8]. The reports are examined, and a thorough check is performed to detect
whether it is benign or malignant and the type of cancer [9]. Another technique, called
dermoscopy, can be used to diagnose skin cancers [10]. In this technique, bright images of
the skin lesion are captured, highlighting dark spots [11]. Nevertheless, these methods are
inefficient because they cannot help diagnose the nature of the lesion. This is due to many
reasons such as the presence of blood vessels or hair around the lesion, the intensity of the
light, failure to correctly capture the shape of the lesion, and not identifying cancerous and
non-cancerous lesions correctly [12–14].

The average accuracy of diagnosing skin cancers by manually examining dermoscopic
images is 60% to 80%. The accuracy varies from one dermatologist to another based on
their years of experience. It has been claimed that a dermatologist with three to five years
of experience can have an accuracy of around 60%, whereas there is an improvement in
accuracy by 20% if the dermatologist has 10+ years of experience [15]. Therefore, it can be
claimed that dermoscopy requires extensive training to yield better diagnosis. Different
types of skin cancers can be identified with the help of dermoscopic images. However,
there are two main types of skin cancers: melanocytic and nonmelanocytic. Melanotic skin
cancers consist only of melanoma and melanocytic nevi. However, nonmelanocytic skin
cancers have many types, such as dermatofibroma (DF), vascular (VASC), benign keratosis
lesions (BKL), basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) [16].

Melanoma is a type of skin cancer arising from abnormal melanin production in
melanocyte cells. It is the most prevalent and lethal form of skin cancer and is categorized
into benign and malignant types [17]. While benign melanoma lesions contain melanin
in the epidermal layer, malignant melanomas display excessive melanin production. The
United States reports over five million new cases of skin cancer each year, with melanoma
accounting for three-quarters of all skin cancer fatalities, resulting in 10,000 deaths annu-
ally [18]. In 2021, the US registered 106,110 cases of melanoma, leading to 7180 fatalities,
with projections indicating a 6.5% increase in melanoma-caused deaths in 2022. In 2022,
it is expected that 197,700 new cases of melanoma will be diagnosed in the US alone [19].
Every year, around 100,000 new cases of melanoma are discovered throughout Europe [20].
Melanoma is detected in 15,229 people in Australia each year [18,21]. Skin cancer inci-
dence rates have climbed in the last decade, with melanoma rates increasing by 255% in
the United States and 120% in the United Kingdom since the 1990s [22,23]. Melanoma,
however, is considered a highly curable cancer if detected early. In the early stages, survival
rates exceed 96%. In the advanced stage, by contrast, survival rates drop to 5%. When
melanoma has spread throughout the body, treatment becomes more difficult [16].

The adoption of artificial intelligence (AI) and deep learning [24,25] has resulted
in significant advancements in the accuracy and efficiency of skin cancer classification,
assisting in the disease’s early diagnosis and treatment [26]. When trained on massive
datasets of skin scans, AI systems may learn to recognize the characteristics of malignant
cells and distinguish them from benign cells with high accuracy. Several studies have
explored using AI and deep learning for skin cancer classification [27,28]. Khan et al. [29]



Cancers 2023, 15, 3604 3 of 15

adopted the DarkeNet19 model and trained it on multiple datasets such as HAM10000,
ISBI2018, and ISBI2019. They fine-tuned this model and achieved 95.8%, 97.1%, and
85.35% accuracy for the HAM10000, ISBI2018, and ISBI2019 datasets, respectively. In
comparison, another study [30] trained three different models (InceptionV3, ResNet, and
VGG19) on a dataset containing 24,000 images retrieved between 2019 and 2020 from
the ISIC archive. They concluded that InceptionV3 outperformed the rest of the models
regarding accuracy. On the other hand, Khamparia et al. [31] incorporated transfer learning
while training different deep learning architectures and proved that transfer learning and
data augmentation helped to improve the results.

When training deep learning models, data imbalance is always an issue. There are
many ways by which authors improve datasets by incorporating data augmentation tech-
niques [32]. Ahmad et al. [33] used a data augmentation technique called generative
adversarial networks (GAN), which creates artificial images similar to the original images
to improve the dataset. With the help of this technique, they claim that their model ac-
curacy was enhanced from 66% to 92%. In another study Kausar et al. [34] used some
fine-tuning techniques to improve state-of-art deep learning image classification models.
They achieved an accuracy of 72%, 91%, 91.4%, 91.7%, and 91.8% for ResNet, InceptionV3,
DenseNet, InceptionResNetV2, and VGG-19, respectively. Khan et al. [35] proposed a
multiclass deep learning model trained on the HAM10000, ISBI2018, and ISIC2019 datasets.
They also incorporated transfer learning, and their results showed that the proposed model
achieved an accuracy of 96.5%, 98%, and 89% for the HAM10000, ISBI2018, and ISIC2019
datasets, respectively. In another study, Deepa et al. [36] trained the ResNet50 model on
the International Skin Image Collaboration (ISIC) dataset and achieved 89% accuracy. Tahir
et al. [37] proposed a deep learning model called DSCC_Net, trained that on three datasets,
ISIC 2020, HAM10000, and DermIS, and achieved an accuracy of 99%. They further com-
pared their model with other state-of-art models and concluded that it outperformed them
all. In another study, Shaheen et al. [38] proposed a multiclass model using particle swarm
optimization trained on the HAM1000 dataset. They claim that their model achieved
97.82% accuracy.

As described above, there is a general trend for image processing based on deep
learning to gradually adopt deeper networks. The benefit of using deeper networks is
obvious, i.e., a deeper network provides stronger nonlinear representation capability. This
means that, for some specific problems, a deeper network may be better able to learn more
complex transformations and thus fit more complex feature inputs. However, previous
research (see, e.g., [39]) has also shown ways in which network depth may negatively affect
classification performance in cases where relatively simpler features are involved. Here,
we first quantitatively assess the effect of network depth on classification performance
and then develop a shorter and broader variant of the originally selected model (termed
SBXception). The main contributions of this paper are the following:

• We analyze the characteristics of the adopted dataset (HAM10000) to show that net-
work depth beyond an optimal level may not be suitable for classification tasks on
this dataset.

• A new, shorter, broader variant of the Xception model is proposed to classify various
skin lesions efficiently.

• The proposed modified model architecture is used to provide better classification
performance compared to the state-of-the-art methods.

2. The Proposed Approach

This work proposes an approach to accurately classify skin lesions into seven classes
pertaining to the most common types. The overall architecture of the approach, shown
in Figure 1, involved three main stages. First, the dataset was prepared to make it more
suitable for the classification task. Second, the effect of network depth on the classification
performance was quantitatively explored, leading to the development of SBXception—a
shorter and broader variant of the original model. Third, the proposed SBXception model
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was used for the classification task. In the following subsections, we provide a detailed
discussion of the various stages involved in the development of the system.
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Figure 1. Overall architecture of the proposed framework.

2.1. Dataset and Input Images Preparation

In order to carry out the experiment, this work utilized a public dataset, the HAM10000
dataset [40]. This dataset is a widely-used collection of dermatoscopic images of skin lesions.
It contains a total of 10,015 images acquired from individuals across various demographic
regions. It includes images from different age groups, ethnicities, and geographical lo-
cations, providing a representative sample of skin conditions worldwide. Each image
in the HAM10000 dataset includes a unique identifier (lesion_id) containing a 7-digit
number corresponding to a unique patient record number. This allows each image to be
linked to a single patient record. This way, the dataset enables researchers to accurately
correlate an image with its respective patient, facilitating comprehensive analysis and
longitudinal studies.

The dataset contains images of seven classes of skin lesions, including actinic keratoses
and intraepithelial carcinoma (AKIEC) (327), basal cell carcinoma (BCC) (514), benign
keratosis (BKL) (1099), dermatofibroma (DF) (115), melanoma (MEL) (1113), melanocytic
nevi (NV) (6705), and vascular skin lesions (VASC) (142). It is important to note that the
original size of each image is 600 × 450. In contrast, in this experiment, the size was
modified to 229 × 229 for efficient processing using the modified Xception architecture
used in this research. Figure 2 shows some sample images of skin lesions. The same dataset
was split into training, testing, and validation sets to ensure that the results were consistent.
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2.2. Model Architecture

Existing image classification solutions increasingly use deeper neural networks as
computing power improves and more solutions to the gradient disappearance problem
become available. The benefit of this approach is self-evident, i.e., a deeper network
provides stronger nonlinear representation capability. This means that, in general, a deeper
network may be better able to learn more complex transformations and thus fit more
complex feature inputs [41]. However, our experiments (reported in Section 3) revealed that
a deeper network is not necessarily beneficial for the classification task on the HAM10000
dataset. Therefore, the current study modified the base model by decreasing its depth
and increasing its width to better suit the given classification problem. The following
subsections discuss this in more detail.

2.2.1. The Base Model

To gain insight into the data set, the initial experiments were conducted using the
Xception [42] network. The structure of the Xception network is shown in Figure 3. As
shown, its architecture is based on modified depth-wise separable convolution layers.
The input has to go through three flows, i.e., the entry flow, middle flow (which repeats
eight times), and exit flow. Each of the convolution and separable convolutional layers
is followed by batch normalization. The middle flow is the core structural part of the
Xception network, comprising a nine-layer structure that repeats eight times. Each of the
nine layers in the structure contains three combinations of ReLU, separable Conv2D, and
batch normalization layers.
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2.2.2. Shortening the Architecture

As shown in Figure 3, the core structure of Xception repeats eight times. Hence, it has a
huge number of convolution layers. Network deepening often helps improve performance
when dealing with images containing complex information, such as scenes containing
human behavioral aspects, from which an exceedingly high number of features can be
extracted. Network depth does not necessarily improve performance in several situations.
For example, when the data set contains a limited number of objects with few details, see,
e.g., [43], limited features will exist in the image, and consequently, the fault tolerance
will be poor. Similarly, due to the very heavy optimization of gradient backpropagation,
deep learning models tend to significantly overfit when the data are insufficient [44]. On
the other hand, studies have shown that lowering the number of convolution layers has a
significant impact on network performance; see, for example, [45,46]. Furthermore, limiting
the number of convolution layers also has a significant impact on network performance in
terms of computation efficiency [47,48]. Therefore, inspired by previous works [43,47], this
study explored the relationship between network depth and its performance specifically
using the HAM10000 dataset. To this end, we kept the network’s non-core (non-repeating)
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structure unchanged and experimented with repeating the core part for different numbers
of times. Recall that each repetition in the core contains a combination (named RCB)
of ReLU, separable Conv2D, and batch normalization layers. Therefore, by adopting a
different number of RCB layers, seven modified forms of the Xception network (named
Xception-mN) were created such that Xception-m1 contains one RCB, Xception-m2 has
two RCBs, and so on, up to Xception-m7, which contains seven RCBs. To investigate
the impact of network depth on classification accuracy, the performance of each of the
modified networks was monitored. Here, the shortest network, i.e., Xception-m1 (with only
one RCB layer), scored the highest in terms of accuracy and number of parameters. This
showed that shortening the network enhanced the classification in terms of computational
efficiency (decreased number of network parameters) as well as accuracy. Hence, it was
concluded that classification of the HAM10000 dataset could not benefit from a deeper
network. Next, we developed a network widening mechanism to further increase the
classification performance.

2.2.3. Broadening the Architecture

Depth and breadth are two characteristics of a convolutional neural network that have
the potential to affect its performance significantly. If the network has appropriate depth
and width, it can learn a great deal of features and have higher nonlinear representational
capabilities [49]. When optimizing the network structure, deepening the network is gener-
ally preferred over widening it, as it typically results in greater performance increases [50].
However, studies have found that once the network has reached a certain depth, adding
further depth either makes the network harder to train with insignificant performance gains
or, occasionally, causes its performance to degrade [39]. Similarly, several studies have
shown that shallow and wide networks can achieve higher or at least as much accuracy
as their deep and narrow counterparts [41,51,52]. Furthermore, in our initial experiments
on the HAM10000 dataset, the shallowest Xception structure emerged as more suitable
than the deeper alternatives. Thus, inspired by [43], we experimented with broadening
the Xception network structure to improve its performance. The broadening mechanism
essentially works by introducing a new add layer to obtain fusion of the horizontal channels
by stacking the outputs of various branches. To achieve this, the network width can be
increased in more than one way, such as by increasing the convolution layer channels
or using a concatenate layer to connect the two expanded branches of the core structure.
Here, we adopted a strategy similar to Shi et al. [43]. Specifically, we first expanded a
branch of the core structure and then connected the output of two branches with the
add layer. With this mechanism, there was no need to include a 1 × 1 convolution layer
in the residual connection, because the number of channels before and after connection
remained constant. Furthermore, we deemed it important to gauge the classification per-
formance with different numbers of layer combinations in the broader architecture. Thus,
by adopting different numbers of ReLU, Conv2D, and Batch Normalization (RCB) layers,
eight shorter, broadened variations of the Xception network (named Xception-sbN) were
created such that Xception-sb1 contains one RCB, Xception-sb2 contains two RCBs, and
so on, up to Xception-sb8, which contains eight RCBs. The performance of each of the
network architectures was monitored. The architecture with three RCBs, i.e., Xception-sb3
(shown in Figure 4), yielded the highest scores considering the accuracy and number of
parameters. Therefore, this structure was used for the rest of the experiments, as detailed
in the next section.
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2.3. Fine-Tuning and Testing

For fine-tuning, the following HAM10000 splits were used, and the augmentation
techniques described above were used. The dataset was split to use 80% for training and
20% for testing. Furthermore, 20% of the training dataset was used for validation. Table 1
shows the details of the numbers of images of each class used for training (before and after
augmentation) and testing. The batch size was set to 32. The model’s performance was eval-
uated using diverse network configurations, employing various optimizers, learning rates,
and momentum values. In cases where loss reduction was not evident for more than ten
epochs, the learning rate was reduced by a factor of 1/10. The network configuration that
produced the best results was adopted for testing, as well as for the remaining experiments,
which will be discussed in the next section.

Table 1. Distribution of the HAM10000 dataset: training and testing splits by class.

Class Total Images Training
(Original)

Training
(Augmented) Testing

AKIEC 327 262 5478 65

BCC 514 411 5168 103

BKL 1099 879 5515 220

DF 115 91 4324 24

MEL 1113 891 5088 222

NV 6705 5364 6306 1341

VASC 142 113 5317 29

Total 10015 8011 37197 2004

3. Experiments

We performed several experiments to evaluate the proposed approach in terms of its
capability to correctly classify the various types of skin lesions as well as to compare it with
existing methods. The classification system was implemented in Python using Keras with
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TensorFlow 2.0. The training and testing were carried out in the Google Colab environment
with a GPU.

Three basic categories of experiments were performed. First, the ideal network con-
figuration was selected based on several factors, such as the Xception structure and the
layers in the core part. Second, various measures were used to assess the performance of
the proposed model for the specific classification task. Third, the method’s effectiveness
was evaluated compared to state-of-the-art skin lesion classification techniques.

Performance Evaluation of the Proposed Approach

We tweaked the base Xception network architecture by reducing the depth and in-
creasing the breadth of the middle flow of the network. We performed several experiments
to analyze the effect of these changes in the depth and breadth of the neural network. As
the original architecture deployed eight repetitions of the nine-layer structure of RCB layers
described above, we measured the network’s performance with one (Xception-m1) to seven
repetitions (Xception-m7) to analyze the impact of varying network depth. We measured
the accuracy of these architectures for the seven types of skin lesions mentioned above.
Table 2 shows the classification accuracy for these skin lesions given different network
depths. The number of parameters for each architecture is also presented in the table. It can
be seen that the shallowest network (Xception-m1), i.e., the network with one repetition
of the nine RCB layers, achieved the highest classification accuracy. The only exception
was for NV skin lesions, for which both Xception-m1 and Xception-m2 achieved the same
classification accuracy. Intuitively, the number of parameters was also the least for the shal-
lowest architecture, thus making it the most efficient among all architectures. Xception-m1
reduced the number of parameters by 54.27% compared to the base Xception architecture.

Table 2. Performance comparison of variations of the basic Xception structure.

Modified
Structure

Accuracy No. of
ParametersAKIEC BCC BKL DF MEL NV VASC

Xception 0.9413 0.9412 0.9323 0.9195 0.9444 0.9455 0.9520 20,873,774

Xception-m7 0.9413 0.9412 0.9323 0.9195 0.9444 0.9455 0.9520 19,255,430

Xception-m6 0.9430 0.9429 0.9340 0.9212 0.9461 0.9472 0.9537 17,637,086

Xception-m5 0.9449 0.9448 0.9359 0.9231 0.9480 0.9491 0.9556 16,018,742

Xception-m4 0.9422 0.9405 0.9321 0.9213 0.9482 0.9503 0.9569 14,400,398

Xception-m3 0.9470 0.9469 0.9380 0.9252 0.9501 0.9512 0.9577 12,782,054

Xception-m2 0.9501 0.9491 0.9421 0.9273 0.9532 0.9523 0.9599 11,163,710

Xception-m1 0.9512 0.9498 0.9434 0.9273 0.9538 0.9531 0.9599 9,545,366

After identifying the optimal depth of the Xception architecture, we experimented
with varying breadths of the architecture by adding concatenate layers. Table 3 shows
classification accuracy for the modified architectures with one (Xception-sb1) to eight
concatenate layers (Xception-sb8). The experimental results showed that Xception-sb3 and
Xception-sb4 achieved comparable results. While Xception-sb3 achieved higher accuracy
scores for BCC, DF, NV, and VASC, Xception-sb4 outperformed it for AKIEC and MEL
classification accuracy. Both architectures produced the same accuracy for BKL. We selected
Xception-sb3 because of the lower number of parameters. Xception-sb3 reduced the number
of parameters by 38.76% compared to the base Xception architecture.
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Table 3. Performance comparison of variations of the Xception-sbN structure.

Modified
Structure

Accuracy No. of
ParametersAKIEC BCC BKL DF MEL NV VASC

Xception-sb8 0.9470 0.9523 0.9449 0.9328 0.9579 0.9572 0.9742 20,873,774

Xception-sb7 0.9558 0.9609 0.9547 0.9406 0.9669 0.9640 0.9821 19,255,430

Xception-sb6 0.9629 0.9678 0.9628 0.9467 0.9742 0.9691 0.9883 17,637,086

Xception-sb5 0.9630 0.9682 0.9633 0.9468 0.9744 0.9693 0.9887 16,018,742

Xception-sb4 0.9635 0.9683 0.9634 0.9472 0.9751 0.9701 0.9889 14,400,398

Xception-sb3 0.9633 0.9685 0.9634 0.9532 0.9747 0.9702 0.9893 12,782,054

Xception-sb2 0.9564 0.9548 0.9496 0.9315 0.9592 0.9563 0.9642 11,163,710

Xception-sb1 0.9512 0.9498 0.9434 0.9273 0.9538 0.9531 0.9599 9,545,366

Figure 5 compares the accuracy and loss curves between the base Xception and the
proposed Xception-sb architectures. It is evident that our proposed technique produced
slightly better results compared to the base architecture.
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Figure 6 shows the confusion matrix of the proposed approach, showing predictions
made for each class in terms of percentages and number of images from the test set correctly
and incorrectly classified for each lesion type. It can be seen that the proposed technique
correctly classified the highest number of images (i.e., 1319 of 1341) for the NV class, which
had the most images to learn from. Images of VASC were also correctly classified at a high
rate of 97.33%. MEL, BKL, BCC, and AKIEC lesions were correctly classified at rates of
91.03%, 90.02%, 89.35%, and 87.02%, respectively. With the lowest value of 72.45%, the
correct classification of DF proved to be the most challenging for the proposed technique.
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Table 4 shows recall, precision, accuracy, F1, and MCC (Matthew Correlation Coeffi-
cient) scores for each class of skin lesion. The proposed technique achieved the highest
recall for the NV class (0.9832), while the lowest recall was recorded for DF (0.7175). On
the other hand, the VASC class produced the best result for precision (0.9576). The NV
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class achieved the lowest precision (0.8365). The VASC class was classified with the highest
accuracy (0.9893), and the lowest accuracy was recorded for the DF class (0.9532). The
proposed technique produced high accuracy for all lesions in general. Finally, the best
F1 score was achieved for the VASC class (0.9628), while the DF class was on the other
side of the spectrum with the lowest score of 0.8153. As far as MCC scores are concerned,
VASC yielded the best result (0.9565). MEL, NV, BCC, and AKIEC performed well, all
scoring closely. DF scored the lowest MCC value (0.7989). Overall, the proposed technique
produced the best classification results for the VASC class of lesions.

Table 4. Classification results of the proposed approach.

Class Recall Precision Accuracy F1-Score MCC-Score

AKIEC 0.8737 0.8686 0.9633 0.8712 0.8498

BCC 0.8874 0.8923 0.9685 0.8898 0.8714

BKL 0.8998 0.8519 0.9634 0.8752 0.8542

DF 0.7175 0.9441 0.9532 0.8153 0.7989

MEL 0.9110 0.9114 0.9747 0.9112 0.8965

NV 0.9832 0.8365 0.9702 0.9039 0.8905

VASC 0.9680 0.9576 0.9893 0.9628 0.9565

Macro Average 0.8915 0.8946 0.9689 0.8899 0.8740

Weighted Average 0.9543 0.8534 0.9697 0.8996 0.8848

Table 4 also shows macro and weighted averages of recall, precision, accuracy, F1, and
MCC scores to show the overall performance of the proposed technique. The proposed
technique achieved a high overall level, with macro and weighted averages of 0.9689 and
0.9697, respectively. The overall recall of our approach was also recorded to be high, with
macro and weighted averages of 0.8915 and 0.9543, respectively. The overall precision was
calculated to comprise macro and weighted averages of 0.8946 and 0.8534, respectively. The
macro and weighted average values for F1 score were measured to be 0.8899 and 0.8996,
respectively. Finally, the respective macro and weighted average scores for MCC were
calculated to be 0.8740 and 0.8848.

Table 5 compares the base Xception network architecture with the proposed optimal
architectures regarding depth and breadth. Our depth-optimized Xception-m1 architecture
outperformed the base architecture with a 0.83% improvement in accuracy, 54.27% improve-
ment in the number of parameters, and 30.46% improvement in training time. Similarly,
the proposed breadth-optimized Xception-sb3 architecture improved the accuracy of the
base model by 2.63%, reduced the number of parameters by 38.77%, and resulted in a time
reduction of 22.12% for training the network.

Table 5. Comparison of accuracy, parameters, and training time.

Model Accuracy (Weighted Average) No. of Parameters Training Time for Single Image (ms)

Xception 0.9434 20,873,774 44.71

Xception-m1 0.9517 9,545,366 31.09

Xception-sb3 0.9697 12,782,054 34.82

We also compared the proposed technique with state-of-the-art works in the problem
domain. As shown in Table 6, our proposed technique outperforms the other works re-
garding accuracy and recall. The overall accuracy of our proposed approach was slightly
better than the best results achieved by Naeem et al. [53]. We achieved significant im-
provement in recall compared to the existing works. Our overall recall of 0.9543 was about
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2.38% better than the best recall achieved in previous studies. However, with a precision
of 0.9292, Calderon et al. [54] still outperform all the existing methods, including our
proposed technique.

Table 6. Comparison of the classification accuracy with state-of-the-art works.

Reference Pre-Training Dataset Recall Precision Accuracy

Calderon et al. [54] ImageNet HAM10000 0.9321 0.9292 0.9321

Jain et al. [55] ImageNet HAM10000 0.8957 0.8876 0.9048

Fraiwan and Faouri [56] ImageNet HAM10000 0.8250 0.9250 0.8290

Saarela and Geogieva [57] - HAM10000 - - 0.8000

Naeem et al. [53] ImageNet ISIC 2019 0.9218 0.9219 0.9691

Alam et al. [58] ImageNet HAM10000 - - 0.9100

Proposed method ImageNet HAM10000 0.9543 0.8534 0.9697

4. Conclusions and Future Work

Skin cancer is considered one of the most serious and widespread health concerns
worldwide, with a significant impact on patients’ quality of life and survival. The timely and
accurate diagnosis of skin cancer is essential for effective treatment and improved outcomes.
Deep learning models have shown considerable promise in assisting dermatologists with
skin cancer diagnosis in recent years. In this study, we utilized a modified Xception model
(called SBXception) to classify skin cancer lesions using the HAM10000 dataset. Our
results demonstrated that SBXception, with its reduced and expanded architecture, had
significantly improved performance in skin cancer classification, achieving an accuracy
of 96.97% on a holdout test set. However, there are still some limitations to our study
that need to be addressed in future research. Firstly, while our modified model achieved
high accuracy on the HAM10000 dataset, its performance needs to be evaluated on other
datasets to ensure its generalizability. Secondly, this study considered only the seven types
of skin lesions found in the dataset. Additionally, the current work did not focus on the
model’s interpretability to enhance its clinical applicability or other related factors, such as
demographic bias.

In terms of future directions, one possible avenue for research is to explore the potential
of combining multiple deep learning models for skin cancer diagnosis to further improve
accuracy. Another future direction could be the development of a mobile application that
can be created by adopting deep learning models to detect skin cancers. This application
could provide an easy-to-access system for initial skin cancer diagnosis for people in remote
areas. Additionally, a comprehensive dataset could be developed containing images from
different populations and skin colors to ensure that the deep learning models can detect
skin lesions from people with different colors.
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