Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacture of HPL-APCs
2.2. Prediction of Cancer Antigen Candidate Peptides
2.3. HPL-APC Vaccination
2.4. Evaluation of Safety and Tolerability
2.5. Enzyme-Linked Immunosorbent Spot (ELISpot) Assays
2.6. Detection of Monocytic MDSCs (M-MDSCs) and Regulatory T Cells (Tregs)
2.7. Detection of Antigen-Specific Memory T Cell Subsets
2.8. Case Report
2.8.1. Case 1 (Patient 2)
2.8.2. Case 2 (Patient 3)
2.8.3. Case 3 (Patient 5)
3. Results
3.1. Preparation of Personalized HPL-APC Vaccine with Cancer Antigen Candidate Peptides
3.2. Detection of Immune Responses to Personalized Cancer Antigen Candidate Peptides
3.3. Detection of SMAD4WT HLA-A*31:01-Specific CD8+ Effector Memory T Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al. Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients. Nat. Med. 2017, 23, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, C.S.; Hsu, J.C.; Hosseini, I.; Shen, B.Q.; Rotte, A.; Twomey, P.; Girish, S.; Wu, B. Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Molecular. Therapy 2021, 29, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Svensson-Arvelund, J.; Lubitz, G.S.; Marabelle, A.; Melero, I.; Brown, B.D.; Brody, J.D. Cancer Vaccines: The next Immunotherapy Frontier. Nat. Cancer 2022, 3, 911–926. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, R.; Zhang, X.; Yang, L. Personalized Neoantigen-Pulsed DC Vaccines: Advances in Clinical Applications. Front. Oncol. 2021, 11, 2969. [Google Scholar] [CrossRef] [PubMed]
- Parmiani, G.; Russo, V.; Maccalli, C.; Parolini, D.; Rizzo, N.; Maio, M. Peptide-Based Vaccines for Cancer Therapy. Hum. Vaccin Immunother. 2014, 10, 3175–3178. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Murakami, K.; Tran, M.D.; Elford, A.R.; Millar, D.G.; Ohashi, P.S. Peptide-Pulsed Dendritic Cells Have Superior Ability to Induce Immune-Mediated Tissue Destruction Compared to Peptide with Adjuvant. PLoS ONE 2014, 9, e92380. [Google Scholar] [CrossRef]
- Blass, E.; Ott, P.A. Advances in the Development of Personalized Neoantigen-Based Therapeutic Cancer Vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Li, Q.; Zhang, R.; Xie, L.; Shu, Y.; Gao, S.; Wang, P.; Su, X.; Qin, Y.; Wang, Y.; et al. Personalized Neoantigen Pulsed Dendritic Cell Vaccine for Advanced Lung Cancer. Signal Transduct. Target. Ther. 2021, 6, 26. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Koizumi, T.; Koya, T.; Sano, K.; Koido, S.; Nagai, K.; Kobayashi, M.; Okamoto, M.; Sugiyama, H.; Shimodaira, S. WT1-Pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. Anticancer Res. 2018, 38, 2217–2225. [Google Scholar] [CrossRef] [Green Version]
- Shimodaira, S.; Yanagisawa, R.; Koya, T.; Hirabayashi, K.; Higuchi, Y.; Sakamoto, T.; Togi, M., Jr.; Kobayashi, T.; Koizumi, T.; Koido, S.; et al. In Vivo Administration of Recombinant Human Granulocyte Colony-Stimulating Factor Increases the Immune Effectiveness of Dendritic Cell-Based Cancer Vaccination. Vaccines 2019, 7, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koido, S.; Homma, S.; Okamoto, M.; Takakura, K.; Mori, M.; Yoshizaki, S.; Tsukinaga, S.; Odahara, S.; Koyama, S.; Imazu, H.; et al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple Wilms’ Tumor 1 (WT1)-Specific MHC Class I/II-Restricted Epitopes for Pancreatic Cancer. Clin. Cancer Res. 2014, 20, 4228–4239. [Google Scholar] [CrossRef] [Green Version]
- Koya, T.; Yanagisawa, R.; Higuchi, Y.; Sano, K.; Shimodaira, S. Interferon-α-Inducible Dendritic Cells Matured with OK-432 Exhibit TRAIL and Fas Ligand Pathway-Mediated Killer Activity. Sci. Rep. 2017, 7, srep42145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, A.; Togi, M.; Koya, T.; Taniguchi, M.; Sakamoto, T.; Iwabuchi, K.; Kato, T.; Shimodaira, S. Identification of CD56dim Subpopulation Marked with High Expression of GZMB/PRF1/PI-9 in CD56+ Interferon-α-Induced Dendritic Cells. Genes Cells 2021, 26, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Date, I.; Koya, T.; Sakamoto, T.; Togi, M.; Kawaguchi, H.; Watanabe, A.; Kato, T.; Shimodaira, S. Interferon-α-Induced Dendritic Cells Generated with Human Platelet Lysate Exhibit Elevated Antigen Presenting Ability to Cytotoxic T Lymphocytes. Vaccines 2021, 9, 10. [Google Scholar] [CrossRef]
- Koya, T.; Niida, Y.; Togi, M.; Yoshida, K.; Sakamoto, T.; Ura, H.; Togi, S.; Kato, T.; Yamada, S.; Sugiyama, H.; et al. The Detection of Immunity against WT1 and SMAD4P130L of EpCAM+ Cancer Cells in Malignant Pleural Effusion. Int. J. Mol. Sci. 2022, 23, 12177. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic. Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Higuchi, Y.; Koya, T.; Yuzawa, M.; Yamaoka, N.; Mizuno, Y.; Yoshizawa, K.; Hirabayashi, K.; Kobayashi, T.; Sano, K.; Shimodaira, S. Enzyme-Linked Immunosorbent Spot Assay for the Detection of Wilms’ Tumor 1-Specific T Cells Induced by Dendritic Cell Vaccination. Biomedicines 2015, 3, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Putnam, A.L.; Xu-yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; Barbara, B.F.; et al. CD127 Expression Inversely Correlates with FoxP3 and Suppressive Function of Human CD4+ T Reg Cells. J. Exp. Med. 2006, 203, 1701. [Google Scholar] [CrossRef] [Green Version]
- Van Wigcheren, G.F.; De Haas, N.; Mulder, T.A.; Horrevorts, S.K.; Bloemendal, M.; Hins-Debree, S.; Mao, Y.; Kiessling, R.; van Herpen, C.M.L.; Flórez-Grau, G.; et al. Cisplatin Inhibits Frequency and Suppressive Activity of Monocytic Myeloid-Derived Suppressor Cells in Cancer Patients. Oncoimmunology 2021, 10, 1935557. [Google Scholar] [CrossRef]
- Litjens, N.H.R.; de Wit, E.A.; Baan, C.C.; Betjes, M.G.H. Activation-Induced CD137 Is a Fast Assay for Identification and Multi-Parameter Flow Cytometric Analysis of Alloreactive T Cells. Clin. Exp. Immunol. 2013, 174, 179. [Google Scholar] [CrossRef] [PubMed]
- Ponnan, S.M.; Hayes, P.; Fernandez, N.; Thiruvengadam, K.; Pattabiram, S.; Nesakumar, M.; Srinivasan, A.; Kathirvel, S.; Shankar, J.; Goyal, R.; et al. Evaluation of Antiviral T Cell Responses and TSCM Cells in Volunteers Enrolled in a Phase I HIV-1 Subtype C Prophylactic Vaccine Trial in India. PLoS ONE 2020, 15, e229461. [Google Scholar] [CrossRef]
- Hu, H.-F.; Ye, Z.; Qin, Y.; Xu, X.-W.; Yu, X.-J.; Zhuo, Q.-F.; Ji, S.-R. Mutations in Key Driver Genes of Pancreatic Cancer: Molecularly Targeted Therapies and Other Clinical Implications. Acta Pharmacol. Sinica 2021, 42, 1725–1741. [Google Scholar] [CrossRef] [PubMed]
- Prior, I.A.; Lewis, P.D.; Mattos, C. A Comprehensive Survey of Ras Mutations in Cancer. Cancer Res. 2012, 72, 2457. [Google Scholar] [CrossRef] [Green Version]
- Stolze, B.; Reinhart, S.; Bulllinger, L.; Fröhling, S.; Scholl, C. Comparative Analysis of KRAS Codon 12, 13, 18, 61, and 117 Mutations Using Human MCF10A Isogenic Cell Lines. Sci. Rep. 2015, 5, 8535. [Google Scholar] [CrossRef] [Green Version]
- Poole, A.; Karuppiah, V.; Hartt, A.; Haidar, J.N.; Moureau, S.; Dobrzycki, T.; Hayes, C.; Rowley, C.; Dias, J.; Harper, S.; et al. Therapeutic High Affinity T Cell Receptor Targeting a KRASG12D Cancer Neoantigen. Nat. Commun. 2022, 13, 5333. [Google Scholar] [CrossRef]
- Cafri, G.; Yossef, R.; Pasetto, A.; Deniger, D.C.; Lu, Y.C.; Parkhurst, M.; Gartner, J.J.; Jia, L.; Ray, S.; Ngo, L.T.; et al. Memory T Cells Targeting Oncogenic Mutations Detected in Peripheral Blood of Epithelial Cancer Patients. Nat. Commun. 2019, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.; Bhardwaj, N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018, 4, 119–137. [Google Scholar] [CrossRef]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat. Rev. Immunol. 2019, 20, 7–24. [Google Scholar] [CrossRef]
- Gattinoni, L.; Speiser, D.E.; Lichterfeld, M.; Bonini, C. T Memory Stem Cells in Health and Disease. Nat. Med. 2017, 23, 18. [Google Scholar] [CrossRef]
- Yossef, R.; Tran, E.; Deniger, D.C.; Gros, A.; Pasetto, A.; Parkhurst, M.R.; Gartner, J.J.; Prickett, T.D.; Cafri, G.; Robbins, P.F.; et al. Enhanced Detection of Neoantigen-Reactive T Cells Targeting Unique and Shared Oncogenes for Personalized Cancer Immunotherapy. JCI Insight 2018, 3, e122467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimodaira, S.; Sano, K.; Hirabayashi, K.; Koya, T.; Higuchi, Y.; Mizuno, Y.; Yamaoka, N.; Yuzawa, M.; Kobayashi, T.; Ito, K.; et al. Dendritic Cell-Based Adjuvant Vaccination Targeting Wilms’ Tumor 1 in Patients with Advanced Colorectal Cancer. Vaccines 2015, 3, 1004–1018. [Google Scholar] [CrossRef] [Green Version]
- Shimodaira, S.; Kobayashi, T.; Hirabayashi, K.; Horiuchi, K.; Koya, T.; Mizuno, Y.; Yamaoka, N.; Yuzawa, M.; Ishikawa, S.; Higuchi, Y.; et al. Induction of Antigen-Specific Cytotoxic T Lymphocytes by Chemoradiotherapy in Patients Receiving Wilms’ Tumor 1-Targetted Dendritic Cell Vaccinations for Pancreatic Cancer. OMICS J. Radiol. 2015, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Harari, A.; Graciotti, M.; Bassani-Sternberg, M.; Kandalaft, L.E. Antitumour Dendritic Cell Vaccination in a Priming and Boosting Approach. Nat. Rev. Drug Discov. 2020, 19, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.T.; Henri, S.; Battye, F.; Tough, D.F.; Shortman, K. Developmental Kinetics and Lifespan of Dendritic Cells in Mouse Lymphoid Organs. Blood 2002, 100, 1734–1741. [Google Scholar] [CrossRef]
- Ingulli, E.; Mondino, A.; Khoruts, A.; Jenkins, M.K. In Vivo Detection of Dendritic Cell Antigen Presentation to CD4(+) T Cells. J Exp Med 1997, 185, 2133–2141. [Google Scholar] [CrossRef]
- Anguille, S.; Smits, E.L.; Lion, E.; Van Tendeloo, V.F.; Berneman, Z.N. Clinical Use of Dendritic Cells for Cancer Therapy. Lancet Oncol 2014, 15, e257–e267. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Shen, X. Targeting Myeloid-Derived Suppressor Cells in Tumor Immunotherapy: Current, Future and Beyond. Front. Immunol. 2023, 14, 1157537. [Google Scholar] [CrossRef]
Patient No. | Age (Years) | Sex | Disease | Cancer Genomic Profiles † |
---|---|---|---|---|
2 | 57 | M | pancreatic cancer | KRAS G12D |
3 | 48 | F | cervical cancer | KRAS G12D, SMAD4 G365D |
5 | 75 | F | pancreatic cancer | KRAS G12D, TP53 E258K |
Patient No. | HLA Type | Sequence | Peptide Name | Affinity to HLA (IC50 nM) |
---|---|---|---|---|
2 | HLA-A*24:02 | QYMRTGEGF | KRASWT-HLA-A*24:02 | 37 |
HLA-A*33:03 | SFEDIHHYR | KRASWT-HLA-A*33:03 | 11 | |
HLA-DRB1*07:01 | KQAQDLARSYGIPFI | KRASWT-HLA-DRB1*07:01 | 40 | |
3 | HLA-A*11:01 | VVGADGVGK | KRASG12D-HLA-A*11:01 | 172 |
HLA-A*31:01 | CVNPYHYER | SMAD4WT-HLA-A*31:01 | 6 | |
HLA-DRB1*04:01 | GDRFCLDQLSNVHRT | SMAD4G356D-HLA-DRB1*04:01 | 355 | |
5 | HLA-A*02:06 | LVVVGADGV | KRASG12D-HLA-A*02:06 | 164 |
HLA-DRB1*01:01 | TIITLKDSSGNLLGR | TP53E258K-HLA-DRB1*01:01 | 71 | |
2, 3, 5 | HLA-DRB1*09:01 | TEYKLVVVGADGVGK | KRASG12D-HLA-DRB1*09:01 | 181 |
Patient No. | Yield (%) | Viability (%) | Purity (%) | Phenotype (%) | ||||
---|---|---|---|---|---|---|---|---|
CD40 | CD80 | CD86 | HLA-ABC | HLA-DR | ||||
2 | 23 | 94 | 93 | 89.9 | 50.5 | 83.7 | 99.9 | 61.7 |
3 | 26 | 94 | 96 | 81.4 | 32.1 | 80.2 | 100.0 | 86.7 |
5 | 38 | 95 | 91 | 76.2 | 34.1 | 92.6 | 99.8 | 92.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koya, T.; Yoshida, K.; Togi, M.; Niida, Y.; Togi, S.; Ura, H.; Mizuta, S.; Kato, T., Jr.; Yamada, S.; Shibata, T.; et al. Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells. Cancers 2023, 15, 3627. https://doi.org/10.3390/cancers15143627
Koya T, Yoshida K, Togi M, Niida Y, Togi S, Ura H, Mizuta S, Kato T Jr., Yamada S, Shibata T, et al. Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells. Cancers. 2023; 15(14):3627. https://doi.org/10.3390/cancers15143627
Chicago/Turabian StyleKoya, Terutsugu, Kenichi Yoshida, Misa Togi, Yo Niida, Sumihito Togi, Hiroki Ura, Shuichi Mizuta, Tomohisa Kato, Jr., Sohsuke Yamada, Takeo Shibata, and et al. 2023. "Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells" Cancers 15, no. 14: 3627. https://doi.org/10.3390/cancers15143627
APA StyleKoya, T., Yoshida, K., Togi, M., Niida, Y., Togi, S., Ura, H., Mizuta, S., Kato, T., Jr., Yamada, S., Shibata, T., Liu, Y. -C., Yuan, S. -S., Wu, D. -C., Kobayashi, H., Utsugisawa, T., Kanno, H., & Shimodaira, S. (2023). Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells. Cancers, 15(14), 3627. https://doi.org/10.3390/cancers15143627