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Simple Summary: Despite multi-modal treatment consisting of surgery, chemotherapy, and radiation,
glioblastoma inevitably recurs due to its diffuse infiltrative nature. Anti-tumor immune responses,
supported by pro-inflammatory cytokines, that can seek out remote cancer vestiges will likely become
part of the therapeutic armamentarium but will require thoughtful selection, combinatorial vetting,
and innovative delivery strategies.

Abstract: Cytokines play an important role in regulating the immune response. Although there is
great interest in exploiting cytokines for cancer immunotherapy, their clinical potential is limited by
their pleiotropic properties and instability. A variety of cancer cell-intrinsic and extrinsic character-
istics pose a barrier to effective treatments including cytokines. Recent studies using gene and cell
therapy offer new opportunities for targeting cytokines or their receptors, demonstrating that they
are actionable targets. Current efforts such as virotherapy, systemic cytokine therapy, and cellular
and gene therapy have provided novel strategies that incorporate cytokines as potential therapeutic
strategies for glioblastoma. Ongoing research on characterizing the tumor microenvironment will
be informative for prioritization and combinatorial strategies of cytokines for future clinical trials.
Unique therapeutic opportunities exist at the convergence of cytokines that play a dual role in tu-
morigenesis and immune modulation. Here, we discuss the underlying strategies in pre- and clinical
trials aiming to enhance treatment outcomes in glioblastoma patients.

Keywords: glioma; cytokines; tumor microenvironment

1. Introduction

Glioblastoma isocitrate dehydrogenase wild type (GBM IDHwt) is a highly infiltra-
tive malignancy that is poorly controlled by the standard of care that includes surgery,
radiotherapy, chemotherapy, and alternating electrical fields [1–4]. Objective response rates
(ORR) are very low and are influenced, in large part, by the specific mechanism of action
of the therapeutics and their effects on imaging parameters more than on direct tumor
cytotoxicity [5]. Current treatment approaches for GBM remain challenging due to tumor
heterogeneity [6], an immune-suppressive tumor microenvironment (TME) [7], and the
highly infiltrative nature of these tumors [8]. Cytokines are soluble small molecules that
mediate the interactions between immune and non-immune cells in the TME and either
support pro- or anti-inflammatory responses [9]. Targeted delivery of immune modulatory
cytokines through either gene- or cell-based strategies [10–13] may limit adverse effects
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related to the systemic administration and enhance the efficacy of the treatment [13]. Herein,
we focus on cytokine-targeted therapy that mediates crosstalk between cancer and immune
cells that have yet to be fully investigated or integrated into treatment strategies.

Efforts to use immune responses to control cancer date back to 1891, when William
Coley attempted treatment of sarcoma patients using mixtures of live and inactivated
Serratia marcescens and Streptococcus pyogenes [14]. More recently, immunotherapy has
become a well-integrated component of the standard of care. This success is grounded in
an understanding of the specific mechanisms of immune dysregulation in cancer. Work
from Allison et al. has been foundational for inducing immune responses to overcome
disseminated cancer and provide prolonged duration of responses [15,16]. Multiple im-
munotherapy strategies have been and continue to be investigated in clinical trials including
combinations utilizing immune checkpoint inhibitors [17–20] and oncolytic viruses [21–26].
However, current immunotherapy strategies have limited benefits in GBM [27]. This lack of
responsiveness indicates the need to expand the current approaches designed to treat GBM.

2. Modulation of Tumor Immunogenicity

GBM is a heterogeneous disease that develops a complex TME composed of infil-
trating immune cells, vasculature, and fibroblasts exposed to various soluble factors af-
fecting tumor growth [28]. These various factors within the TME determine phenotypic
features and treatment outcomes. Cancer cells create an immunosuppressive microen-
vironment through a variety of mechanisms including inducing immune-suppressive
macrophages/microglia [29] and downregulation of antigen presentation [30]. The pres-
ence of myeloid-derived suppressor cells (MDSCs) is one of the mechanisms that promote
immunosuppressive TME and likely inhibits effective immunotherapy [31]. MDSCs mi-
grate as immature cells from the bone marrow to tumors, where they differentiate into
mature macrophages and dendritic cells [32,33]. MDSCs inhibit activation and prolifera-
tion of cytotoxic T cells [34] through increased expression of arginase-1 [35], resulting in
increased secretion of IL-10 [36] and TGF-β [37]. Tumor-associated microglia/macrophages
(TAM) impose additional constraints on anti-tumor immunity [38] by secreting low levels
of pro-inflammatory cytokines [39] and compromising T cell function as summarized in
Figures 1 and 2 [40]. This immune suppression is further compounded by a paucity of T
cells within the TME through sequestration in the bone marrow [41] and irreversible T cell
exhaustion [42].
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Figure 1. The dynamics of cytokines in the glioblastoma tumor microenvironment (TME). A cartoon
depiction of the cytokines that modulate anti-tumor immune responses. Production of immune-
suppressive cytokines shown in red are counterbalanced by pro-inflammatory cytokines shown in
green. Cytokines that have different immunological roles depending on context are shown in black.
A variety of cells within the TME elaborate these cytokines with some, such as macrophages, being
abundant, whereas T cells are relatively rare.
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Figure 2. Immunological features of tumors based on cellular and cytokine composition within the
tumor microenvironment (TME). Tumors that are devoid of cytotoxic T cells and pro-inflammatory
cytokines such as IL-2, IFN-γ, and TNF-α, but with immune-suppressive cytokines such as TGF-β
and immune-suppressive cells such as tumor-associated macrophages (TAMs), are designated as
immunologically cold. This cold TME is associated with microglia infiltration. In a hot TME, which is
rare in glioblastoma, there would be abundant CD8 cytotoxic T cells and dendritic cells alongside
pro-inflammatory cytokines.

3. Cytokine Biology

Cytokines are secreted proteins that engage the extracellular domains of cell surface
receptors and regulate immune response and homeostasis [9]. Cytokines can be classified
based on their roles as pro- or anti-inflammatory cytokines [43] or on cellular origin (Table 1).
Type 1 (cellular response) cytokines are secreted by CD4+ Th1 and type 2 (humoral response)
cytokines are produced by CD4+ Th2 cells [44]. Although the immune regulatory effects
of cytokines make them compelling candidates for cancer immunotherapy, undesirable
side effects and short serum half-life can restrict clinical implementation [45]. Cytokine
pleiotropy, which refers to the ability of cytokines to act on different cell types in the immune
system and peripheral tissues, is also a challenge for clinical translation because of off-
target effects [46]. Multiple immunomodulatory cytokines have or are being investigated
for clinical use, including TGF-β, CSF-1, IL-2, IL-7, IL-10, IL-12, IL-18, IL-21, IL-22, and
IFN-α, some of which include glioma patients (Table 2). Only IFN-α and IL-2 have received
U.S. Food and Drug Administration (FDA) approval for cancer treatment [47]. There
has been limited experience with high-dose IL-2 in GBM patients after one subject had
a fatal outcome secondary to herniation associated with marked T cell tumor infiltration
that has not been reported. Human interferon alpha 2b (IFN-α2b) was approved for the
treatment of hairy cell leukemia in 1986 and recombinant IL-2 for treating melanoma
and renal cancers in 1992 [47]. With these treatments, severe side effects can include
capillary leak syndrome and cytokine release syndrome, leading to death in some patients.
In many instances, the concentration of the cytokine leads to different effects including
unwanted off-target toxicities. As opposed to conventional chemotherapy in which the
highest tolerated doses are typically used, efforts need to be directed at the identification of
the appropriate dose for the desired physiological result in the case of cytokines. As such,
the management of cytokines, including toxicities, is a more subtle process with titration of
the dose in contrast to more standard pharmacologic management of an “on/off switch”
approach. As such, the management of cytokines is a different concept when juxtaposed
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with cytotoxic chemotherapy where the intention is to maximize cytotoxicity. Given the
toxicity of cytokine-based therapies, considerable effort has been focused on targeting
cytokines through cytokine-producing viral vector gene therapy and adoptive transfer of
cytokine-producing cells. Below, we discuss specific promising cytokine-based approaches
undergoing investigation in GBM. We first discuss the targeting of pro-tumoral cytokines
followed by a discussion of approaches using pro-inflammatory anti-tumoral cytokines.

Table 1. Cytokine control of the immune system.

Mediator Cellular Source Function

IL-1 Macrophages, epithelial cells Pro-inflammatory, macrophage, and Th17
cell activation

IL-2 T cells Effector T cell and regulatory T cell growth factor

IL-4 Th-cells T and B cell proliferation and B cell differentiation

IL-6 Macrophages, T cells, endothelial cells Both pro-inflammatory and immune suppressive,
increased antibody production

IL-8 Macrophages, epithelial cells Recruitment of neutrophils

IL-9 Th9 cells Activation of mast cells

IL-10 Regulatory T cells, Th9 cells Immune suppressive, inhibition of Th1 cells

IL-11 Fibroblasts, neurons Immune suppression

IL-12 Dendritic cells, macrophages Activation of Th1, induction of interferon from
cytotoxic T cells and NK cells

IL-15 CD8 T cells, NK cells Expansion of memory CD8 and NK cells

IL-17 Th17 cells, NK cells Promotes neutrophilic inflammation

IL-18 Monocytes, macrophages, dendritic cells Pro-inflammatory, activation of the Th1 pathway

IL-33 Macrophages, dendritic cells, mast cells,
epithelial cells

Pro-inflammatory, amplification of Th1 and Th2
cells, activation of NK cells

IFN-γ Th1 cells, cytotoxic T and NK cells Pro-inflammatory and activates macrophages

Tumor necrosis factor Macrophages, T cells, NK cells Pro-inflammatory increases vascular permeability

GM-CSF Macrophages, T cells, NK cells, and
endothelial cells Pro-inflammatory but glioma propagating

VEGF Macrophages Angiogenesis

TGF-β Macrophages, T cells Immune suppressive

CXCL9 Monocytes, endothelial cells Recruitment of Th1, NK, and dendritic cells

CXCL10 Monocytes, endothelial cells Recruitment of macrophages, Th1, and NK cells

CXCL12 Mesenchymal stem cells Chemotactic for T cells

CCL2 Macrophages, dendritic cells Recruitment of Th2, monocytes, and dendritic cells

CCL3 Monocytes, neutrophils, dendritic cells Recruitment of macrophages, Th2, NK, and
dendritic cells

CCL4 Macrophages, neutrophils, endothelium Recruitment of macrophages, Th1 cells, NK, and
dendritic cells

CXCL13 B cells Recruitment of B cells, CD4 T, and dendritic cells
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Table 2. Chemokine clinical trials in glioma patients.

Mediator Phase Therapeutic Benefit Side Effects Reference

IFN-α 3
Increase in overall survival in
combination with the current

standard of care
Seizures and flu-like symptoms [48]

3 No benefit in combination
with radiation and carmustine

Fevers, chills, myalgia,
somnolence, confusion, and

neurological deficits
[49–51]

IFN- α-2a 2 No benefit Dermatological effects [52]

IFN-α-2b (PEG-Intron) 2 No benefit in DIPG patients Well tolerated [53]

IFN-β 2 No benefit in combination with
the current standard of care Increased neutropenia [54–59]

IFN-γ 2 No benefit Well tolerated [60]

IL-12 1 Safety Well tolerated [61–63]

CXCR4 inhibitor 1 Safety Well tolerated [64]

CSF-1 inhibitor 2 No benefit Well tolerated [65]

TGF-βR1 2 Safety Preserved T cell counts [66,67]

TGF- βR2 2 No benefit Seizures, edema [68]

TNF-α 1 Safety Well tolerated [69,70]

GM-CSF 3 No benefit Well tolerated [1,71,72]

IL-2 1 No benefit Fatigue, edema [73–76]

4. Targeting Pro-Tumoral Cytokines
4.1. Targeting Transforming Growth Factor β (TGF-β)

TGF-β is a cytokine with pleiotropic effects which may play an important role in anti-
tumor immune responses [77]. TGF-β supports stem-like self-renewal and suppression of
immune response [78]. TGF-β expression, presumably in the context of the above-described
effects, is associated with glioma development and progression [79]. In turn, targeting this
cytokine is a rational therapeutic approach. A non-randomized phase 1/2 clinical trial
(NCT01220271) showed the safety and tolerability of LY2157299, a small molecule inhibitor
of TGF-β receptor type I, in combination with temozolomide and radiation in newly
diagnosed high-grade gliomas [80]. However, treatment of patients with LY2157299 and
lomustine did not improve the overall survival (OS) relative to monotherapeutic lomustine
in patients with recurrent GBM [81]. Another approach for targeting TGF- β involves the
use of bintrafusp alfa, a bifunctional protein consisting of an antibody blocking PD-L1 and
TGF-β trap [82]. Because PD-L1 can be expressed on some types of cancer cells which
prevents T cells from killing, targeting two distinct mechanisms of tumor-mediated immune
suppression may show an additive or synergistic effect. Partial responses were observed in
a phase 1 trial of this agent in conjunction with radiation and temozolomide in patients
with recurrent GBM [82]. Because PD-L1 is not frequently expressed on GBM [83,84],
this strategy likely needs to be considered in the context of selected patients. In addition,
the size of the therapeutic molecule requires consideration with respect to its ability to
adequately cross the blood–brain barrier (BBB) at adequate concentrations to treat the
tumor. Antisense nucleotides are another means for targeting TGF-β. These (AP12009)
have been investigated in a non-randomized phase 2 trial in which they were directly
administered into recurrent tumors using convection-enhanced delivery (CED). Partial
and complete responses were observed [85]. There are a number of technical challenges
currently associated with CED [86] which limit scalability and dampen the enthusiasm for
later-stage clinical investigations.
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4.2. CSF-1

Colony-stimulating factor-1 (CSF-1) is a glycoprotein cytokine that functions through
the receptor CSF1R [87] and regulates the differentiation of myeloid progenitors into den-
dritic cells, monocytes, and macrophages [88]. One of the most frequent immune cells
within the TME are TAMs. The cells can become polarized to the M1 and M2 states [89,90]
in which the M1 state exerts a pro-inflammatory, anti-tumor response [91] and the M2 state
promotes tumor growth, invasion, metastasis, and resistance to therapy [92]. TAM-directed
therapies using CSF-1 and CSF1R inhibitors have been tested in preclinical models of
gliomas [93,94], as well as in clinical studies. A phase 2 trial (NCT01349036) of pexidartinib
(PLX3397), a CSF1R inhibitor, in recurrent GBM was well tolerated but did not improve
progression-free survival (PFS) [95]. Similarly, a combination of pexidartinib, radiation ther-
apy, and temozolomide did not improve median PFS or OS in newly diagnosed GBM [96].
This lack of effect may be due to, at least in part, compensatory mechanisms such as
CSF2-driven macrophage resistance or phosphatidylinositol 3-kinase [97].

4.3. The Paradoxical Targeting of the Granulocyte-Macrophage Colony-Stimulating Factor
(GM-CSF) for Glioblastoma

GM-CSF is a hemopoietic growth factor and is responsible for the expansion and
activation of macrophages and granulocytes [98]. GM-CSF modulates cell maturation
proliferation and survival. GM-CSF boosts immune responses by promoting T and B cell
expansion and differentiation and dendritic cell maturation, proliferation, and migration. It
is from this immunological perspective that GM-CSF has been used in oncology clinical trials
including a wide variety of peptide vaccine strategies for GBM patients. Notably, GM-CSF
is elevated in cancer patients [99]. In glioblastoma, GM-CSF and its receptor can promote
tumor progression likely through upregulating anti-apoptotic and pro-angiogenic signals
via the activation of the signal transducer and activator of transcription 3 (STAT3) signaling
pathway or by increasing the expression of VEGF and its receptor [100,101]. In the tumor
environment, tumor cells, and tumor-associated microglial cells secrete GM-CSF [102–104].
Inhibiting GM-CSF thereby can suppress cancer cell growth and metastasis [103]. GM-CSF
has been used in multiple large vaccine trials for GBM which could have had both beneficial
and detrimental effects [1,72]. Given the dual pro-cancer and pro-inflammatory roles of
GM-CSF, monotherapy inhibitors will likely not be tested in the context of glioma.

5. Utilizing Anti-Tumoral Cytokines
5.1. Virus-Based Cytokine Expression

Virotherapy is an evolving class of immunotherapies based on the selective replication
of these viruses in cancer cells to trigger tumor antigen presentation, immune activation,
and subsequent tumor cytotoxicity [20–22]. Initiation and activation of apoptosis in the
cancer cells and the induction of type I IFN is the underlying mechanism of these types
of viruses. Viruses can also be devised to elaborate a variety of cytokines to modulate
the immune system that thereby mediates the anti-tumor effect. The first oncolytic virus
approved by the FDA in 2015 for the treatment of metastatic melanoma was talimogene
laherparepvec (T-VEC), an engineered herpes simplex virus-1 that expresses human GM-
CSF [105,106]. A series of preclinical studies have shown that cytokine-armed viruses can
enhance immune response and provide additional survival benefits in glioma-bearing mice.
For example, a virus expressing IL-4 prolonged survival in tumor-bearing mice [107] and
one expressing a single-chain variable fragment of the epidermal growth factor receptor
(EGFR) antibody conjugated to CCL5 increased the infiltration of innate and adaptive
immune cells [108].

A number of cytokine-elaborating viruses have been tested in GBM [21–24] but tu-
mor heterogeneity and the immune-suppressive TME have likely compromised clinical
effectiveness thus far. Ad–RTS–hIL-12 is an adenoviral vector expressing IL-12 controlled
by binding of an orally administered ligand, veledimex [62]. Safety, tolerability, and feasi-
bility were demonstrated in a phase 1 monotherapy trial in recurrent high-grade glioma.
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The ability to measure extra-CNS spill-over of IL-12 and its downstream product IFN-γ
was demonstrated via elevated serum concentrations. Based on preclinical studies, the
intracranial concentration of cytokines was likely substantially higher than what could be
measured in the serum. Post-treatment resected tumor tissue demonstrated an increase in
T cell infiltration of the tumor. This approach has been further investigated in conjunction
with PD-1 blockade in the phase 1 [61] and phase 2 settings [109]. As discussed earlier,
the highest level of IL-12 production did not appear to be the optimal dose for impacting
survival and in turn was not utilized as the phase 2 dose. Two other IL-12-based viral
vector gene therapy approaches are currently under investigation in gliomas. Ad-TD-
nsIL12, a human adenovirus with three genes deleted and expressing human non-secretory
IL-12, was developed to minimize IL-12 toxic effects [110]. A phase I Ad-TD-nsIL12 trial
(NCT05717699, NCT05717712) in pediatric patients with diffuse intrinsic pontine glioma
is currently recruiting patients in China. Another phase 1/2 trial (NSC 733972) is now
enrolling patients with high-grade gliomas to study the combination of M032, a genetically
engineered HSV-1 expressing IL-12, with pembrolizumab.

5.2. The Addition of IFN-α with the Standard of Care Temozolomide

IFN-α can inhibit tumor cell proliferation, enhance the cytotoxic activity of macrophages
and natural killer (NK) cells, and prevent the formation of blood vessels in tumors [111]. A
multi-center randomized phase 3 clinical trial enrolled 199 patients with high-grade gliomas.
After receiving standard radiation therapy with concurrent temozolomide, patients were
randomized to receive either temozolomide or temozolomide with IFN-α. The median OS
of patients in the temozolomide plus IFN-α group was 26.7 months, which was longer than
that in the standard of care group of 18.8 months (p = 0.005). Seizure and influenza-like
symptoms were more common in the combination group [48]. The potential benefit was
consistent with a prior study that demonstrated that a pegylated formulation had some ben-
efit in addition to temozolomide [112]. However, a prior phase III study of 275 randomized
high-grade glioma patients had demonstrated that IFN-α did not improve time to disease
progression or OS when added to treatment with radiation therapy and carmustine. Patients
treated with IFN-α experienced more fevers, chills, myalgia, somnolence, confusion, and
neurological deficits [49]. The differences in outcomes between these trials may have been a
function of the combination with the type of chemotherapy.

5.3. Systemic Cytokine Therapy in Conjunction with Brain Tumor Vaccines

The objective of cancer vaccines is to stimulate adaptive immunity against tumor
antigens to control tumor growth [113]. The first cancer vaccine approved by the FDA
was sipuleucel-T (Provenge), which is a personalized vaccine developed using ex vivo
activated peripheral-blood mononuclear cells co-incubated with a recombinant fusion pro-
tein (PA2024) to control asymptomatic metastatic castration-resistant prostate cancer [114].
Various types of GBM vaccines have been developed that are usually administered in
conjunction with GM-CSF [71,115–123]. Thus far, they have not demonstrated an improve-
ment in survival. Newer strategies involve the co-administration of additional cytokines
to augment the potential activity of glioma vaccines. For example, IL-12 was shown to
improve the therapeutic efficacy in preclinical murine models bearing intracranial gliomas
treated with dendritic cells loaded with GL261 mRNA [124]. Several different approaches
are being investigated with all appearing safe and having acceptable tolerability thus far.

5.4. Cell-Based Therapies

Cell-based therapies rely on genetically modified immune cells such as T, NK, and B
cells. Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells
demonstrated success in hematologic malignancies and melanoma with six CAR T cell
therapies having received FDA approval [125]. While preclinical studies of CAR T therapy
were effective in brain tumor control [126,127], overall response rates have been low, likely
because of antigen heterogeneity [128,129] and the immune-suppressive TME [130,131].
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CAR T therapy may have the ability to reprogram TME and thus may be a compelling
partnering approach with other treatment modalities [131]. Improving CAR T therapy
can be achieved by engineered expression of cytokines or their receptors to enhance T cell
activation, proliferation, and trafficking. In preclinical testing, disialoganglioside (GD2)-
targeting CARs engineered with constitutively active IL-7 receptor or IL-15, enhanced
survival in GBM xenograft models [132,133]. In another approach, the expression of CXCR1
or CXCR2 in CAR T cells improved trafficking in a GBM model [134]. An upcoming phase
1 trial (NCT05353530) has been designed to assess the safety and feasibility of IL-8 receptor-
modified CD70 CAR T treatment in CD70+ and MGMT-unmethylated GBM patients. IL13
receptor alpha 2 (IL13Ra2) is a monomeric receptor of IL-13 [135] that is expressed in ~70%
of GBM patients. IL-13Ra2 is associated with higher-grade glioma and poor prognosis [136].
Data from the clinical experience of IL-13Ra2 CAR T intracranial administration supported
the safety of CAR T in patients with recurrent GBM [137].

NK cells have also been evaluated in the treatment of gliomas [138,139]. NK cells, a key
component of innate immunity, facilitate cell lysis by degranulation achieved by the activat-
ing receptor NK group 2 member D (NKG2D) [140], killer cell immunoglobulin-like receptor
(KIR), and coactivating/adhesion DNAX-activating molecule (DNAM-1) [141]. Because
NK cells become deactivated by TGF-β in the immune-suppressive TME of GBM [138],
these cells are co-administered with IL-2 and a TGF-βR1 inhibitor (NCT05400122) or are
genetically modified so that the TGF-βR is deleted (NCT04991870) in ongoing clinical trials
for colorectal adenocarcinoma and GBM patients, respectively.

5.5. Cytokines Associated with Toxicity in GLIOMA Patients

Distinct elevated serum cytokines may be associated with side effects in glioma
patients. In one study, plasma profiling of patients treated with the antiangiogenic agent
aflibercept in 28 patients with recurrent GBM revealed that changes in IL-13 from baseline
to 24 h predicted on-target toxicities. Increases in IL-1β, IL-6, and IL-10 at 24 h were
significantly associated with fatigue [142].

5.6. The Modern Era of Monitoring Intratumoral Cytokines

Under most circumstances, cytokines of CNS tumor patients are measured in the
periphery, and these are likely not fully representative of intra-CNS, including intratumoral,
concentrations. To determine both the absolute intratumoral concentrations and to follow
the longitudinal kinetics, microdialysis catheters can be implanted with minimal risk [143].
This type of analysis is important since it may also identify those subjects that are showing
early signs of response, whereas those who do not demonstrate immune effector responses
could be spared further ineffective therapy or an alternative therapy based on the changes
in the tumor microenvironment. This is contingent on the conditions that cytokines alone
would be biologically meaningful as a biomarker of response and that the captured time
point for analysis coincides with the therapeutic monitoring period.

5.7. Modulating Cytokines in Glioma Preclinical Model

There are substantial preclinical efforts to use cytokines, especially in adoptive cellular
strategies. For example, IL-7 expressed by CAR T improved the survival outcome in
a GBM murine model [144]. In another model, IL-15-modified CAR T also improved
median survival [127]. Thus far, it is unclear in what specific contexts these cytokine
modifications of CAR T cells should be optimally used, the prioritization of which ones, or
the combinations. A key limitation is the distribution of adaptive immune therapies through
a complex heterogeneous TME. In addition to the delivery of cytokines using viral vectors,
an alternative strategy would be the deposition of cells elaborating cytokines and/or
chemokines in the TME using BBB opening ultrasound [26]. This type of strategy allows for
large molecules to be deposited into the glioblastoma TME. Our group engineered antigen-
presenting cells to express CXCL10. These were deposited into the TME of gliomas and
markedly increased the number of T cells in the TME and increased median survival [145].
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Moving forward, one could engineer off-the-shelf cells that have been transduced with a
variety of pro-inflammatory cytokines that are deposited into the TME using BBB opening
ultrasound for sustained delivery.

6. Future Directions

Clinical trials investigating the therapeutic effect of cytokines in glioblastoma patients
have demonstrated signals of biological response. Cytokine-modulated therapy in GBM
will likely evolve as a combinatorial strategy with other immune therapies. The patho-
physiology of the cancer and the mechanisms of resistance will prioritize the selection
of the cytokines likely in the context of the specific types of immune therapy. Although
studies have provided significant insights into the outcomes of GBM patients treated with
cytokine modulation, there are significant areas of investigation needed to fully optimize
this strategy. One could argue that targeting key hubs such as p-STAT3 that control many
immune-suppressive cytokines might be a more rational strategy in GBM. Recent studies
have highlighted the importance of IL-33 in GBM progression. Secretion of IL-33 from
glioma cells recruits TAM and microglia and promotes a pro-tumorigenic environment [146].
Phospho-proteomic analysis revealed that IL-33+ tumors have a high expression of p-STAT3.
STAT3 is a transcriptional regulator of IL-10 [147] and TGF-β [129]. STAT3 inhibits proin-
flammatory cytokines and dampens the generation of antigen-dependent T cells and T cell
proliferation [148]. A BBB penetrant inhibitor of STAT3 is being advanced into phase II
studies in combination with radiation [149,150].

Given the multiplicity and various roles of cytokines in the GBM TME, it is unlikely
that a single cytokine-focused therapy will result in patient benefits greater than the well-
established standard of care. As such, strategically targeting the most immunosuppressive
cytokines while pairing an immune checkpoint blockade is the next logical step. To specifi-
cally focus on the biology of the TME, particularly the abundance of myeloid lineage cells
preventing adaptive immune responses, would enhance the potential for this therapeutic
approach to achieve success [151]. As such, pairing established inhibitors of immunosup-
pressive signaling in myeloid cells with pro-inflammatory checkpoint blockades could
be a worthy avenue. Designing brain-penetrant, homing, and myeloid-specific combina-
torial approaches is a daunting task and requires the combined collaboration of vastly
different areas of scientific expertise. Nanoparticles modified with mannose residues, the
binding partner of the canonical immunosuppressive M2 surface receptor CD206, have
been shown to target immunosuppressive TAMs while also carrying a payload capable of
reversing their immunosuppression [152]. This strategy is proof-of-principle that targeting
and reversing immunosuppression in the TME can be cell-specific. To apply this to GBM,
we then need to address the spatial challenges of treating the tumor and overcoming the
BBB. BBB opening delivery strategies could be a way to deposit cytokine-elaborating cell
factories. The contents and cytokines were selected based on specific TME components
assayed during biopsy or through circulating biomarkers, to precisely address the TME
of the individual tumor and to work in synergy with therapeutic response to existing
checkpoint blockades [153]. Novel cytokines that relate to tumor-associated myeloid cells
including osteopontin (OPN) [154], and macrophage inhibitory factor (MIF) [155,156], seem
to address the above parameters in that they both regulate myeloid cell trafficking and the
immunosuppressive phenotypes in the TME of GBM.

Key Strategic Decisions for the Scientific Community

• Which cytokines should be prioritized for use and why?
• How can optimal cytokine concentration/dose be established and what is the best

strategy for modulation?
• Are there some contexts in which certain cytokines should be used relative to others?
• If we were to devise a cellular biofactory for the deposition of various cytokines into

the TME, what should be prioritized?
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• Are there some cytokines that should be explored next for GBM that have not been
thus far?

7. Conclusions

Although various studies have provided valuable insight into cytokine-based therapy,
significant efforts need to be directed toward selection of cytokine(s) in various indications,
optimization of combinatorial strategies, delivery strategies, and companion biomarkers.
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