High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Sample Collection
2.2. Data Collection
2.3. Western Blot Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Population
3.2. Molecular Determination of OCT4 in Tumor Tissue and Adjacent Non-Tumor Tissue
3.3. Association between OCT4 Expression and Clinical and Pathological Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory (GLOBOCAN): Cancer Today. Available online: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf (accessed on 19 April 2022).
- Schlechter, B.L. Management of Rectal Cancer. Hematol Oncol. Clin. N. Am. 2022, 36, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Han, P.; Zhang, L.; Ma, J.; Dong, F.; Zang, L.; He, Z.; Zheng, M. Prolonged neoadjuvant chemotherapy without radiation versus total neoadjuvant therapy for locally advanced rectal cancer: A propensity score matched study. Front. Oncol. 2022, 12, 953790. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Sun, H.; Xu, S.; Mo, Q. Long Non-coding RNA TPT1-AS1 Suppresses APC Transcription in a STAT1-Dependent Manner to Increase the Stemness of Colorectal Cancer Stem Cells. Mol. Biotechnol. 2022, 64, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Tan, W.; Yang, Q.; Zou, Z.; Zhou, R.; Huang, Y.; Qiu, Z.; Zheng, K.; Huang, Z. PRRX1 promotes colorectal cancer stemness and chemoresistance via the JAK2/STAT3 axis by targeting IL-6. J. Gastrointest. Oncol. 2022, 13, 2989–3008. [Google Scholar] [CrossRef]
- Yan, Q.; Fang, X.; Li, C.; Lan, P.; Guan, X. Oncofetal proteins and cancer stem cells. Essays Biochem. 2022, 66, 423–433. [Google Scholar] [CrossRef]
- Pandian, J.; Panneerpandian, P.; Sekar, B.T.; Selvarasu, K.; Ganesan, K. OCT4-mediated transcription confers oncogenic advantage for a subset of gastric tumors with poor clinical outcome. Funct. Integr. Genom. 2022, 22, 1345–1360. [Google Scholar] [CrossRef]
- Ibrahim, D.A.; Elsebai, E.A.; Fayed, A.; Abdelrahman, A.E. Prognostic value of NOTCH1 and OCT4 in gastric carcinoma. Indian J. Pathol. Microbiol. 2022, 65, 328–335. [Google Scholar] [CrossRef]
- Basati, G.; Mohammadpour, H.; Emami-Razavi, A. Association of High Expression Levels of SOX2, NANOG, and OCT4 in Gastric Cancer Tumor Tissues with Progression and Poor Prognosis. J. Gastrointest. Cancer 2020, 51, 41–47. [Google Scholar] [CrossRef]
- Khoshchehreh, R.; Totonchi, M.; Ramirez, J.C.; Torres, R.; Baharvand, H.; Aicher, A.; Ebrahimi, M.; Heeschen, C. Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo tumourigenicity. Oncogene 2019, 38, 6226–6239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Li, Y.; Guo, Y.; Jia, Y.; Qu, H.; Lu, Y.; Song, P.; Zhang, X.; Shao, Y.; Qi, D.; et al. ERα is required for suppressing OCT4-induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis. Cell Prolif. 2019, 52, e12612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, Z.; Srivastava, A.N.; Sankhwar, S.N.; Zaidi, N.; Fatima, N.; Singh, S.; Yusuf, M. Oct-4: A prognostic biomarker of urinary bladder cancer in North India. Ther. Adv. Urol. 2019, 11, 1756287219875576. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.; Gilbert, S.F.; Waters, J.A.; Lujano-Olazaba, O.; Lara, J.; Alexander, L.J.; Green, S.E.; Burkeen, G.A.; Patrus, O.; Sarwar, Z.; et al. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers 2021, 13, 262. [Google Scholar] [CrossRef]
- Vaddi, P.K.; Stamnes, M.A.; Cao, H.; Chen, S. Elimination of SOX2/OCT4-Associated Prostate Cancer Stem Cells Blocks Tumor Development and Enhances Therapeutic Response. Cancers 2019, 11, 1331. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.C.; Su, Y.T.; Chi, C.C.; Kuo, Y.C.; Lee, K.F.; Wu, Y.C.; Lan, P.C.; Yang, M.H.; Chang, T.S.; Huang, Y.H. DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. J. Exp. Clin. Cancer Res. 2019, 38, 474. [Google Scholar] [CrossRef] [Green Version]
- Marques, V.; Ourô, S.; Afonso, M.B.; Rodrigues, C.M.P. Modulation of rectal cancer stemness, patient outcome and therapy response by adipokines. J. Physiol. Biochem. 2023, 79, 261–272. [Google Scholar] [CrossRef]
- Shao, M.; Bi, T.; Ding, W.; Yu, C.; Jiang, C.; Yang, H.; Sun, X.; Yang, M. OCT4 Potentiates Radio-Resistance and Migration Activity of Rectal Cancer Cells by Improving Epithelial-Mesenchymal Transition in a ZEB1 Dependent Manner. Biomed. Res. Int. 2018, 2018, 3424956. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Guo, X.; Huang, Y. Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer. Yonsei Med. J. 2018, 59, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Johari, B.; Rezaeejam, H.; Moradi, M.; Taghipour, Z.; Saltanatpour, Z.; Mortazavi, Y.; Nasehi, L. Increasing the colon cancer cells sensitivity toward radiation therapy via application of Oct4-Sox2 complex decoy oligodeoxynucleotides. Mol. Biol. Rep. 2020, 47, 6793–6805. [Google Scholar] [CrossRef]
- Roudi, R.; Barodabi, M.; Madjd, Z.; Roviello, G.; Corona, S.P.; Panahi, M. Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Mol. Cell Oncol. 2020, 7, e1788366. [Google Scholar] [CrossRef]
- Fujino, S.; Miyoshi, N. Oct4 Gene Expression in Primary Colorectal Cancer Promotes Liver Metastasis. Stem Cells Int. 2019, 2019, 7896524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Joint Committee on Cancer. Colon and Rectum. In AJCC Cancer Staging Manual, 7th ed.; Edge, S.B., Byrd, D.R., Compton, C.C., Fritz, A.G., Greene, F.L., Trotti, A., Eds.; Springer: New York, NY, USA, 2010; pp. 143–164. ISBN 978-0-387-88440-0. [Google Scholar]
- Kruger, N.J. The Bradford Method for Protein Quantitation. In The Protein Protocols Handbook, 3rd ed.; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. ISBN 978-1-58829-880-5. [Google Scholar]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd. ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; ISBN 0-87969-309-6. [Google Scholar]
- Moreno-Londoño, A.P.; Castañeda-Patlán, M.C.; Sarabia-Sánchez, M.A.; Macías-Silva, M.; Robles-Flores, M. Canonical Wnt Pathway Is Involved in Chemoresistance and Cell Cycle Arrest Induction in Colon Cancer Cell Line Spheroids. Int. J. Mol. Sci. 2023, 24, 5252. [Google Scholar] [CrossRef]
- Vasefifar, P.; Motafakkerazad, R.; Maleki, L.A.; Najafi, S.; Ghrobaninezhad, F.; Najafzadeh, B.; Alemohammad, H.; Amini, M.; Baghbanzadeh, A.; Baradaran, B. Nanog, as a key cancer stem cell marker in tumor progression. Gene 2022, 827, 146448. [Google Scholar] [CrossRef] [PubMed]
- Boman, B.M.; Viswanathan, V.; Facey, C.O.B.; Fields, J.Z.; Stave, J.W. The v8-10 variant isoform of CD44 is selectively expressed in the normal human colonic stem cell niche and frequently is overexpressed in colon carcinomas during tumor development. Cancer Biol. Ther. 2023, 24, 2195363. [Google Scholar] [CrossRef] [PubMed]
- Frau, C.; Jamard, C.; Delpouve, G.; Guardia, G.D.A.; Machon, C.; Pilati, C.; Nevé, C.L.; Laurent-Puig, P.; Guitton, J.; Galante, P.A.F.; et al. Deciphering the Role of Intestinal Crypt Cell Populations in Resistance to Chemotherapy. Cancer Res. 2021, 81, 2730–2744. [Google Scholar] [CrossRef]
- Pádua, D.; Figueira, P.; Ribeiro, I.; Almeida, R.; Mesquita, P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev. Biol. 2020, 8, 442. [Google Scholar] [CrossRef] [PubMed]
- Lumsdaine, C.T.; Liu-Smith, F.; Li, X.; Zell, J.A.; Lu, Y. Increased incidence of early onset colorectal adenocarcinoma is accompanied by an increased incidence of rectal neuroendocrine tumors. Am. J. Cancer Res. 2020, 10, 1888–1899. [Google Scholar]
- Vergara, E.E.; Núñez, G.A.; Hoyos, J.C.; Lozada-Martínez, I.D.; Suarez, A.; Narvaez-Rojas, A.R. Surgical outcomes and factors associated with postoperative complications of colorectal cancer in a Colombian Caribbean population: Results from a regional referral hospital. Cancer Rep. 2023, 6, e1766. [Google Scholar] [CrossRef]
- Vaccaro, C.A.; López-Kostner, F.; Adriana, D.V.; Palmero, E.I.; Rossi, B.M.; Antelo, M.; Solano, A.; Carraro, D.M.; Forones, N.M.; Bohorquez, M.; et al. From colorectal cancer pattern to the characterization of individuals at risk: Picture for genetic research in Latin America. Int. J. Cancer 2019, 145, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef]
- Musetti, C.; Garau, M.; Alonso, R.; Piñeros, M.; Soerjomataram, I.; Barrios, E. Colorectal Cancer in Young and Older Adults in Uruguay: Changes in Recent Incidence and Mortality Trends. Int. J. Environ. Res. Public Health 2021, 18, 8232. [Google Scholar] [CrossRef]
- Vargas-Moranth, R.; Navarro-Lechuga, E. Cancer incidence and mortality in Barranquilla, Colombia. 2008–2012. Colomb. Med. 2018, 49, 55–62. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Hegazy, N.A.; Nada, O.H.; Radwan, N.A.; Talaat, S.M. Immunohistochemical expression of stem cell markers CD133 and Oct4 in colorectal adenocarcinoma. Egypt J. Pathol. 2014, 34, 44–51. [Google Scholar] [CrossRef]
- Pece, S.; Tosoni, D.; Confalonieri, S.; Mazzarol, G.; Vecchi, M.; Ronzoni, S.; Bernard, L.; Viale, G.; Pelicci, P.G.; di Fiore, P.P. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010, 140, 62–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.E.; Ali, Y.D.; Cai, Z. Morphoproteomics Identifies CXCR4 in Undifferentiated Colorectal Cancer: A Case Study with Therapeutic Implications. Ann. Clin. Lab. Sci. 2020, 50, 266–269. [Google Scholar] [PubMed]
- Gao, Z.-Y.; Liu, X.-B.; Yang, F.-M.; Liu, L.; Zhao, J.-Z.; Gao, B.; Li, S.-B. Octamer binding transcription factor-4 expression is associated with cervical cancer malignancy and histological differentiation: A systematic review and meta-analysis. Biosci. Rep. 2019, 39, BSR20182328. [Google Scholar] [CrossRef]
- Mohamed, S.Y.; Kaf, R.M.; Ahmed, M.M.; Elwan, A.; Ashour, H.R.; Ibrahim, A. The Prognostic Value of Cancer Stem Cell Markers (Notch1, ALDH1, and CD44) in Primary Colorectal Carcinoma. J. Gastrointest. Cancer 2019, 50, 824–837. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Shi, S.; Xu, Y.; Dai, X.; Li, H.; Wang, J.; Zhang, Q.; Wang, Y.; Sun, S.; et al. The Prognostic and Clinicopathologic Characteristics of OCT4 and Lung Cancer: A Meta-Analysis. Curr. Mol. Med. 2019, 19, 54–75. [Google Scholar] [CrossRef]
- Razmi, M.; Ghods, R.; Vafaei, S.; Sahlolbei, M.; Saeednejad-Zanjani, L.; Madjd, Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: A systematic review and meta-analysis. Cancer Cell Int. 2021, 21, 139. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Z.; Zhu, Y.; Chen, J.; Li, W. The role and specific mechanism of OCT4 in cancer stem cells: A review. Int. J. Stem Cells 2020, 13, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Yu, J.; Yin, Y.; Zhang, X.; Zheng, X.; Wang, X. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol. 2022, 12, 876257. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Duan, J.; Lu, J.; Xiao, L.; Han, L.; Zeng, S.; Tang, X.; Li, W.; Huang, L.; Zhang, Y. Tumor necrosis factor-α-inducing protein of Helicobacter pylori promotes epithelial-mesenchymal transition and cancer stem-like cells properties via activation of Wnt/β-catenin signaling pathway in gastric cancer cells. Pathog. Dis. 2022, 80, ftac025. [Google Scholar] [CrossRef]
- Saigusa, S.; Tanaka, K.; Toiyama, Y.; Yokoe, T.; Okugawa, Y.; Ioue, Y.; Miki, C.; Kusunoki, M. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann. Surg. Oncol. 2009, 16, 3488–3498. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N = 63 | |
---|---|---|
n | % | |
Age | ||
≤50 years | 17 | 27 |
>50 years | 46 | 73 |
Sex | ||
Female | 38 | 60.3 |
Male | 25 | 39.7 |
Residential area | ||
Urban | 47 | 74.6 |
Rural | 16 | 25.4 |
Main sign/symptom | ||
Rectal bleeding | 33 | 52.4 |
Change in bowel habits | 10 | 15.9 |
Weight loss | 1 | 1.6 |
Anemia | 2 | 3.2 |
Acute abdominal pain | 10 | 15.9 |
Intestinal obstruction | 6 | 9.5 |
Other | 1 | 1.6 |
Finding during colonoscopy | ||
Ulcerative lesion | 3 | 4.8 |
Multiple polyps | 3 | 4.8 |
Single polyp | 4 | 6.3 |
Exophytic lesion | 36 | 57.1 |
Stenosing lesion | 17 | 27 |
Histological type | ||
Adenocarcinoma | 55 | 87.3 |
Mucinous adenocarcinoma | 3 | 4.8 |
Neuroendocrine carcinoma | 5 | 7.9 |
Histological grade | ||
Well-differentiated | 24 | 38.1 |
Moderately differentiated | 28 | 44.4 |
Poorly differentiated | 11 | 17.5 |
Clinical stage | ||
Early/local | 22 | 34.9 |
Advanced/regional | 41 | 65.1 |
TNM | ||
0 | 1 | 1.6 |
I | 8 | 12.7 |
IIA | 7 | 11.1 |
IIB | 3 | 4.8 |
IIC | 4 | 6.3 |
IIIA | 7 | 11.1 |
IIIB | 14 | 22.2 |
IIIC | 5 | 7.9 |
IVA | 11 | 17.5 |
IVB | 3 | 4.8 |
Local invasion | ||
TIs | 4 | 6.3 |
T1 | 6 | 9.5 |
T2 | 21 | 33.3 |
T3 | 11 | 17.5 |
T4a | 20 | 31.7 |
T4b | 1 | 1.6 |
Lymph node involvement | ||
N1a | 30 | 47.6 |
N1b | 15 | 23.8 |
N1c | 4 | 6.3 |
N2a | 11 | 17.5 |
N2b | 1 | 1.6 |
Unknown | 2 | 3.2 |
Metastasis | ||
M0 | 49 | 77.8 |
M1a | 11 | 17.5 |
M1b | 3 | 4.8 |
Vascular invasion | ||
Si | 15 | 23.8 |
No | 29 | 46 |
Unknown | 19 | 30.2 |
Total Samples | OCT4 Expression | p-Value | ||
---|---|---|---|---|
High | Low | |||
n (%) | n (%) | |||
Histological grade | ||||
Well-differentiated | 8 (36.4) | 4 (18.2) | 4 (18.2) | 0.039 * |
Undifferentiated | 14 (63.6) | 13 (59.1) | 1 (4.5) | |
Local invasion | ||||
TIs | 2 (9.1) | 0 | 2 (9.1) | 0.004 ** |
T1 | 3 (13.6) | 1 (4.5) | 2 (9.1) | |
T2 | 9 (40.9) | 9 (40.9) | 0 | |
T3 | 4 (18.2) | 3 (13.6) | 1 (4.5) | |
T4a | 3 (13.6) | 3 (13.6) | 0 | |
T4b | 1 (4.5) | 1 (4.5) | 0 | |
Lymph node involvement | ||||
N1a | 12 (54.5) | 7 (31.8) | 5 (22.7) | 0.044 * |
N1b | 2 (9.1) | 2 (9.1) | 0 | |
N1c | 3 (13.6) | 3 (13.6) | 0 | |
N2a | 4 (18.2) | 4 (18.2) | 0 | |
N2b | 1 (4.5) | 1 (4.5) | 0 | |
Metastasis | ||||
M0 | 20 (90.9) | 15 (68.2) | 5 (22.7) | 0.458 |
M1a | 1 (4.5) | 1 (4.5) | 0 | |
M1b | 1 (4.5) | 1 (4.5) | 0 | |
TNM | ||||
I | 5 (22.7) | 1 (4.5) | 4 (18.2) | 0.002 ** |
II | 2 (9.1) | 2 (9.1) | 0 | |
III | 13 (59.1) | 12 (54.5) | 1 (4.5) | |
IVA | 2 (9.1) | 2 (9.1) | 0 | |
Clinical stage | ||||
Early/local | 7 (31.8) | 3 (13.6) | 4 (18.2) | 0.021 * |
Late/regional | 15 (68.2) | 14 (63.6) | 1 (4.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambis-Anaya, L.; Fernández-Ruiz, M.; Liscano, Y.; Suarez-Causado, A. High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer. Cancers 2023, 15, 3740. https://doi.org/10.3390/cancers15143740
Lambis-Anaya L, Fernández-Ruiz M, Liscano Y, Suarez-Causado A. High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer. Cancers. 2023; 15(14):3740. https://doi.org/10.3390/cancers15143740
Chicago/Turabian StyleLambis-Anaya, Lina, Mashiel Fernández-Ruiz, Yamil Liscano, and Amileth Suarez-Causado. 2023. "High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer" Cancers 15, no. 14: 3740. https://doi.org/10.3390/cancers15143740
APA StyleLambis-Anaya, L., Fernández-Ruiz, M., Liscano, Y., & Suarez-Causado, A. (2023). High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer. Cancers, 15(14), 3740. https://doi.org/10.3390/cancers15143740