Metastasis Associated in Colorectal Cancer 1 (MACC1) mRNA Expression Is Enhanced in Sporadic Vestibular Schwannoma and Correlates to Deafness
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Samples and Clinical Data
2.2. mRNA Extraction and Quantitative RT-PCR (qPCR)
2.3. Immunohistochemistry
2.4. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. MACC1 mRNA and Protein Expression in VS
3.3. Correlation of MACC1 mRNA Expression with Clinical Parameters of VS Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stein, U.; Walther, W.; Arlt, F.; Schwabe, H.; Smith, J.; Fichtner, I.; Birchmeier, W.; Schlag, P.M. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat. Med. 2009, 15, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, H.; Walther, W.; Zincke, F.; Kobelt, D.; Imbastari, F.; Erdem, M.; Kortüm, B.; Dahlmann, M.; Stein, U. MACC1—The first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev. 2018, 37, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, C.; Fuchs, S.; Monoranu, C.M.; Herrmann, P.; Smith, J.; Hohmann, T.; Grabiec, U.; Kessler, A.F.; Dehghani, F.; Löhr, M.; et al. Impact of MACC1 on human malignant glioma progression and patients’ unfavorable prognosis. Neuro-Oncology 2013, 15, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, C.; Neuhaus, N.; Dahlmann, M.; Kessler, A.F.; Kobelt, D.; Herrmann, P.; Eyrich, M.; Freitag, B.; Linsenmann, T.; Monoranu, C.M.; et al. Circulating MACC1 Transcripts in Glioblastoma Patients Predict Prognosis and Treatment Response. Cancers 2019, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Lee, K.; Andrade, P.B.; Basit, S.; Santos-Cortez, R.L.P.; Chen, L.; Jelani, M.; Ansar, M.; Ahmad, W.; Leal, S.M. Novel Autosomal Recessive Nonsyndromic Hearing Impairment Locus DFNB90 Maps to 7p22.1-p15.3. Hum. Hered. 2011, 71, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, J.; Xu, M.; Zhou, L.-F.; Zhang, R.; Lang, L.; Xu, Q.; Zhong, P.; Chen, M.; Wang, Y.; et al. Clinical features of intracranial vestibular schwannomas. Oncol. Lett. 2013, 5, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.L.; Link, M.J. Vestibular Schwannomas. N. Engl. J. Med. 2021, 384, 1335–1348. [Google Scholar] [CrossRef]
- Asthagiri, A.R.; Parry, D.M.; Butman, J.A.; Kim, H.J.; Tsilou, E.T.; Zhuang, Z.; Lonser, R.R. Neurofibromatosis type 2. Lancet 2009, 373, 1974–1986. [Google Scholar] [CrossRef]
- Sughrue, M.E.; Kane, A.J.; Kaur, R.; Barry, J.J.; Rutkowski, M.J.; Pitts, L.H.; Cheung, S.W.; Parsa, A.T.; Dinh, C.T.; Bracho, O.; et al. A prospective study of hearing preservation in untreated vestibular schwannomas. J. Neurosurg. 2011, 114, 381–385. [Google Scholar] [CrossRef]
- Jia, H.; Lahlou, G.; Wu, H.; Sterkers, O.; Kalamarides, M. Management of Neurofibromatosis Type 2 Associated Vestibular Schwannomas. Curr. Otorhinolaryngol. Rep. 2021, 9, 170–176. [Google Scholar] [CrossRef]
- Tan, D.; Killeen, D.E.; Kutz, J.W. The Natural History of Vestibular Schwannoma and When to Intervene. Curr. Otorhinolaryngol. Rep. 2021, 9, 134–138. [Google Scholar] [CrossRef]
- Sanchez, L.D.; Bui, A.; Klesse, L.J. Targeted Therapies for the Neurofibromatoses. Cancers 2021, 13, 6032. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.R.; Messiaen, L.; Legius, E.; Pancza, P.; Avery, R.A.; Blakeley, J.O.; Babovic-Vuksanovic, D.; Ferner, R.; Fisher, M.J.; Friedman, J.M.; et al. Updated diagnostic criteria and nomenclature for neurofibromatosis type 2 and schwannomatosis: An international consensus recommendation. Genet. Med. 2022, 24, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Moran, A.; King, A.; Saeed, S.; Gurusinghe, N.; Ramsden, R. Incidence of Vestibular Schwannoma and Neurofibromatosis 2 in the North West of England over a 10-year Period: Higher Incidence than Previously Thought. Otol. Neurotol. 2005, 26, 93–97. [Google Scholar] [CrossRef]
- Hanemann, C.O. Magic but treatable? Tumours due to loss of Merlin. Brain 2008, 131 Pt 3, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.-S.; Ardern-Holmes, S.; McCowage, G.; de Souza, P. Systemic therapy in neurofibromatosis type 2. Cancer Treat. Rev. 2014, 40, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Zoch, A.; Morrison, H. A neuronal function of the tumor suppressor protein merlin. Acta Neuropathol. Commun. 2014, 2, 82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Long, J.; Ren, J.; Huang, X.; Zhong, P.; Wang, B. Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects. Front. Oncol. 2021, 11, 731441. [Google Scholar] [CrossRef]
- Schultz, J.M.; Khan, S.N.; Ahmed, Z.M.; Riazuddin, S.; Waryah, A.M.; Chhatre, D.; Starost, M.F.; Ploplis, B.; Buckley, S.; Velásquez, D.; et al. Noncoding Mutations of HGF Are Associated with Nonsyndromic Hearing Loss, DFNB39. Am. J. Hum. Genet. 2009, 85, 25–39. [Google Scholar] [CrossRef]
- Torres-Martin, M.; Lassaletta, L.; San-Roman-Montero, J.; DE Campos, J.M.; Isla, A.; Gavilan, J.; Melendez, B.; Pinto, G.R.; Burbano, R.R.; Castresana, J.S.; et al. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int. J. Oncol. 2013, 42, 848–862. [Google Scholar] [CrossRef]
- Dilwali, S.; Roberts, D.; Stankovic, K.M. Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol. Ther. 2015, 16, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Blakeley, J.O.; Ye, X.; Duda, D.G.; Halpin, C.F.; Bergner, A.L.; Muzikansky, A.; Merker, V.L.; Gerstner, E.R.; Fayad, L.M.; Ahlawat, S.; et al. Efficacy and Biomarker Study of Bevacizumab for Hearing Loss Resulting From Neurofibromatosis Type 2–Associated Vestibular Schwannomas. J. Clin. Oncol. 2016, 34, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Fuse, M.A.; Plati, S.K.; Burns, S.S.; Dinh, C.T.; Bracho, O.; Yan, D.; Mittal, R.; Shen, R.; Soulakova, J.N.; Copik, A.J.; et al. Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells. Mol. Cancer Ther. 2017, 16, 2387–2398. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, P.; Zhang, N.; Chen, J.; Landegger, L.D.; Wu, L.; Zhao, F.; Zhao, Y.; Zhang, Y.; Zhang, J.; et al. Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc. Natl. Acad. Sci. USA 2018, 115, E2077–E2084. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.R.; Ramsden, R.T.; Shenton, A.; Gokhale, C.; Bowers, N.L.; Huson, S.M.; Pichert, G.; Wallace, A. Mosaicism in neurofibromatosis type 2: An update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J. Med. Genet. 2007, 44, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Hexter, A.; Jones, A.; Joe, H.; Heap, L.; Smith, M.J.; Wallace, A.J.; Halliday, D.; Parry, A.; Taylor, A.; Raymond, L.; et al. Clinical and molecular predictors of mortality in neurofibromatosis 2: A UK national analysis of 1192 patients. J. Med. Genet. 2015, 52, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Lu, D.; Gu, R.; Sun, H.; Yu, L.; Pan, R.; Zhang, Y. Reliability and toxicity of bevacizumab for neurofibromatosis type 2-related vestibular schwannomas: A systematic review and meta-analysis. Am. J. Otolaryngol. 2021, 42, 103148. [Google Scholar] [CrossRef] [PubMed]
- Tamura, R.; Toda, M. A Critical Overview of Targeted Therapies for Vestibular Schwannoma. Int. J. Mol. Sci. 2022, 23, 5462. [Google Scholar] [CrossRef]
- Fujii, M.; Kobayakawa, M.; Saito, K.; Inano, A.; Morita, A.; Hasegawa, M.; Mukasa, A.; Mitsuhara, T.; Goto, T.; Yamaguchi, S.; et al. Rationale and Design of BeatNF2 Trial: A Clinical Trial to Assess the Efficacy and Safety of Bevacizumab in Patients with Neurofibromatosis Type 2 Related Vestibular Schwannoma. Curr. Oncol. 2021, 28, 726–739. [Google Scholar] [CrossRef]
- Goldbrunner, R.; Weller, M.; Regis, J.; Lund-Johansen, M.; Stavrinou, P.; Reuss, D.; Evans, D.G.; Lefranc, F.; Sallabanda, K.; Falini, A.; et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro-Oncology 2020, 22, 31–45. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Samii, M.; Matthies, C. Management of 1000 Vestibular Schwannomas (Acoustic Neuromas): Hearing Function in 1000 Tumor Resections. Neurosurgery 1997, 40, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Perez, J.; Hagen, R.; Gelbrich, G.; Ernestus, R.-I.; Matthies, C. When Does Hearing Loss Occur in Vestibular Schwannoma Surgery? Importance of Auditory Brainstem Response Changes in Early Postoperative Phase. World Neurosurg. 2016, 95, 91–98. [Google Scholar] [CrossRef]
- Moffat, D.A.; Kasbekar, A.; Axon, P.R.; Lloyd, S.K.W. Growth Characteristics of Vestibular Schwannomas. Otol. Neurotol. 2012, 33, 1053–1058. [Google Scholar] [CrossRef]
- Breun, M.; Schwerdtfeger, A.; Martellotta, D.D.; Kessler, A.F.; Monoranu, C.M.; Matthies, C.; Hagemann, C.; Löhr, M. ADAM9: A novel player in vestibular schwannoma pathogenesis. Oncol. Lett. 2020, 19, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Feldheim, J.; Kessler, A.F.; Schmitt, D.; Salvador, E.; Monoranu, C.M.; Feldheim, J.J.; Ernestus, R.-I.; Löhr, M.; Hagemann, C. Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma—A New Disease Biomarker? Cancers 2020, 12, 1085. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Feldheim, J.; Kessler, A.F.; Schmitt, D.; Wilczek, L.; Linsenmann, T.; Dahlmann, M.; Monoranu, C.M.; Ernestus, R.-I.; Hagemann, C.; Löhr, M. Expression of activating transcription factor 5 (ATF5) is increased in astrocytomas of different WHO grades and correlates with survival of glioblastoma patients. OncoTargets Ther. 2018, 11, 8673–8684. [Google Scholar] [CrossRef]
- Hanemann, C.O.; Bartelt-Kirbach, B.; Diebold, R.; Kämpchen, K.; Langmesser, S.; Utermark, T. Differential gene expression between human schwannoma and control Schwann cells. Neuropathol. Appl. Neurobiol. 2006, 32, 605–614. [Google Scholar] [CrossRef]
- Zhou, L.; Lyons-Rimmer, J.; Ammoun, S.; Müller, J.; Lasonder, E.; Sharma, V.; Ercolano, E.; Hilton, D.; Taiwo, I.; Barczyk, M.; et al. The scaffold protein KSR1, a novel therapeutic target for the treatment of Merlin-deficient tumors. Oncogene 2016, 35, 3443–3453. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Giancotti, F.G. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett. 2015, 588, 2743–2752. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fu, Z.; Li, D. MACC1 overexpression and survival in solid tumors: A meta-analysis. Tumor Biol. 2014, 36, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Graamans, K.; Van Dijk, J.E.; Janssen, L.W. Hearing deterioration in patients with a non-growing vestibular schwannoma. Acta Oto-Laryngol. 2003, 123, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Fisher, L.M.; Oppenheimer, M.L.; Iqbal, Z.; Slattery, W.H.; Natural History Consortium. Hearing Changes after Diagnosis in Neurofibromatosis Type 2. Otol. Neurotol. 2004, 25, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Asthagiri, A.R.; Vasquez, R.A.; Butman, J.A.; Wu, T.; Morgan, K.; Brewer, C.C.; King, K.; Zalewski, C.; Kim, H.J.; Lonser, R.R. Mechanisms of Hearing Loss in Neurofibromatosis Type 2. PLoS ONE 2012, 7, e46132. [Google Scholar] [CrossRef] [PubMed]
- Sagers, J.E.; Sahin, M.I.; Moon, I.; Ahmed, S.G.; Stemmer-Rachamimov, A.; Brenner, G.J.; Stankovic, K.M. NLRP3 inflammasome activation in human vestibular schwannoma: Implications for tumor-induced hearing loss. Hear. Res. 2019, 381, 107770. [Google Scholar] [CrossRef]
- Bommakanti, K.; Seist, R.; Kukutla, P.; Cetinbas, M.; Batts, S.; Sadreyev, R.I.; Stemmer-Rachamimov, A.; Brenner, G.J.; Stankovic, K.M. Comparative Transcriptomic Analysis of Archival Human Vestibular Schwannoma Tissue from Patients with and without Tinnitus. J. Clin. Med. 2023, 12, 2642. [Google Scholar] [CrossRef]
- Franchi, L.; Eigenbrod, T.; Núñez, G. Cutting Edge: TNF-α Mediates Sensitization to ATP and Silica via the NLRP3 Inflammasome in the Absence of Microbial Stimulation. J. Immunol. 2009, 183, 792–796. [Google Scholar] [CrossRef]
- Kobelt, D.; Zhang, C.; Clayton-Lucey, I.A.; Glauben, R.; Voss, C.; Siegmund, B.; Stein, U. Pro-inflammatory TNF-α and IFN-γ Promote Tumor Growth and Metastasis via Induction of MACC1. Front. Immunol. 2020, 11, 980. [Google Scholar] [CrossRef]
- Breun, M.; Schwerdtfeger, A.; Martellotta, D.D.; Kessler, A.F.; Perez, J.M.; Monoranu, C.M.; Ernestus, R.-I.; Matthies, C.; Löhr, M.; Hagemann, C. CXCR4: A new player in vestibular schwannoma pathogenesis. Oncotarget 2018, 9, 9940–9950. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zhang, Y.; Huang, X.; Ren, J.; Zhong, P.; Wang, B. A Review of Drug Therapy in Vestibular Schwannoma. Drug Des. Dev. Ther. 2021, 15, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Büttner, R.; Hagel, C.; Baader, S.L.; Kluwe, L.; Salamon, J.; Mautner, V.-F.; Mindos, T.; Parkinson, D.B.; Gehlhausen, J.R.; et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016, 132, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Nattmann, A.; Breun, M.; Monoranu, C.M.; Matthies, C.; Ernestus, R.-I.; Löhr, M.; Hagemann, C. Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells. BMC Res. Notes 2020, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Juneja, M.; Kobelt, D.; Walther, W.; Voss, C.; Smith, J.; Specker, E.; Neuenschwander, M.; Gohlke, B.-O.; Dahlmann, M.; Radetzki, S.; et al. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLOS Biol. 2017, 15, e2000784. [Google Scholar] [CrossRef] [PubMed]
- Gohlke, B.; Zincke, F.; Eckert, A.; Kobelt, D.; Preissner, S.; Liebeskind, J.M.; Gunkel, N.; Putzker, K.; Lewis, J.; Preissner, S.; et al. Real-world evidence for preventive effects of statins on cancer incidence: A trans-Atlantic analysis. Clin. Transl. Med. 2022, 12, e726. [Google Scholar] [CrossRef]
- Tran, S.; Killeen, D.E.; Qazi, S.; Balachandra, S.; Hunter, J.B. Association of Metformin with the Growth of Vestibular Schwannomas. Otolaryngol. Head Neck Surg. 2021, 164, 182–187. [Google Scholar] [CrossRef]
Patients’ Characteristics | Sporadic VS | NF2-Associated VS |
---|---|---|
Sex | Female: 24 (42%); | Female:8 (73%); |
Male: 33 (58%) | Male: 3 (27%) | |
Age at onset of symptoms (median, quartiles) | 48.0 (40.0–57.5) years | 16.0 (9.5–26.0) years |
Age at diagnosis (median, quartiles) | 52.0 (41.5–60.0) years | 20.0 (14.0–32.0) years |
Tumor localization | Solely left nerve: 28 (49%) | Solely left nerve: 1 (9%) |
Solely right nerve: 29 (51%) | Solely right nerve: 2 (18%) | |
Bilateral: 0 (0%) | Bilateral: 8 (73%) | |
Tumor extension | Purely intrameatal (T1): 1 (2%) | Purely intrameatal (T1): 0 (0%) |
Intra- and extrameatal (T2): 7 (12%) | Intra- and extrameatal (T2): 0 (0%) | |
Filling the cerebellopontine cistern (T3): 26 (46%) | Filling the cerebellopontine cistern (T3): 2 (18%) | |
Brainstem compression ± dislocation of the fourth ventricle (T4): 23 (40%) | Brainstem compression ± dislocation of the fourth ventricle (T4): 9 (82%) | |
Tumor progress per year 1 | ≤2 mm: 21 (60%); | ≤2 mm: 5 (63%); |
≥2 mm: 14 (40%) | ≥2 mm: 3 (27%) | |
Tumor adherence to the brain stem | Yes: 39 (68%); No: 18 (32%) | Yes: 6 (55%); No: 5 (45%) |
Antoni classification | Antoni A: 21 (38%) | Antoni A: 4 (44%) |
Antoni B: 6 (11%) | Antoni B: 1 (12%) | |
Antoni A/B: 28 (51%) | Antoni A/B: 4 (44%) | |
Recurrence | 8 | 6 2 |
Hannover classification of audiometry results | H1: 10 (18%) | H1: 2 (18%) |
H2: 14 (25%) | H2: 0 (0%) | |
H3: 8 (14%) | H3: 0 (0%) | |
H4: 11 (20%) | H4: 1 (9%) | |
H5: 6 (11%) | H5: 0 (0%) | |
H6: 7 (12%) | H6: 8 (73%) | |
House and Brackmann score | 1: 51 (89%) | 1: 7 (70%) |
2: 5 (9%) | 2: 0 (0%) | |
3: 1 (2%) | 3: 2 (20%) | |
4: 0 (0%) | 4: 1 (10%) | |
5: 0 (0%) | 5: 0 (0%) | |
Primary symptoms | Loss of balance: 19 (33%) | Loss of balance: 2 (18%) |
Loss of hearing: 45 (80%) | Loss of hearing: 6 (55%) | |
General symptoms | Vertigo: 27 (47%) | Vertigo: 2 (18%) |
Hypoacusis: 49 (86%) | Hypoacusis: 11 (100%) | |
Tinnitus: 34 (60%) | Tinnitus: 3 (27%) | |
Acute hearing loss 3 at least once: 25 (44%) | Acute hearing loss 3 at least once: 6 (55%) |
Macro Commands |
---|
input = getDirectory(“Input directory”); output = getDirectory(“Output directory”); Dialog.create(“File type”); Dialog.addString(“File suffix: “, “.tif”, 5); Dialog.show(); suffix = Dialog.getString(); processFolder(input); function processFolder(input) { list = getFileList(input); for (i = 0; i < list.length; i++) { if(File.isDirectory(input + list[i])) processFolder(““ + input + list[i]); if(endsWith(list[i], suffix)) processFile(input, output, list[i]); } } function processFile(input, output, file) { open(input + File.separator + file); name=getTitle(); run(“Colour Deconvolution”, “vectors = [H DAB]”); selectWindow (name+”-(Colour_2)”); run(“Measure”); run(“Close All”); } |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breun, M.; Flock, K.; Feldheim, J.; Nattmann, A.; Monoranu, C.M.; Herrmann, P.; Ernestus, R.-I.; Löhr, M.; Hagemann, C.; Stein, U. Metastasis Associated in Colorectal Cancer 1 (MACC1) mRNA Expression Is Enhanced in Sporadic Vestibular Schwannoma and Correlates to Deafness. Cancers 2023, 15, 4089. https://doi.org/10.3390/cancers15164089
Breun M, Flock K, Feldheim J, Nattmann A, Monoranu CM, Herrmann P, Ernestus R-I, Löhr M, Hagemann C, Stein U. Metastasis Associated in Colorectal Cancer 1 (MACC1) mRNA Expression Is Enhanced in Sporadic Vestibular Schwannoma and Correlates to Deafness. Cancers. 2023; 15(16):4089. https://doi.org/10.3390/cancers15164089
Chicago/Turabian StyleBreun, Maria, Katharina Flock, Jonas Feldheim, Anja Nattmann, Camelia M. Monoranu, Pia Herrmann, Ralf-Ingo Ernestus, Mario Löhr, Carsten Hagemann, and Ulrike Stein. 2023. "Metastasis Associated in Colorectal Cancer 1 (MACC1) mRNA Expression Is Enhanced in Sporadic Vestibular Schwannoma and Correlates to Deafness" Cancers 15, no. 16: 4089. https://doi.org/10.3390/cancers15164089
APA StyleBreun, M., Flock, K., Feldheim, J., Nattmann, A., Monoranu, C. M., Herrmann, P., Ernestus, R. -I., Löhr, M., Hagemann, C., & Stein, U. (2023). Metastasis Associated in Colorectal Cancer 1 (MACC1) mRNA Expression Is Enhanced in Sporadic Vestibular Schwannoma and Correlates to Deafness. Cancers, 15(16), 4089. https://doi.org/10.3390/cancers15164089