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Simple Summary: Cancer research has been increasingly focusing on identifying genes and molec-
ular pathways that drive the disease. In this context, protein–protein interaction networks, which
provide insights into the interactions among proteins within a cell, have proven particularly useful.
However, the effectiveness of existing approaches can be influenced by the specific network used,
as different networks can have different topological structures. In addition, newer context-specific
networks often come with incomplete structures, which complicates the analysis. To address these
challenges, we propose a new method, called MultiFDRnet, that can identify driver genes and path-
ways using multiple protein–protein interaction (PPI) networks. Here, the false discovery rate (FDR)
refers to the proportion of non-cancer genes within identified subnetworks. Our method, tested
on both simulated and real cancer data, has been able to identify important subnetworks that are
supported by multiple PPI networks and reveal novel modular structures in context-specific PPI
networks. The software that we developed to implement this method is freely available for other
researchers to use.

Abstract: Background: The identification of cancer driver genes and key molecular pathways has been
the focus of large-scale cancer genome studies. Network-based methods detect significantly perturbed
subnetworks as putative cancer pathways by incorporating genomics data with the topological
information of PPI networks. However, commonly used PPI networks have distinct topological
structures, making the results of the same method vary widely when applied to different networks.
Furthermore, emerging context-specific PPI networks often have incomplete topological structures,
which pose serious challenges for existing subnetwork detection algorithms. Methods: In this paper,
we propose a novel method, referred to as MultiFDRnet, to address the above issues. The basic idea
is to model a set of PPI networks as a multiplex network to preserve the topological structure of
individual networks, while introducing dependencies among them, and, then, to detect significantly
perturbed subnetworks on the modeled multiplex network using all the structural information
simultaneously. Results: To illustrate the effectiveness of the proposed approach, an extensive
benchmark analysis was conducted on both simulated and real cancer data. The experimental results
showed that the proposed method is able to detect significantly perturbed subnetworks jointly
supported by multiple PPI networks and to identify novel modular structures in context-specific
PPI networks.

Keywords: cancer; driver genes; driver pathways; significantly perturbed subnetworks;
protein–protein interaction
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1. Introduction

Identifying cancer driver genes and pathways is a critical endeavor in both cancer
research and clinical practice [1–3]. While frequency-based methods have been successful
in pinpointing putative driver genes by identifying genes with mutation rates higher than
expected during cancer progression, these methods often struggle when it comes to identi-
fying known driver genes that are mutated in only a small number of patients [4]. Thus,
relying solely on mutation frequencies can pose challenges in distinguishing new candidate
driver genes from non-driver genes [5]. Moreover, frequency-based methods often produce
a list of potential driver genes lacking a cohesive theme of biological processes [6]. To ad-
dress the above limitations, several network-based methods have recently been developed
that integrate genomics data with topological information of protein–protein interaction
(PPI) networks [5–8]. The hypothesis is that known driver genes form functional mod-
ules in a PPI network, and that genes in these modules can provide alternative targets of
interest [5].

Most existing network-based methods rely on input from a single PPI network, and
the topological structure of the input network plays a crucial role in the identification of
candidate driver genes and module structures. With the development of molecular tech-
niques to identify protein–protein interactions, several widely used PPI networks have been
developed, including BioGRID [9], iRefIndex [10], ReactomeFI [11] and STRING [12], each
with a distinct topological structure. Thus, there is a need for development of a method
that is capable of identifying subnetworks that are significantly perturbed in cancer cells
through the leveraging of multiple PPI networks. Another limitation of existing methods is
that they cannot be applied to context-specific PPI networks (e.g., tissue- or disease-specific
networks) [9–15] for the identification of modules in various cellular environments, as their
topological information is often incomplete. For example, a context-specific PPI network
generated by using cancer cell lines [14] contains only 675 genes and 1677 interactions
(See Table A1). One possible way to address these issues is through pre-processing by
integrating multiple PPI networks into a single network. However, the integration opera-
tion often alters the topological structures, and detected subnetworks can be significantly
different from those detected on individual networks. Alternatively, post-processing can
be performed, as proposed by HotNet2 [5] and Hierarchical HotNet [16], that generates
consensus subnetworks by combining results obtained from individual networks. Al-
though the consensus approaches can combine the topological information of multiple
PPI networks, they suffer from two major drawbacks. First, both methods identify subnet-
works in individual networks without using any information from other networks, which
may result in missing structures that could be revealed by considering all PPI networks
together. Second, the consensus procedures assume that every input PPI network has a
complete topology covering most of the protein-coding genes [17]. However, when any
input network is incomplete (e.g., context-specific PPI networks), the detected subnetworks
may not be biologically meaningful.

In this study, we developed a novel algorithm, referred to as MultiFDRnet, for the
detection of significantly perturbed subnetworks using multiple PPI networks. It is a
natural extension of our previously developed FDRnet method but incorporates two
key improvements that address the aforementioned limitations. First, it is able to detect
significantly perturbed subnetworks supported by multiple, widely used PPI networks,
thereby eliminating the need to perform pre- or post-processing procedures. Second, it
can reveal perturbed modular structures within context-specific networks by effectively
using the topological information from general PPI networks as a complementary resource.
To achieve the above improvements, we employed the multiplex-network framework. With
its power and flexibility, the framework can model multiple PPI networks, with or without
emphasizing one or more networks. To detect subnetworks within a multiplex network,
we developed a novel random-walk strategy to quantify subnetworks. To illustrate the
effectiveness of our proposed method, we conducted a large-scale numerical study on
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both simulated and cancer mutational data. The developed software and data are freely
available at https://github.com/yangle293/MultiFDRnet (accessed on 13 August 2023).

2. Materials and Methods

MultiFDRnet takes as input multiple PPI networks and a set of p-values derived from
gene-level analyses (e.g., MutSig [4]) that measure the likelihood that observed mutation
rates are due to a random chance, and outputs a collection of significantly perturbed
subnetworks (Figure 1). Briefly, we first construct a multiplex network using input networks
(Figure 1a). Subsequently, we perform an empirical Bayes analysis that uses the p-values to
determine the probability, or local FDR, of each gene being unrelated to cancer (Figure 1b).
We designate genes that have local FDRs below a specified FDR bound as seeds. For
each seed, a random walk-based approach is employed to define the optimal subnetwork
around this seed (Figure 1c). Finally, the problem of searching for the optimal subnetworks,
given an FDR bound, is formulated as a mixed-integer linear programming problem. This
results in the identification of significantly perturbed subnetworks in multiplex networks
(Figure 1d). In the sections that follow, we present a detailed description of our method.

!
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!

"

Figure 1: Overview of the proposed method. (A) Given a set of gene scores (usually p-values) that measure the statistical
significance of individual genes, an empirical Bayesian analysis is performed to estimate the probability of each gene being a
non-cancer gene (i.e., local FDR). (B) Seed genes are identified by comparing the obtained local FDRs with a given FDR bound.
For a given seed, a random walk is performed to explore the local area of the seed in a PPI network and a local graph is
extracted by attaining the nodes with the K largest PageRank scores. (C) For each local graph, a budget-constrained subgraph
searching problem is solved to identify a subnetwork that minimizes the conductance score and meanwhile has a FDR less
than a given FDR bound. (D) The identified subnetworks are annotated through a gene-ontology term enrichment analysis and
displayed by using Cytoscape.
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A Aim 3: Identifying Gene Mutations and Pathways Associated with Cancer Development
We now turn to address the problem of how to use a cancer progression model to identify genetic alterations
responsible for cancer development. Once a model is constructed, we project tumor samples back onto identified
progression paths. By using normal samples as the baseline, static samples are ordered along a path according
to the extent to which tumors progress towards malignancy, and ordered samples can be viewed as pseudo
time-series data. This provides us with a unique opportunity to identify driving molecular events, delineate their
dynamic patterns, and thereby infer their possible roles in cancer development. We first propose a method
for gene level analysis, and on top of that a method for pathway level analysis. For ease of presentation, we
demonstrate here our methods using mutation data, however, going forward similar analysis will be performed
on other molecular data.

A.1 Proposed Work

A.2 Deriving Additive Scoring Function
A.3 Subgraph Searching Problem with Budget Constraint
Once we define a local FDR for each gene, we formulate the problem of identifying significantly disrupted sub-
networks as the one to find a connected subgraph around a seed with a FDR not greater than a given bound B.
Among all the subgraphs satisfying the FDR constraint for a given seed, we can select the one with the largest
size, in a spirit similar to some previous work aiming to find maximum-scored subgraphs. This formulation, how-
ever, would not lead to a biologically meaningful solution as it ignores the characteristics of a biological network.
Specifically, most biological networks have scale-free structure, characterized by the existence of a large number
of hubs and a power-law degree distribution. The average of the shortest-path distances between two nodes is
very small, usually less than five for a biological network with more than ten thousand nodes. As a result, the
solution to the above problem is a large subnetwork connecting genes from multiple significantly mutated but
functionally heterogeneous biological modules. To address the above issue, we replace the size maximization
with an objective function that reflects our preference of finding biologically meaningful modules. For the purpose
of this study, we use the conductance score to quantify the closeness of the functional relationships of a gene
set in an interaction network; other score functions can also be used. For a subnetwork GS = (VS , ES), the
conductance score φ(GS) measures the fraction of the edges that point outside the subnetwork:

φ(GS) =
cS

2mS + cS
, (1)

where cS = |{(i, j) ∈ E : i ∈ VS , j /∈ VS}| is the number of the edges on the boundary of GS , and mS = |{(i, j) ∈
E : i ∈ VS , j ∈ VS}| is the total number of the edges in GS . Thus, a small conductance score suggests a densely
connected subnetwork isolated from the rest of the network. Using the concept of conductance, we propose to
solve the following problem to handle the scale-free structure of a biological network:

Problem 1 Given a vertex-weighted graph G = (V, E, w) with weight w : V → R≥0, a seed s and a budget bound
B, find a connected subgraph GS = (VS , ES), s ∈ VS ⊂ V , ES ⊂ E, that satisfies constraint 1

|VS |
∑

j∈VS
w(j) ≤ B

and minimize φ(GS).

By introducing a binary variable xj for each vertex j ∈ V to indicate whether j is in a solution, the above problem
can be formulated as the following optimization problem:

min φ(GS) (2)

s.t.
1

|VS |
∑

j

xjw(j) ≤ B, (3)

xj ∈ {0, 1}, ∀j ∈ V, (4)
xs = 1, (5)
GS is a connected graph. (6)
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Figure 1. Overview of the proposed MultiFDRnet method. (a) Constructing a multiplex network
using multiple PPI networks. (b) Estimating local FDR scores through an empirical Bayes analysis.
Red vertical bars are estimated counts of non-null genes. (c) Performing random walk to quantify
subnetworks. Red nodes represent two state nodes corresponding to a seed gene and blue arrows
represent the possible random walks originating from one state node. (d) Detecting significantly
perturbed subnetworks for given seeds by solving mixed-integer linear programming problems. An
example solution is the subnetwork within the red circles.

2.1. Modeling Multiple PPI Networks as a Multiplex Network

We model a set of PPI networks as a multiplex network [18,19] to preserve the topo-
logical structures of individual networks and dependencies among them. Mathematically,
a multiplex network is defined as a quadrupleM = (VM, EM, V, L), where V is a set of
physical nodes, L is a set of layers, VM is a set of state nodes, defined as the Cartesian
product of V and L (i.e., VM = V × L), and EM is a set of edges between state nodes,
EM ⊆ VM ×VM. Essentially, a multiplex network is a network defined by VM and EM
with a layer structure. In the rest of this paper, we use i ∈ V to denote the physical node
and iα ∈ VM to denote the state node that represents node i on layer α.

To construct a multiplex network, we set genes in a PPI network as physical nodes
and treat each network as a layer. Specifically, given a set of networks G = {Gα|α ∈ I},
where Gα = (Vα, Eα), we set L = I and V =

⋃
α∈L Vα. The set of state nodes is built

as VM = V × L. Note that the dependencies across layers are automatically introduced
into the multiplex network, since state nodes from different layers represent the same set
of physical nodes. For each layer α, we copy the edges from Gα into the layer α of the
multiplex networkM. That is, EM =

⋃
α∈L{(iα, jα)|∀(i, j) ∈ Eα}. If we need to emphasize

the structure of a network Gβ, we can set the weights of all the edges in the layer β as
a user defined parameter w > 1, meaning that we focus on the structure of a specific
network; otherwise, all edge weights are set to 1. In this way, we preserve all the topology
information in EM.

https://github.com/yangle293/MultiFDRnet
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2.2. Defining False Discovery Rate for Subnetworks in Multiplex Networks

Next, we define the false discovery rate (FDR) for subnetwork identification in a
multiplex network. FDRnet proposed a definition of FDR for subnetwork identification
based on the fact that genes, rather than subnetworks, are the smallest units in statistical
analysis [6]. FDRnet initially conducts an empirical Bayes analysis to estimate local FDRs
for individual genes based on their p-values. The FDR of a subnetwork can then be derived
by averaging the local FDRs of the genes present in the subnetwork. With MultiFDRnet,
this concept is extended to subnetworks in a multiplex network. To start, each gene,
interpreted as a physical node, is assigned a local FDR score using the same analysis
as in FDRnet. Subsequently, the FDR of a subnetwork is computed by averaging the
local FDR scores of the physical nodes associated with the subnetwork. Here, we say a
physical node is associated with a subnetwork if it can be represented by one or more
state nodes in this subnetwork. Mathematically, for a subnetwork S ⊆ M, we have
FDR(S) = 1/|PS|∑j∈PS⊂V wj, where PS = {i ∈ V|∃iα ∈ S, α ∈ L} and wj is the local FDR
score of gene j ∈ V. We control the FDR of detected subnetworks by requiring the FDR to
be less than a given bound B. To identify subnetworks, we select, as seeds, the genes with a
local FDR less than a given bound B and identify a subnetwork for each seed.

2.3. Random Walk-Based Approach to Subnetwork Identification

Our goal is to search an optimal subnetwork around each seed with its FDR being con-
trolled. To this end, we propose a random walk-based approach to quantify subnetworks
in the multiplex network. A random walk, when defined in the context of a multiplex
network, stands as a dynamic process capable of navigating within and between layers.
This characteristic of the random walk makes it an effective tool for harnessing the topo-
logical structures and dependencies embedded in input PPI networks. Mathematically, a
random walk in a multiplex network is specified by a transition matrix T, where Tiα,jβ is
the transition probability for a random walker from state node iα to jβ. In the following,
we quantify a subnetwork in the multiplex network from three aspects.

First, based on the assumption that driver genes are clustered in the network, we
aim to identify cluster-like subnetworks in the multiplex network. In such a cluster-like
subnetwork, the dynamic process characterized by a random walk is expected to exhibit a
bottleneck feature, which implies that random walkers are more likely to remain confined
within the subnetwork. To quantify this bottleneck effect, we employ the generalized con-
ductance score. This metric is defined as the outflow of random walkers from a subnetwork
S = (VS, ES) relative to the total number of random walkers within S at stationary [20]:

Φ(S) = ∑
iα∈VS

∑
jβ/∈VS

Tiα,jβ piα

/
∑

iα∈VS

piα, (1)

where piα is the stationary distribution of the random walker at state node iα, satisfying
piα = ∑jβ∈VM Tjβ,iα pjβ. As such, our goal is to identify the subnetwork that minimizes
its conductance score. However, a general subnetwork can consist of state nodes from
only some layers; therefore, its conductance score cannot reflect the structures of all PPI
networks. To address this issue, we impose a constraint on the identified subnetwork,
denoted as a cover constraint. This constraint ensures that the subnetwork, denoted as S,
spans all layers of the multiplex network, and the state nodes within each layer represent
the same set of physical nodes. In other words, there exists a set of physical nodes, denoted
as PS, satisfying the condition VS = PS × L.

Second, although the conductance score proves to be effective in identifying cluster-
like structures, it has an inherent limitation in that it does not necessarily ensure the internal
denseness of a subnetwork, even when the subnetwork displays a low conductance score.
A common strategy to mitigate this limitation is to search subnetworks locally, that is, first
extract a densely connected local graph and then search subnetworks inside the identified
local graph [6,21,22]. In this study, we employed the approximate Personalized PageRank
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(PPR) algorithm [21] to detect a local graph surrounding a specific seed node. Subsequently,
we constrained the search for the optimal subnetwork to be strictly within this identified
local graph. Mathematically, we let the dynamic process, represented by a given random
walk, start from all state nodes associated with a seed node s by initializing a residual
vector r with length |V| × |L| as rsα = 1/|L|, ∀α ∈ L and 0 otherwise. Then, we used the
approximate PPR algorithm to push probability mass from the residual vector r to the
PageRank score vector p by using transition matrix T until the residual was smaller than a
given threshold ε. We repeated this procedure, each time decreasing the value of ε, as long
as the number of non-zero entries in vector p exceeded a predefined exploration size K. If
this condition was not met, the process was stopped. After the process was completed, we
retained the state nodes that had the highest K PageRank scores. To ensure all the layers
were equally covered, we augmented the local graph by adding state nodes iα, ∀α ∈ L if
other state nodes, representing the same physical node i (e.g., iβ), were already included.
There are two parameters, the teleportation parameter in the approximate PPR algorithm
and the local exploration size K. As in [21], we fixed the teleportation parameter as 0.998.
We later show that the performance of our method is not sensitive with respect to K. Across
all the experiments, we set K = 400 as the default parameter.

Finally, we aimed to ensure that each identified subnetwork was connected in the
layered structure of the multiplex network. To accomplish this, we used a random-walk
method to define this kind of connectivity. We started by constructing a graph with an
adjacent matrix Tadj. This matrix is defined as Tadj

iα,jβ = 1 if Tiα,jβ > 0 and Tadj
iα,jβ = 0

otherwise. This approach was motivated by the idea that, in terms of a random walker, if it
is possible to transition from iα to jβ, these two nodes should be connected. In this manner,
we could simplify the issue of multiplex network connectivity to the problem of standard
graph connectivity, which is well-studied within optimization theory [23].

There are several ways to define a random walk in a multiplex network, each providing
a unique approach to navigate its layered structure [24–26]. For our study, due to its simplic-
ity, we chose to use the classic random walk [24,25] to calculate conductance score, extract
local graphs and define connectivity. For the sole purpose of calculating the transition
probability matrix, we added interlayer edges connecting state nodes representing the same
physical nodes across different layers, i.e., Einter = {(iα, iβ)|∀i ∈ V, ∀α, β ∈ L }. The transi-
tion matrix of the classic random walk is then calculated as Tiα,jβ = Aiα,jβ/∑jβ∈VM Aiα,jβ,
where A is the adjacent matrix (weighted if we define layer weight other than 1) after
adding Einter.

2.4. Identifying Subnetworks Using Mixed-Integer Linear Programming

Putting all the above together, we formulated the subnetwork identification problem
as follows:

Problem 1. Given a multiplex networkM = (VM, EM, V, L) with layer weight w : L → R,
a seed s, a local graph Locals around s, a transition matrix T and a budget B, find a subnetwork
S ⊆ Locals ⊆M, that satisfies budget and cover constraint, is connected in the graph defined by
the adjacent matrix Tadj and minimizes Φ(S).

By defining a binary variable xiα for each state node iα ∈ VM, which signifies
whether iα is included in a solution, we can convert the above problem into an integer
programming problem:
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minimize ∑
iα∈VM

∑
jβ∈VM

xiα(1− xjβ)Tiα,jβ piα

/
∑

iα∈VM

piαxiα (2)

subject to
1

∑i∈V xiα
∑i∈V xiαwi ≤ B, (FDR constraint)

xjβ ∈ {0, 1}, ∀jβ ∈ VM, (binary constraint)

xsα = 1, (seed constraint)

xiβ = xiγ, ∀i ∈ V, ∀β, γ ∈ L, β 6= γ, (cover constraint)

VS = {jβ : xjβ = 1, jβ ∈ VM} forms a connected subgraph,
(connectivity constraint)

xjβ = 0, ∀jβ /∈ Locals. (local graph constraint)

We employed the strategies used by FDRnet [6] to recast the problem as a mixed-
integer linear programming problem, which can be solved efficiently using established
optimization tools, such as CPLEX [27]. We present the details of the linearization proce-
dures in Appendix A. We solved a linear programming problem for each seed to detect
a densely connected subnetwork. To eliminate potential redundant subnetworks, we ar-
ranged the acquired seeds in descending order, based on the count of other seeds in their
immediate vicinity in the aggregated network, and skipped a seed if it had already been
incorporated in a subnetwork identified earlier.

3. Results

To demonstrate the efficacy of our proposed method, extensive numerical studies were
carried out using both simulated and actual cancer data. We compared it with the following six
other methods: FDRnet [6], HotNet2 [5], hierarchical HotNet [16], Netmix2 [8], BioNet [28,29]
and Domino [7].

3.1. Simulation Study

Network-based methods take as input one or several PPI networks and a set of p-
values and output a list of significantly disrupted subnetworks. In this study, we used four
PPI networks, including BioGRID [9], iRefIndex [10], ReactomeFI [11] and STRING [12],
which are widely used in network analysis [30–32]. The networks were considered as
unweighted and undirected, since the majority of the existing methods were developed
for this particular scenario. To remove low-quality interactions in the STRING network,
we followed the common practice to retain interactions with a confidence score larger
than 900 [30]. Among all the competing methods, MultiFDRnet, HotNet2 and hierarchical
HotNet can take multiple PPI networks as input, while the other algorithms can only take
one network. In order to make a fair comparison, we constructed a new PPI as input,
denoted as AggrePPI, by aggregating all the interactions of the four PPI networks. We also
tried a more advanced network integration algorithm BIONIC [33], but it was unable to
generate an integrated network for the four PPI networks above in a workable timeframe
(≥72 h). The information of the PPI networks used in this study is summarized in Table A1
and Figure A1.

To generate synthetic p-values, we followed the procedures described in [6]. Specif-
ically, we selected 16 protein complexes from the CORUM database [34] as our target
subnetworks. These protein complexes, which contain between 10 to 50 proteins, are
known to play roles in the progression of breast cancer. We employed the signal-to-noise
decomposition model [29,35] to generate synthetic p-values. This model posits that the
distribution of p-values consists of two parts: one stemming from the null hypothesis and
the other from the alternative hypothesis. It is conceivable that p-values derived from
the null hypothesis uniformly span the range (0, 1). Under the alternative hypothesis,
the distribution of p-values is characterized by a high density at lower values, which
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progressively diminishes as the p-values increase. This pattern aligns well with a specific
form of the beta distribution: Beta(a, 1). Therefore, the p-values for target genes (i.e., genes
within target networks) were randomly selected from a beta-distribution Beta(a, 1), and
the p-values for non-target genes were sampled from a uniform distribution U(0, 1). To
evaluate the performance of a method when applied to data with varying signal strengths,
we adjusted the values of a to a range of 0.01 to 0.11 in increments of 0.01, with smaller
values signifying greater strength. For each a, we performed the experiment 10 times to
minimize random fluctuations. For MultiFDRnet, FDRnet, Netmix2 and BioNet, we used
the synthetic p-values directly for input. For HotNet2 and hierarchical HotNet, following
the instructions given in [16,36], we used − log10(q) as input and the consensus results
of the four PPI networks as output. Here, q is the adjusted p-value computed by the
Benjamini–Hochberg procedure [37]. For Domino, we used the aggregated PPI as input
and set, as seeds, the genes with a local FDR score less than 0.1.

For MultiFDRnet and FDRnet, we set the FDR upper bound B to 0.1, and the local
exploration size (i.e., the load graph size) K to 400. We selected, as seeds, genes with a
local FDR score below 0.1. For each seed, we solved a mixed-integer linear programming
problem (2) to identify a subnetwork. In Section 3.1.3, we performed a parameter sensitivity
analysis and demonstrated that our method is largely insensitive to the specific choice
of K. We set the FDR parameter τ to 0.1 for BioNet. All other parameters were set to
default values. All the experiments were performed at the University at Buffalo high-
performance research computing center using 16 × 2.20 GHz Intel E5-2660 Xeon Processor
Cores (Manufacturer: Dell Inc., Round Rock, TX, USA) and 128 GB memory.

3.1.1. Evaluation Metrics

Three metrics were used to evaluate the effectiveness of an algorithm in identify-
ing target genes, detecting target subnetworks, and controlling FDRs. The F score [6,38],
calculated by comparing the list of genes in target subnetworks with those in detected
subnetworks, was used as a measure of the ability of a method to identify target genes.
A symmetric version of the Fsub score, proposed in [6], was employed to assess the ca-
pability of a method to detect target subnetworks. Specifically, the symmetric Fsub score
between a set of M subnetworks A = {A1, . . . , AM} and another set of N subnetworks
B = {B1, . . . , BN} is defined as:

Fsub(A,B) = 1
2

(
1

∑i |Ai|
M

∑
i=1
|Ai| max

j∈{1,...,N}
F(Ai, Bj) +

1
∑i |Bi|

N

∑
i=1
|Bi| max

j∈{1,...,M}
F(Bi, Aj)

)
, (3)

where F(Ai, Bj) is the F score between Ai and Bj. Finally, to assess how well an algorithm
controlled the false discovery rates of detected subnetworks, the FDR definition proposed
in [6] was employed. Specifically, the FDR of an identified subnetwork was determined
by the proportion of non-target genes present in that subnetwork. We also reported the
estimated FDRs, as defined in Section 2.2. The running time was recorded to compare the
computational complexities.

3.1.2. Experimental Results

First, we evaluated the capabilities of the seven methods to identify target genes
(by F-scores) and modular structures (by symmetric Fsub scores). Figure 2a,b presents
the results of the seven methods when applied to synthetic data generated by using a
range of beta-distribution parameters a, varying from 0.01 to 0.11. In terms of F-scores,
MultiFDRnet, FDRnet, and BioNet had the best performance, significantly exceeding all
other methods. When considering symmetric Fsub scores, MultiFDRnet notably surpassed
all other methods, while BioNet performed poorly in this regard. BioNet performed well
in terms of F-score, since the distributions of synthetic p-value perfectly matched the
assumption used in BioNet. However, it performed poorly in terms of symmetric Fsub
score. This is because it connected all the genes into one large subnetwork. With the
decrease of signal strengths (i.e., the increase of the value of a). We observed the following:
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(1) the performance of all the methods declined, and (2) in nearly all instances, the relative
performance rankings of the different methods remained the same.

To conduct a further comparison between MultiFDRnet and FDRnet, we applied
FDRnet to individual PPIs and report the results in Figure 2c,d. We can see that, in terms
of F-scores, MultiFDRnet performed at least as well as FDRnet applied to individual PPI
networks or the aggregated network. However, in terms of symmetric Fsub scores, Mul-
tiFDRnet performed significantly better than FDRnet applied to individual PPI networks.
This result suggests that the proposed multiplex strategy can improve the ability to detect
modular structures. In contrast, FDRnet applied to the aggregated network performed
worse than FDRnet applied to some of the individual PPI networks. One possible ex-
planation is that the aggregation operation alters the topological structures, which may
compromise the ability of FDRnet to detect target genes and modular structures. We also
investigated the effectiveness of the consensus procedure used in HotNet2 and hierarchical
HotNet. To this end, we compared the subnetworks obtained by using the consensus
procedure with those obtained by applying HotNet2 and hierarchical HotNet to individual
PPI networks. The comparison results are reported in Figures A2 and A3. We found that
the consensus procedure did not improve, but rather compromised the abilities of HotNet2
and hierarchical HotNet to detect target genes and modular structures.
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Figure 2. F scores and symmetric Fsub scores of seven methods applied to simulation data as a
function of beta-distribution parameter a. (a,b) Comparison of MultiFDRnet with six alternative
methods. (c,d) Comparison of MultiFDRnet with FDRnet when applied to aggregated and individual
PPI networks.

We then assessed the capabilities of the seven methods to control the FDRs of identified
subnetworks. Figures 3 and A4 report the estimated FDRs and exact FDRs of the subnet-
works detected at varying a levels. We can see that, except for Domino, all the algorithms
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could control FDRs to some extent. Specifically, for MultiFDRnet and FDRnet, the estimated
FDRs of detected subnetworks were controlled at the level of 0.1, as expected. For the
simulation data, exact FDRs could be calculated by utilizing ground-truth information. We
found that, for MultiFDRnet and FDRnet, the exact FDRs of small subnetworks detected
could be larger than 0.1. This is due to small subnetworks being more vulnerable to noise.
BioNet also successfully controlled the FDRs of the detected subnetworks. Nevertheless,
as previously mentioned, the p-value distribution aligned perfectly with the assumption
employed in BioNet. This might not hold true for cancer data, as we see shortly. For
HotNet2 and hierarchical HotNet, since they both performed a consensus procedure, we
compared the FDRs of the consensus subnetworks with those of the subnetworks detected
in individual PPIs. Figures A5 and A6 report the results for HotNet2 and hierarchical Hot-
Net, respectively. We determined that the FDRs of the subnetworks detected in individual
PPIs were not controlled at the desired level, while the FDRs of subnetworks obtained
through the consensus procedure were. This suggests that the consensus procedure could
help to control FDRs. However, as demonstrated in Figures A2 and A3, this was achieved
at the expense of the ability to identify target genes and modular structures. Finally, we
observed that Netmix2 could control the FDRs at a level around 0.25. This was possible due
to the fact that Netmix2 employs a strategy similar to that used in FDRnet and the proposed
method to control FDRs. However, Netmix2 does not provide users with a parameter to
adjust the FDR level.

Figure 3. Exact FDRs and estimated FDRs of subnetworks identified by seven approaches applied to
simulation data, derived from a beta-distribution with parameter a set at a value of 0.11. Each circle
symbolizes an identified subnetwork, with its size being linearly proportional to the number of genes
in the subnetwork. The FDR upper threshold was set to 0.1, marked by a dashed line.

Lastly, we assessed the computational complexities (i.e., computational time required)
of the seven methods (Table 1). Domino was the fastest method, FDRnet second, followed
by MultiFDRnet, hierarchical HotNet, BioNet, Netmix2 and HotNet2. Domino works by
first clustering the entire network using fast heuristics and then identifying clusters that
are enriched with highly mutated genes. However, there is no guarantee that the ground
truth clusters are included in the initial clustering results, which can lead to suboptimal
results, as shown in Figure 2a,b. Among the two best performing methods, MultiFDRnet
and FDRnet, it was observed that MultiFDRnet generalized FDRnet to a more complex
multiplex structure, but did not significantly increase the computational complexity.
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Table 1. Running time (in seconds) of seven methods applied to simulation (a = 0.06), bladder cancer
and head and neck cancer data. For simulation data, the experiment was performed 10 times, and
we reported the average execution time along with the standard deviation. HHotNet: Hierarchical
HotNet.

MultiFDRnet FDRnet HHotNet HotNet2 Domino Netmix2 BioNet

Simulation 3557(465) 2588(672) 3624(468) 3,740,063(18,900) 150(2) 44,493(122) 7382(1881)

Bladder cancer 3840 2079 3372 3,725,313 139 44,017 /

Head and neck cancer 2546 1852 3581 3,726,267 521 44,013 /

3.1.3. Parameter Sensitivity Analysis

The proposed method has two parameters, namely local exploration size K and user-
defined FDR upper bound B. The local exploration size K is used to extract a subgraph
around a given seed to provide a rough solution for conductance minimization. Thus,
the value of K within a wide range should have little impact on the performance of the
algorithm. We found that our method performed similarly for different values of K,
ranging from 100 to 500, in terms of F-score, and slightly worse for K = 500, in terms
of symmetric Fsub score (Figure A7). Therefore, we set K = 400 as a default parameter
in all other experiments in the study. The user-defined FDR upper bound B was used
to define a tolerance level of false positives. Theoretically, when the signal is strong, a
tighter bound should be beneficial, since the majority of false positives are removed. In
contrast, when the signal is weak, a looser bound allows the selection of true genes that
cannot be distinguished with noise, leading to better total performance. To test whether
this was the case for our approach, we set local exploration size K to 400 and performed
an experiment using B ∈ {0.1, 0.15, 0.2, 0.25}. We observed that the result confirmed our
reasoning (Figure A8). However, in real applications, we may not have prior knowledge of
signal strength, and a FDR level of 0.1 is a safe choice.

We also performed an experiment to assess how much the proposed method relies on
the reliability of individual networks. To this end, we first generated a random network
for each of the four PPI networks, by randomly swapping the edges of each node, while
maintaining the original degree distributions. The same procedure was also used in
HotNet2 [5]. Then, we repeated the simulation study by replacing one of the four PPI
networks with its random counterpart. The results are presented in Figure A9. As we
expected, the performance of our method declined. However, it was very robust against
variations from individual networks. Notably, it performed significantly better than other
approaches that were applied to AggrePPI constructed by using the original four PPI
networks (see Figure 2a,b).

3.2. Bladder Cancer Study

The TCGA copy number and mutational data for bladder cancer was subjected to
MultiFDRnet to detect significantly mutated subnetworks.

3.2.1. Mutational Data and PPI Networks

The somatic mutation and copy number data were downloaded from the TCGA
firehose website. The TCGA mutation data includes 94,534 non-silent mutations across
18,295 genes from 395 patients with bladder cancer. The data was evaluated by using
MutSig2CV [4], where each gene was given a p-value indicating its statistical significance
of mutation frequency in contrast to a background mutation model. The copy number data,
analyzed by GISTIC2 [39], details the copy numbers of 24,776 genes in 411 individuals
diagnosed with urothelial bladder carcinoma. As with the simulation study, we used four
PPI networks in the analysis. We used the pipeline described in [6] to obtain three p-values
for each gene, measuring the statistical significance of mutation, copy number amplification
and copy number deletion, respectively. For the methods that use p-values as input (BioNet,
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hierarchical HotNet, HotNet2, and Netmix2), we combined p-values for each gene using
Fisher’s method [40]. For other methods, we retained minimum local FDR scores for each
gene, since local FDR scores are comparable across different data types [6]. For all methods,
we used the same setting as in the simulation study.

3.2.2. Experimental Results

By applying MultiFDRnet to the bladder cancer data, a total of 77 genes and 24 subnet-
works were detected. For comparison, we applied the other six methods to the data. The
experimental settings were similar to those used in the simulation study. Table 2 summa-
rizes the detected subnetworks and the number of detected genes that were also included
in the COSMIC database [41]. Figures 4 and A10 present the subnetworks detected by
MultiFDRnet and the estimated FDRs, respectively. We made the following observations.
First, BioNet failed to identify any subnetworks, since the distribution of p-values could
not be fit by its signal-to-noise model. Second, all the methods, except for Domino, could
control FDRs to some extent, which was consistent with the result of the simulation study.
However, HotNet2, hierarchical HotNet and Netmix2 grouped all identified genes into one
subnetwork and did not reveal any modular structure. Finally, MultiFDRnet and FDRnet
performed similarly, in terms of the numbers of the detected genes and subnetworks. How-
ever, a close examination of the results showed that FDRnet missed three well-established
cancer genes (KRAS, PIK3CA and PTEN, Figure A11). Interestingly, we found that we were
able to detect all three genes if we applied FDRnet to any of the individual networks. This
result suggests that aggregation could lead to suboptimal results, as it alters the topological
structures of individual networks.
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Figure 4. Twenty-four subnetworks detected by MultiFDRnet performed on bladder cancer data.

To annotate the subnetworks identified by MultiFDRnet, we compared the genes
detected in each subnetwork with the hallmark and curated gene sets provided by the
molecular signatures database [42,43] and annotated the subnetwork using the label re-
turned by the database. If a gene appeared in two detected subnetworks, we added a
crosstalk edge between the two subnetworks, which implies that the gene may be involved
in two biological processes. The first notable subnetwork was a densely connected sub-
network formed by KRAS, HRAS, ERBB2, FRS2, FGFR3, GOLGA7 and ERLIN2. All genes,
except for ERLIN2, came from the MAPK family signaling cascade, which is an impor-
tant therapeutic target in cancer [44]. Similarly, we found subnetworks dominated by the
PIK3CA signaling pathway and the PTEN regulation pathway. Moreover, a subnetwork
was dominated by genes related to the RNA polymerase II elongation process. Recently,
researchers have observed that many cancers have widespread defects in mRNA transcrip-
tion elongation [45]. Finally, the proposed method identified a subnetwork that included
a well-known cancer gene FOXA1 and four genes from the Vitamin D receptor pathway,
which suggests a potentially functional connection.
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Table 2. Subnetworks identified by seven methods applied to bladder cancer and head and neck
cancer data. hHotNet: Hierarchical HotNet. #subnetworks: the number of identified subnetworks;
#genes: the total number of genes in identified subnetworks; # COSMIC genes: the number of genes
that are included in the COSMIC cancer gene database.

Bladder Cancer Head and Neck Cancer

Method #Genes #Subnetworks FDR #COSMIC
Genes #Genes #Subnetworks FDR

MultiFDRnet 77 24 0.084(0.01) 29 61 16 0.083(0.01)

FDRnet 95 28 0.086(0.01) 30 77 15 0.093(0.006)

hHotNet 22 1 0.028 17 33 2 0.06(0.05)

HotNet2 52 1 0.17 28 56 1 0.05

Domino 27 3 0.54(0.16) 10 110 15 0.50(0.18)

NetMix2 21 1 0.18 17 20 1 0.07

BioNet / / / / / / /

3.3. Head and Neck Cancer Study

MultiFDRnet was utilized to detect significantly mutated subnetworks in head and
neck cancers using the TCGA copy number and mutational data. Unlike the bladder cancer
study, we, herein, attempted to detect perturbed modular structures formed by the genes
and interactions from a PPI network constructed specifically for head and neck squamous
cell carcinoma [14].

3.3.1. Mutational Data and PPI Networks

The somatic mutation and copy number data were downloaded from the TCGA
firehose website.

The TCGA mutation dataset comprises 75,930 non-silent mutations in 18,291 genes
from 510 individuals diagnosed with head and neck cancer. By using MutSig2CV [4],
each gene was assigned with a p-value, indicating its statistical significance of mutation
frequency against a background mutation model. Copy number data, analyzed by GIS-
TIC2 [39], details the copy numbers for 24,776 genes in 525 patients with head and neck
cancer. The HNSC PPI network was constructed by performing an affinity purification-
mass spectrometry analysis in head and neck squamous cell carcinoma cell lines with
33 protein baits [14]. The network contains only 675 genes and 1677 interactions and cannot
describe the complete topology of protein interactions in head and neck cancer. Therefore,
we incorporated the four general-purpose PPI networks used in the bladder cancer study to
aid the discovery of modular structures. As with the bladder cancer study, for the methods
that take only one network as input, we aggregated all the PPI networks into one, denoted
as aggrePPI-HNSC. The information on the PPI networks used are presented in Table A1
and Figure A1.

3.3.2. Experimental Results

We applied MultiFDRnet and the other six methods to the mutational data. For
MultiFDRnet, we used all five PPI networks and focused on the HNSC PPI network, by
setting the weight of the corresponding layer to 5 and the others to 1. In addition, for
both MultiFDRnet and FDRnet, we restricted the seeds to genes that appeared in the
HNSC PPI network and solved a mixed-integer linear programming problem (2) for each
seed. Other experimental settings were similar to those used in the bladder cancer study.
Table 2 reports the subnetworks detected by the seven methods and Figure A12 presents
the estimated FDRs of the detected subnetworks. Note that the COSMIC genes were not
reported, since, in this study, we focused on identifying novel structures in the HNSC
PPI network. Consistent with the results obtained in the bladder cancer study, BioNet
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failed to produce any results, Domino failed to control the FDRs, and both HotNet and
Netmix2 detected only one subnetwork. Although hierarchical HotNet identified two
subnetworks, one with 27 genes and the other with 6 genes, only five HNSC interactions
were identified and none of them were specific to the HNSC network, suggesting that the
modular structure of the HNSC PPI was not found (Figure A13).

To compare MultiFDRnet and FDRnet in depth, we also applied FDRnet to the HNSC
PPI network only. The results of MultiFDRnet, FDRnet on AggrePPI-HNSC and FDRnet on
HNSC are reported in Figures 5, A14 and A15, respectively. The subnetworks detected by
MultiFDRnet were annotated in the same way as in the bladder cancer study. When applied
to the HNSC network, FDRnet detected seven subnetworks, in which one had 9 genes,
including TP53, while the others had 4 or less genes. We can see that the results were
fragmented, possibly due to the incomplete topology of the HNSC network. Interestingly,
we observed that MultiFDRnet combined or completed these fragmented subnetworks
into functional modules. To see this, first note that MultiFDRnet identified a densely
connected subnetwork, including most of the genes (7 out of 9) of the aforementioned
TP53-related subnetwork. Although the backbone of this subnetwork was formed by edges
from the HNSC network, its dense structure was completed by edges from other general
PPI networks. Second, the subnetwork consisting of MAPK1 and HLA-A was completed by
adding the HLA-B gene, which is a close family member and is also high mutated. Finally,
the clique consisting of PIK3CA, PIK3R1 and CCND1 was combined with known cancer
genes, such as TP53, MDM2 and ERBB2, by edges from general networks. Another example
of combination was the subnetwork combined by a module consisting of LSG1, CASP3
and SF3B2 and a module consisting of RB1, B2F1, RCL1 and MRPL47. These examples
demonstrated that MultiFDRnet was able to use general PPI networks as complementary
interaction information to identify perturbed modular structures in the HNSC PPI network.
By contrast, when applied to the aggrePPI-HNSC network, FDRnet detected only four
subnetworks that included interactions from the HNSC PPI network. Among these, the two
larger ones did not include modular structures formed by edges from the HNSC network,
and the two smaller ones each included only one HNSC-specific interaction. This was
possibly due to the fact that the topological information of the disease-specific network was
overwhelmed by the general-purpose PPI networks, since the former had far fewer nodes
and edges. To investigate if increasing edge weights could mitigate this issue, we set the
edge weights of all edges from the HNSC network in the aggrePPI-HNSC network to 5 and
applied FDRnet to it; however, no improvement was observed (Figure A16).
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Figure 5. Sixteen subnetworks detected by MultiFDRnet performed on head and neck cancer data.

To investigate how the layer weight affected the resulting subnetworks, we performed
an experiment where we varied the layer weight by 20% (i.e., set w to 4 or 6) and calculated
the F-score and symmetric Fsub score by comparing the subnetworks detected by setting w to
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5 with those detected by setting w to 4 or 6. We found that there were only minor differences
(F-score = 0.96 and symmetric Fsub = 0.94 between w = 4 and w = 5, F-score = 0.96 and
symmetric Fsub = 0.90 between w = 6 and w = 5).

4. Conclusions

In this paper, we introduced MultiFDRnet, a novel methodology devised for the
detection of significantly perturbed subnetworks utilizing multiple PPI networks. Mul-
tiFDRnet addresses several limitations of existing network-based methods. By employing a
multiplex-network framework to model a set of input PPI networks, we ensured preserva-
tion of the topological structures of all PPI networks, while introducing interdependencies
amongst them. The framework also offers the flexibility to emphasize the structure of a
specific PPI network, such as, for example, context-specific networks, by adjusting the
corresponding weight. Furthermore, we developed a novel random walk-based approach
that enables effective utilization of the topological structures and dependencies stored
within the multiplex network during subnetwork detection. Our experiments demon-
strated that MultiFDRnet can effectively detect significant subnetworks supported jointly
by multiple PPI networks and can uncover novel modular structures within context-specific
PPI networks.

While MultiFDRnet has proven effective in addressing the issues inherent in previous
methodologies, there are several directions that we can pursue to further improve its
performance. As part of our future work, we plan to extend the use of the multiplex network
framework to integrate other types of interactions, including gene regulatory networks and
metabolic relationships. This could provide a broader and more comprehensive view of
cellular processes, leading to the discovery of previously unrecognized driver genes and
key molecular pathways. In addition, we plan to incorporate more advanced computational
models, such as graph neural networks, to further utilize the structural information within
the multiplex network. We anticipate that these advanced models could enhance our ability
to detect and interpret complex patterns within the data; thereby, increasing the analytical
depth and accuracy of cancer gene detection.
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Appendix A. Details of Linearizing the Optimization Problem

To reduce the difficulty of solving the optimization problem (2), we linearized the
problem by using linearizing techniques. First, we changed the objective function Φ(S) to
z with an additional constraint:

z ∑
iα∈VM

piα(∞)xiα − ∑
iα∈VM

∑
jβ∈VM

xiα(1− xjβ)Tiα,jβ piα(∞) ≥ 0. (A1)

We then performed a series of transformations to linearize the constraints so that
the above problem could be solved by using mixed-integer linear programming. First,
we replaced ŵ(j) with w(j)− B to linearize the budget constraint. Then, we linearized
constraint (A1) by set ziα = zxiα and imposed the following constraints on ziα





ziα ≥ z− a(1− xiα),
ziα ≥ βxiα,
ziα ≤ z− b(1− xiα),
ziα ≤ αxiα,

(A2)

where a > z and b < z, which were set to be sufficiently large and small constants, respectively.
To linearize product xiαxjβ, we set xiαjβ = xiαxjβ and imposed the following constraints





xiαjβ ≤ xiα,
xiαjβ ≤ xjβ,
xiαjβ ≥ xiα + xjβ − 1,
xiαjβ ≥ 0.

(A3)

For the connectivity constraint, we constructed the graph G = (Vadj
M , Eadj

M ) defined
by the adjacent matrix Tadj and used the single-commodity flow-based method [23] to
linearize the connectivity constraint. In particular, we first replaced each undirected edge
(iα, jβ) with two directed edges (iα, jβ) and (jβ, iα), and denoted the new edge set as E′M.
Then, we introduced an extra node r as the flow source with the maximum total flow M,
and connected it to the seed node with an directed edge (r, sα). In order to describe the flow
in the graph, we associated each directed edge (iα, jβ) with a non-negative variable yiα,jβ
to indicate the amount of the flow from iα to jβ. Our goal was to represent a connected
subgraph by all edges carrying flow together with the corresponding vertices, which cab
be achieved by considering each vertex with a positive incoming flow as a sink consuming
one unit of flow. We let r0 be the residual flow in the source. We used a set of constraints
as follows:

r0 + yr,sα = M, (total flow conservation) (A4)

yiαjβ ≤ Mxjβ, ∀(iα, jβ) ∈ E′M, (positive incoming flow) (A5)

∑
iα:(iα,jβ)∈E′M

yiα,jβ = xjβ + ∑
iα:(jβ,iα)∈E′M

yjβ,iα, ∀jβ ∈ VM. (flow conservation at each node) (A6)

∑
jβ∈VM

xjβ = ∑
jβ∈VM

yr,jβ . (injected flow equal consumed flow) (A7)
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With the above constraints, the flow visits all vertices in a solution, which ensures
the connectivity of an identified subgraph. By using the above-described linearizing
techniques, the subnetwork identification problem can be transformed into a mixed-integer
linear programming problem

min z (A8)

subject to ∑
iα∈VM

piα(∞)ziα − ∑
iα∈VM

∑
jβ∈VM

(xiα − xiαjβ)Tiα,jβ piα(∞) ≤ 0,

∑i xiαŵi ≤ 0,

xiβ = xiγ, ∀i ∈ V, ∀β, γ ∈ L, β 6= γ,

xsα = 1, xjβ ∈ {0, 1}, ∀j ∈ V, ∀β ∈ L,

Constraints (A2)–(A7),

which can be solved by some well-implemented optimization tools (e.g., CPLEX [27]).

Appendix B. Figures and Tables

Table A1. Seven PPI networks used in the study. #Nodes: the number of nodes. #Edges: the number
of interactions. HNSC: a PPI network constructed specifically for head and neck cancer. AggrePPI: a
PPI network formed by aggregating BioGRID, iRefIndex, ReactomeFI and STRING. AggrePPI-HNSC:
a PPI network formed by aggregating BioGRID, iRefIndex, ReactomeFI, STRING and HNSC.

PPI Network #Nodes #Edges Version

BioGRID 19,660 736,536 4.4.212

iRefIndex 17,809 657,937 18

ReactomeFI 13,601 250,481 2021

STRING 11,133 112,064 11.5

HNSC 675 1677 /

AggrePPI 20,337 1,251,978 /

AggrePPI-HNSC 20,351 1,252,734 /
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Figure A1. Power−law plots of PPI networks used in this study.
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Figure A2. F scores and symmetric Fsub scores of HotNet2 method applied to synthetic data using
individual PPI networks and consensus. The result of HotNet2 consensus result is denoted as
HotNet2 and the results of HotNet2 on the individual PPI networks are denoted as Hotnet2 followed
by the name of the PPI network used.
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Figure A3. F scores and symmetric Fsub scores of Hierarchical HotNet method applied to synthetic
data using individual PPI networks and consensus. The Hierarchical HotNet consensus result is
denoted as hHotNet and the results of the Hierarchical HotNet on the individual PPI networks are
denoted as hHotnet, followed by the name of the PPI network used.
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a = 0.01 a = 0.02

a = 0.03 a = 0.04

a = 0.05 a = 0.06

a = 0.07 a = 0.08

a = 0.09 a = 0.1

Figure A4. Exact FDRs and estimated FDRs of the seven methods performed on synthetic data
generated by using different beta-distribution parameters a ranging from 0.01 to 0.11. The FDR
upper bound was set to 0.1. Each circle represents a detected subnetwork, and its size is linearly
proportional to the size of the subnetwork.
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Figure A5. Exact FDRs and estimated FDRs of consensus subnetworks and subnetworks detected by
individual PPIs by HotNet2 performed on synthetic data generated by using the beta-distribution
parameter a = 0.11.

Figure A6. Exact FDRs and estimated FDRs of consensus subnetworks and subnetworks detected
by individual PPIs by hierarchical HotNet performed on synthetic data generated by using the
beta-distribution parameter a = 0.11.
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Figure A7. F scores and symmetric Fsub scores of MultiFDRnet obtained by using different values of
local exploration size K.
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Figure A8. F scores and symmetric Fsub scores of MultiFDRnet obtained by using different values of
FDR bound B.
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Figure A9. F scores and symmetric Fsub scores of MultiFDRnet obtained by replacing one PPI network
with its randomized version. Notably, while the performance of our method slightly declined, it still
performed significantly better than other approaches that were applied to AggrePPI constructed by
using the original four PPI networks (see Figure 2a,b).

Figure A10. Estimated FDRs of subnetworks detected by six methods performed on bladder cancer
mutation data. Each circle represents a detected subnetwork, and the number besides a circle is the
number of genes in the corresponding subnetwork. Data for BioNet is not depicted since it did not
find any significant subnetworks.
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Figure A11. Subnetworks detected by FDRnet applied to BLCA data.

Figure A12. Estimated FDRs of subnetworks detected by six methods performed on head and neck
cancer data.
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Figure A13. Two subnetworks detected by hierarchical HotNet performed on head and neck cancer
data. The red circles and lines indicate the genes and interactions that appear in the HNSC-specific
PPI, respectively.
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Figure A14. Fifteen subnetworks detected by FDRnet performed on head and neck cancer data.
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respectively.
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