Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role of Checkpoint Inhibitors in the First-Line Setting
3. Role of Checkpoint Inhibitors in the Second-Line Setting and Beyond
4. Role of Checkpoint Inhibitors in the Perioperative Setting
5. Diagnostic Tests and Biomarkers for Upper Gastrointestinal Cancers
6. Checkpoint Inhibitor Resistance
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Melina, A.; Mathieu, L.; Linda Morris, B.; Susan S, D.; Freddie, B. Predicting the Future Burden of Esophageal Cancer by Histological Subtype: International Trends in Incidence Up to 2030. Available online: https://journals.lww.com/ajg/Abstract/2017/08000/Predicting_the_Future_Burden_of_Esophageal_Cancer.14.aspx (accessed on 17 May 2023).
- Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: A combined analysis of 12 case control studies nested within prospective cohorts. Gut 2001, 49, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsonnet, J.; Friedman, G.D.; Vandersteen, D.P.; Chang, Y.; Vogelman, J.H.; Orentreich, N.; Sibley, R.K. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 1991, 325, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Q.; Sridhar, S.; Chen, Y.; Hunt, R.H. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 1998, 114, 1169–1179. [Google Scholar] [CrossRef]
- Eslick, G.D.; Lim, L.L.; Byles, J.E.; Xia, H.H.; Talley, N.J. Association of Helicobacter pylori infection with gastric carcinoma: A meta-analysis. Am. J. Gastroenterol. 1999, 94, 2373–2379. [Google Scholar] [CrossRef]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.K. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Kamangar, F.; Dawsey, S.M.; Blaser, M.J.; Perez-Perez, G.I.; Pietinen, P.; Newschaffer, C.J.; Abnet, C.C.; Albanes, D.; Vitamo, J.; Taylor, P.R. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J. Natl. Cancer Inst. 2006, 98, 1445–1452. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.; Kartsonaki, C.; Butt, J.; Jeske, R.; de Martel, C.; Plummer, M.; Chapman, D.; Guo, Y.; Clark, S.; Walters, R.G.; et al. Helicobacter pylori multiplex serology and risk of non-cardia and cardia gastric cancer: A case-cohort study and meta-analysis. Int. J. Epidemiol. 2023, 52, 1197–1208. [Google Scholar] [CrossRef]
- Morais, S.; Costa, A.; Albuquerque, G.; Araújo, N.; Tsugane, S.; Hidaka, A.; Hamada, G.S.; Ye, W.; Plymoth, A.; Leja, M.; et al. “True” Helicobacter pylori infection and non-cardia gastric cancer: A pooled analysis within the Stomach Cancer Pooling (StoP) Project. Helicobacter 2022, 27, e12883. [Google Scholar] [CrossRef]
- Han, Z.; Liu, J.; Zhang, W.; Kong, Q.; Wan, M.; Lin, M.; Ding, Y.; Duan, M.; Li, Y.; Zuo, X.; et al. Cardia and Non-Cardia Gastric Cancer Risk Associated with Helicobacter Pylori in East Asia and the West: A Systematic Review, Meta-Analysis, and Estimation of Population Attributable Fraction. Helicobacter 2023, 28, e12950. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; De Vita, F.; Landers, G.; Yen, C.J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability–High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; Garcia-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [PubMed]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Kulangara, K.; Zhang, N.; Corigliano, E.; Guerrero, L.; Waldroup, S.; Jaiswal, D.; Ms, M.J.; Shah, S.; Hanks, D.; Wang, J.; et al. Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer. Arch. Pathol. Lab. Med. 2019, 143, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.L.T.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar]
- Kang, Y.K.; Chen, L.T.; Ryu, M.H.; Oh, D.Y.; Oh, S.C.; Chung, H.C.; Lee, K.W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [PubMed]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.; Li, Z.; Kim, S.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lievre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.J.; Feng-Yi, F.; Xu, J.M.; Lee, K.W.; Jiao, S.C.; Chong, J.L.; Lopez-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Fuchs, C.S.; Ohtsu, A.; Tabernero, J.; Ilson, D.H.; Hyung, W.J.; Strong, V.E.; Goetze, T.O.; Yoshikawa, T.; et al. KEYNOTE-585: Phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Future Oncol. 2019, 15, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Eads, J.R.; Weitz, M.; Catalano, P.J.; Gibson, M.K.; Rajdev, L.; Khullar, O.; Lin, S.H.; Gatsonis, C.; Wistuba, I.I.; Sanjeevaiah, A.; et al. A phase II/III study of perioperative nivolumab and ipilimumab in patients (pts) with locoregional esophageal (E) and gastroesophageal junction (GEJ) adenocarcinoma: Results of a safety run-in—A trial of the ECOG-ACRIN Cancer Research Group (EA2174). J. Clin. Oncol. 2021, 39 (Suppl. S15), 4064. [Google Scholar] [CrossRef]
- Shah, M.A.; Bennouna, J.; Doi, T.; Shen, L.; Kato, K.; Adenis, A.; Mamon, H.J.; Moehler, M.; Fu, X.; Cho, B.C.; et al. KEYNOTE-975 study design: A Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Future Oncol. 2021, 17, 1143–1153. [Google Scholar] [CrossRef]
- Terashima, M.; Kim, Y.W.; Yeh, T.S.; Chung, H.C.; Chen, J.S.; Boku, N.; Kang, Y.K.; Chen, L.T.; Sasako, M. ATTRACTION-05 (ONO-4538-38/BMS CA209844): A randomized, multicenter, double-blind, placebo- controlled Phase 3 study of Nivolumab (Nivo) in combination with adjuvant chemotherapy in pStage III gastric and esophagogastric junction (G/EGJ) cancer. Ann. Oncol. 2017, 28, V266–V267. [Google Scholar]
- Chau, I.; Doki, Y.; Ajani, J.A.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) or NIVO plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced esophageal squamous cell carcinoma (ESCC): First results of the CheckMate 648 study. J. Clin. Oncol. 2021, 39 (Suppl. S18), LBA4001. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.J.; Fuchs, C.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-line, Advanced Gastric Cancer. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Tabernero, J.; Bang, Y.J.; Van Cutsem, E.; Fuchs, C.S.; Janjigian, Y.Y.; Bhagia, P.; Li, K.; Adelberg, D.; Qin, S. KEYNOTE-859: A Phase III study of pembrolizumab plus chemotherapy in gastric/gastroesophageal junction adenocarcinoma. Future Oncol. 2021, 17, 2847–2855. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study. Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Stein, A.; Paschold, L.; Tintelnot, J.; Goekkurt, E.; Thuss-Patience, P.C.; Lorenzen, S.; Ettrich, T.J.; Knorrenschild, J.R.; Jacobasch, L.; Kretzschmar, A.; et al. LBA54 Ipilimumab or FOLFOX in combination with nivolumab and trastuzumab in previously untreated HER2 positive locally advanced or metastastic esophagogastric adenocarcinoma (EGA): Results of the randomized phase II INTEGA trial (AIO STO 0217). Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Patruni, S.; Fayyaz, F.; Bien, J.; Phillip, T.; King, D.A. Immunotherapy in the Management of Esophagogastric Cancer: A Practical Review. JCO Oncol. Pract. 2023, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Yamamoto, S.; Kato, K. Nivolumab for the Treatment of Esophageal Squamous Cell Carcinoma. Available online: https://touchoncology.com/gastrointestinal-cancers/journal-articles/nivolumab-for-the-treatment-of-esophageal-squamous-cell-carcinoma/ (accessed on 26 April 2023).
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef] [PubMed]
- FDA. Meeting of the Oncologic Drugs Advisory Committee Meeting Announcement. Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/april-27-29-2021-meeting-oncologic-drugs-advisory-committee-meeting-announcement-04272021-04292021 (accessed on 9 May 2023).
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Kadono, T.; Iwasa, S.; Hirano, H.; Shoji, H.; Okita, N.O.; Takashima, A.; Kato, K. Real-World Effectiveness of Drugs Newly Approved in Japan on Survival in Patients with Advanced Gastric Cancer. J. Clin. Oncol. 2023, 41, 322. [Google Scholar] [CrossRef]
- Bang, Y.J.; Ruiz, E.Y.; Cutsem, E.V.; Lee, K.W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.H.; Chung, H.C.; Evesque, L.; et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Högner, A.; Moehler, M. Immunotherapy in Gastric Cancer. Curr. Oncol. 2022, 29, 1559–1574. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Lorenzen, S.; Thuss-Patience, P.C.; Homann, N.; Schenk, M.; Lindig, U.; Kretzschmar, A.; Heuer, V.; Goekkurt, E.; Haag, G.M.; et al. Surgical and pathological outcome, and pathological regression, in patients receiving perioperative atezolizumab in combination with FLOT chemotherapy versus FLOT alone for resectable esophagogastric adenocarcinoma: Interim results from DANTE, a randomized, multicenter, phase IIb trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK. J. Clin. Oncol. 2022, 40 (Suppl. S16), 4003. [Google Scholar]
- Smyth, E.; Knödler, M.; Giraut, A.; Mauer, M.; Nilsson, M.; Van Grieken, N.; Wagner, A.D.; Moehler, M.; Lordick, F. VESTIGE: Adjuvant Immunotherapy in Patients With Resected Esophageal, Gastroesophageal Junction and Gastric Cancer Following Preoperative Chemotherapy With High Risk for Recurrence (N+ and/or R1): An Open Label Randomized Controlled Phase-2-Study. Front. Oncol. 2019, 9, 1320. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet Lond Engl. 2019, 11, 1948–1957. [Google Scholar]
- Al-Batran, S.E.; Homann, N.; Schmalenberg, H.; Kopp, H.G.; Haag, G.M.; Luley, K.B.; Schmiegel, W.H.; Folprecht, G.; Probst, S.; Prasnikar, N.; et al. Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): A multicenter, randomized phase 3 trial. J. Clin. Oncol. 2017, 35 (Suppl. S15), 4004. [Google Scholar]
- Janjigian, Y.Y.; Van Cutsem, E.; Muro, K.; Wainberg, Z.; Al-Batran, S.E.; Hyung, W.J.; Molena, D.; Marcovitz, M.; Ruscica, D.; Robbins, S.H.; et al. MATTERHORN: Phase III study of durvalumab plus FLOT chemotherapy in resectable gastric/gastroesophageal junction cancer. Future Oncol. Lond Engl. 2022, 18, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Avelumab with Chemoradiation for Stage II/III Resectable Esophageal and Gastroesophageal Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03490292 (accessed on 23 May 2023).
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol. 2014, 6, 112–120. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, L.L.; Aguiar, P.N., Jr.; de Lima Lopes, G. Immunotherapy for Advanced Esophageal Squamous Cell Carcinoma—Renewed Enthusiasm and a Lingering Challenge. JAMA Oncol. 2021, 7, 1613–1614. [Google Scholar] [CrossRef] [PubMed]
- Gowryshankar, A.; Nagaraja, V.; Eslick, G.D. HER2 Status in Barrett’s Esophagus & Esophageal Cancer: A Meta Analysis. J. Gastrointest. Oncol. 2014, 5, 25–35. [Google Scholar]
- Janjigian, Y.Y.; Kawazoe, A.; Yanez, P.E.; Luo, S.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction (G/GEJ) cancer: Initial findings of the global phase 3 KEYNOTE-811 study. J. Clin. Oncol. 2021, 39 (Suppl. S15), 4013. [Google Scholar] [CrossRef]
- Beer, A.; Taghizadeh, H.; Schiefer, A.I.; Puhr, H.C.; Karner, A.K.; Jomrich, G.; Schoppmann, S.F.; Kain, R.; Preusser, M.; Ilhan-Mutlu, A. PD-L1 and HER2 Expression in Gastroesophageal Cancer: A Matched Case Control Study. Pathol. Oncol. Res. 2020, 26, 2225–2235. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Wei, J.; Geng, Y.; Chen, S.; Terpstra, M.M.; Huang, Q.; Zhang, Q.; Su, Z.; Yu, W.; Su, M.; et al. Targeted sequencing of circulating cell-free DNA in stage II-III resectable oesophageal squamous cell carcinoma patients. BMC Cancer 2019, 19, 818. [Google Scholar] [CrossRef]
- Zang, Z.J.; Ong, C.K.; Cutcutache, I.; Yu, W.; Zhang, S.L.; Huang, D.; Ler, L.D.; Dykema, K.; Gan, A.; Tao, J.; et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res. 2011, 71, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, N.; Goh, L.K.; Wang, H.; Das, K.; Tao, J.; Tan, I.B.; Zhang, S.; Lee, M.; Wu, J.; Lim, K.H.; et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 2012, 61, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Stachler, M.D.; Taylor-Weiner, A.; Peng, S.; McKenna, A.; Agoston, A.T.; Odze, R.D.; Davison, J.M.; Nason, K.S.; Loda, M.; Leshchiner, I.; et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 2015, 47, 1047–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, G.S.; Zhou, J.; Liu, J.B.; Wu, Z.; Xu, X.; Li, T.; Xu, D.; Schumacher, S.E.; Puschhof, J.; McFarland, J.; et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med. 2018, 24, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Gao, Z.; Li, X.; Dong, L.; Han, W.; Nie, J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 2017, 8, 110693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marincola, F.M.; Jaffee, E.M.; Hicklin, D.J.; Ferrone, S. Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Adv. Immunol. 2000, 74, 181–273. [Google Scholar] [PubMed]
- Restifo, N.P.; Marincola, F.M.; Kawakami, Y.; Taubenberger, J.; Yannelli, J.R.; Rosenberg, S.A. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 1996, 88, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Darnell, J.E.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Peng, W.; Xu, C.; Lou, Y.; Zhang, M.; Wargo, J.A.; Chen, J.Q.; Li, H.S.; Watowich, S.S.; Yang, Y.; et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin. Cancer Res. 2013, 19, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Fish, E.N.; Platanias, L.C. Interferon receptor signaling in malignancy: A network of cellular pathways defining biological outcomes. Mol. Cancer Res. MCR 2014, 12, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Khadaroo, P.A.; Su, H.; Kong, L.; Chen, L.; Wang, X.; Li, X.; Zhu, H.; Zhong, X.; Pan, J.; et al. The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/PD-L1 plus anti-CTLA-4): A systematic review and meta-analysis. BMC Cancer 2019, 19, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meserve, J.; Facciorusso, A.; Holmer, A.K.; Annese, V.; Sandborn, W.J.; Singh, S. Systematic review with meta-analysis: Safety and tolerability of immune checkpoint inhibitors in patients with pre-existing inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2021, 53, 374–382. [Google Scholar]
- Kelly, R.J.; Bever, K.; Chao, J.; Ciombor, K.K.; Eng, C.; Fakih, M.; Goyal, L.; Hubbard, J.; Iyer, R.; Kemberling, H.T.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J. Immunother. Cancer 2023, 11, e006658. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial Identifier | Setting | Phase | Site and Histology | Treatment Arm(s) | Primary Endpoint | Patient Selection (Cohort) | Arms (Regimen) | OS | PFS | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Med | HR | p | Med | HR | p | ||||||||
CM-649 | First line | III | GEJ adenocarcinoma | FP + Nivo vs. FP | PFS and OS (CPS ≥ 5) | CPS ≥ 5 (HER2-neg) | XELOX/FOLFOX + Nivo | 14.4 | 0.71 | <0.0001 | 7.7 | 0.68 | <0.0001 |
XELOX/FOLFOX | 11.1 | 6 | |||||||||||
CPS ≥ 1 (HER2-neg) | XELOX/FOLFOX + Nivo | 14 | 0.77 | <0.0001 | 7.5 | 0.74 | - | ||||||
XELOX/FOLFOX | 11.3 | 6.9 | |||||||||||
All (HER2-neg) | XELOX/FOLFOX + Nivo | 13.8 | 0.8 | <0.0002 | 7.7 | 0.77 | - | ||||||
XELOX/FOLFOX | 11.6 | 6.9 | |||||||||||
CM-649 | First line | III | GEJ adenocarcinoma | (Nivo/Ipi) vs. FP | OS (CPS ≥ 5) | CPS ≥ 5 | Nivo 1 + Ipi 3 | 11.2 | 0.89 | 0.2302 | 2.8 | 1.42 | - |
XELOX/FOLFOX | 11.6 | 6.3 | |||||||||||
All | Nivo 1 + Ipi 3 | 11.7 | 0.91 | - | 2.8 | 1.66 | - | ||||||
XELOX/FOLFOX | 11.8 | 7.1 | |||||||||||
CM-648 | First line | III | Esophageal squamous cell carcinoma | Nivo + Ipi vs. FP + Nivo vs. FP | PFS and OS (PD-L1 ≥ 1%) | PD-L1 ≥ 1% | Nivo 3 + Ipi 1 | 20.2 | 0.46 | - | 5.4 | 0.84 | - |
FP | 9 | 4.2 | |||||||||||
All | Nivo 3 + Ipi 1 | 17.6 | 0.68 | - | 4.2 | 1.16 | - | ||||||
FP | 11 | 4.3 | |||||||||||
PD-L1 ≥ 1% | FP + Nivo | 17.3 | 0.53 | - | 7 | 0.56 | - | ||||||
FP | 9 | 4.2 | |||||||||||
All | FP + Nivo | 15.5 | 0.73 | - | 6.8 | 0.76 | - | ||||||
FP | 11 | 4.3 | |||||||||||
Attraction-04 | First line | II/III | Gastric or GEJ cancer | Chemo + Nivo vs. Chemo + Placebo | PFS and OS | All (HER2-neg) | XELOX/SOX + Nivo | 17.5 | 0.9 | 0.257 | 10.5 | 0.68 | 0.0007 |
XELOX/SOX | 17.2 | 8.3 | |||||||||||
KN-590 | First line | III | Esophageal cancer or GEJ squamous cell carcinoma | Pembro + chemo vs. Placebo + chemo | PFS and OS | All | Pembro + chemo | 17.6 | 0.71 | - | 6.3 | 0.58 | - |
chemo | 11.7 | 6 | |||||||||||
ESCC | Pembro + chemo | 17.7 | 0.69 | - | 6.4 | 0.57 | - | ||||||
chemo | 11.7 | 6.1 | |||||||||||
PD-L1 CPS ≥ 10 | Pembro + chemo | 16.9 | 0.58 | - | 8.2 | 0.36 | - | ||||||
chemo | 11.2 | 4.3 | |||||||||||
ESCC PD-L1 CPS ≥ 10 | Pembro + chemo | 15.8 | 0.55 | - | - | - | - | ||||||
chemo | 10.9 | ||||||||||||
KN-062 | First line | III | Gastric or GEJ cancer adenocarcinoma | Pembro vs. placebo + FP | PFS (CPS ≥ 1) and OS (CPS ≥ 1)(CPS ≥ 10) | CPS ≥ 1 (HER2-neg) | Pembro + XP/FP | 12.5 | 0.85 | 0.05 | 6.9 | 0.84 | 0.04 |
XP/FP | 11.1 | 6.4 | |||||||||||
CPS ≥ 10 (HER2-neg) | Pembro + XP/FP | 12.3 | 0.85 | 0.16 | 5.7 | 0.73 | - | ||||||
XP/FP | 10.8 | 6.1 | |||||||||||
KN-859 | First line | III | Gastric or GEJ cancer adenocarcinoma | (Pembro vs. placebo) + FP cis or FP/CAPOX | PFS and OS | PD-L1 CPS ≥ 1 (HER2-neg) | Pembro + chemo | 12.9 | 0.78 | <0.0001 | 6.9 | 0.76 | <0.0001 |
chemo | 11.5 | 5.6 | |||||||||||
Orient-16 | First line | III | EG adenocarcinoma | Sintilimab vs. placebo + chemo (XELOX) | OS (CPS ≥ 5 and all) | CPS ≥ 5 (HER2-neg) | XELOX + Sint | 18.4 | 0.66 | 0.0023 | 7.7 | 0.63 | 0.0002 |
XELOX | 12.9 | 5.8 | |||||||||||
All (HER2-neg) | XELOX + Sint | 15.2 | 0.77 | 0.009 | 7.1 | 0.64 | <0.0001 | ||||||
XELOX | 12.3 | 5.7 | |||||||||||
Intega | First line | II | EG adenocarcinoma | Ipi + Tmab + Nivo vs. FOLFOX + Tmab + Nivo | PFS and OS | HER2 = 0 | All | 9.65 | 0.57 | 0.19 | 3.7 | 0.46 | 0.027 |
Ipi + Tmab + Nivo | 7.9 | 0.46 | 0.16 | 1.7 | 0.2 | 0.0047 | |||||||
FOLFOX + Tmab + Nivo | 32.9 | 0.83 | 0.8 | 9.2 | 0.79 | 0.67 | |||||||
HER2 > 0 | All | 23.3 | 0.57 | 0.19 | 9.5 | 0.46 | 0.027 | ||||||
Ipi + Tmab + Nivo | 23.3 | 0.46 | 0.16 | 8.4 | 0.2 | 0.0047 | |||||||
FOLFOX + Tmab + Nivo | 22.1 | 0.83 | 0.8 | 11.2 | 0.79 | 0.67 | |||||||
PD-L1 = 0 | All | 19.6 | 1.05 | 0.92 | 6.5 | 1.39 | 0.48 | ||||||
Ipi + Tmab + Nivo | 11.5 | 0.91 | 0.89 | 3.5 | 0.7 | 0.55 | |||||||
FOLFOX + Tmab + Nivo | 32.9 | 0.98 | 0.98 | 13.7 | 2.71 | 0.21 | |||||||
PD-L1 > 0 | All | 12.8 | 1.05 | 0.92 | 5.15 | 1.39 | 0.48 | ||||||
Ipi + Tmab + Nivo | 12.8 | 0.91 | 0.89 | 5.1 | 0.7 | 0.55 | |||||||
FOLFOX + Tmab + Nivo | 11.1 | 0.98 | 0.98 | 6.25 | 2.71 | 0.21 | |||||||
KN-811 | First line | III | Gastric or GEJ adenocarcinoma | (Pembro vs. placebo) + Tmab + FP | PFS and OS | HER2-pos | FP/XELOX + Tmab + Pemb | - | - | - | - | - | - |
FP/XELOX + Tmab | - | - | - | - | - | - |
Clinical Trial Identifier | Line | Phase | Site and Histology | Treatment Arm(s) | Primary Endpoint |
---|---|---|---|---|---|
IMU-131 | Second line | II | GE adenocarcinoma | HER-Vaxx with Ramucirumab + Paclitaxel vs. HER-Vaxx with Pembro | AE and ORR |
RECIST | Second line | I | GE adenocarcinoma | Pembro + Lenvatinib | ORR |
N-803 | Second line | II | GEJ Cancer | Irradiated PD-L1 CAR-NK Cells + Pembrolizumab + N-803 | cCR |
NCI-2020-05251 | First line | I | GEJ Cancer | Pembro + chemoradiation | cCR |
TTX-030 | First line | I | GEJ Cancer | TTX-030 (Anti-CD39) ± Pembrolizumab ± Budigalimab ± Chemotherapy | AE and DLT |
SEQUEL | First line | II | Gastric cancer, GE cancer adenocarcinoma | Pembro + Ramucirumab + Paclitaxel | BORR and PFS |
BMS Protocol CA209-76L | First line | II | GE Adenocarcinoma | FOLFOX with nivolumab alone vs. RT with nivolumab | PFS |
CA224-060 | First line | II | Gastric or GEJ Adenocarcinoma | Relatlimab (Anti-LAG-3) and Nivolumab in Combination With Chemotherapy vs. Nivolumab in Combination W/Chemotherapy | ORR and BOR |
AIO-STO-0417 | First line | II | Adenocarcinoma of the stomach or GE cancer | modified FOLFOX ± Nivolumab and Ipilimumab vs. FLOT plus Nivolumab. | PFS, ORR, OS |
ICONIC | First line | II | oesophagogastric adenocarcinoma | FLOT chemotherapy with the anti-PD-L1 antibody Avelumab, pre-op | pCR rate in surgical specimens |
NCI-2018-00946 | First line | I | GE Adenocarcinoma | Pembrolizumab | ORR |
YO39609 | First line | Ib.II | Locally Advanced Unresectable or Metastatic Gastric or Gastroesophageal Junction Cancer or Esophageal Cancer | Multiple Immunotherapy-Based Treatment Combinations | OR and AE |
CA209-577 | Second line | III | Resected Esophageal, or Gastroesophageal Junction Cancer | Nivolumab vs. Placebo | DFS and OS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, F.; Amin, A.; Liu, M.; Vishnuvardhan, N.; Amin, S.; Shabbir, R.; Swed, B.; Khan, U. Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers. Cancers 2023, 15, 4099. https://doi.org/10.3390/cancers15164099
Karim F, Amin A, Liu M, Vishnuvardhan N, Amin S, Shabbir R, Swed B, Khan U. Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers. Cancers. 2023; 15(16):4099. https://doi.org/10.3390/cancers15164099
Chicago/Turabian StyleKarim, Frederic, Adina Amin, Marie Liu, Nivetha Vishnuvardhan, Saif Amin, Raffey Shabbir, Brandon Swed, and Uqba Khan. 2023. "Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers" Cancers 15, no. 16: 4099. https://doi.org/10.3390/cancers15164099
APA StyleKarim, F., Amin, A., Liu, M., Vishnuvardhan, N., Amin, S., Shabbir, R., Swed, B., & Khan, U. (2023). Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers. Cancers, 15(16), 4099. https://doi.org/10.3390/cancers15164099