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Simple Summary: GRB2-associated binder 1 (GAB1) is a docking protein pivotal in linking multiple
stimuli to various intracellular signaling pathways. Embryonic development is disrupted in GAB1-
deficient mice, and oncogenic mutations have been noted in cancer cases. In numerous types of cancer,
high GAB1 expression levels correlate with a poor prognosis. Studies reveal that GAB1 significantly
influences cellular transformation by changes in proliferation, evasion of apoptosis, metastasis, and
angiogenesis—all fundamental processes in cancer development. Furthermore, GAB1 is implicated
in the resistance/sensitivity to antitumor treatments, thus establishing its potential as an anticancer
therapy target.

Abstract: GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleck-
strin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions
from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event
recruits SH2 domain-containing proteins like SHP2, PI3K’s p85 subunit, CRK, and others, thereby ac-
tivating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos
succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin,
limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer.
GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend
a worse prognosis in multiple cancer types. This review focuses on GAB1’s influence on cellular trans-
formation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis—each of
these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor
therapies, making it a promising target for future anticancer strategies.

Keywords: GAB1; tumorigenesis; angiogenesis; metastasis; therapy resistance

1. Introduction

GRB2-associated binding 1 (GAB1) is the inaugural member of the GAB family of
docking proteins, which includes GAB1, GAB2, and GAB3 in mammals, Daughter Of
Sevenless (DOS) in Drosophila and Suppressor Of Clear (Soc1) in Caenorhabditis elegans [1–4].
Historically, GAB1 was originally isolated as a binding partner of the SRC homology 3
(SH3) domain of growth factor receptor-bound protein 2 (GRB2) [5]; GAB2 was cloned as a
partner of the SRC homology 2 (SH2) domain of the SHP2 phosphatase [6], and GAB3 was
located by sequence similarity to GAB1 and GAB2 [7]. DOS was identified simultaneously
by two independent research groups. The first one identified this protein as a substrate of
the SHP2 orthologue in Drosophila and Corkscrew (Csw), and the second one by searching
for mutants that suppress the rough-eye phenotype caused by a hyperactivated sevenless
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allele [8,9]. Soc1 was discovered from the search for suppressors of the fibroblast growth
factor (FGF) orthologue in C. elegans, Egl-15 [10]. These proteins have a similar structural
organization, despite sharing approximately 40–50% sequence similarity [5,11]. However,
there seems to be a certain tissue tropism of expression of these proteins in mammals in spite
of their ubiquitous expression. Thus, while GAB1 and GAB2 register their lowest expression
levels in lymphoid tissues, GAB3 reaches its highest expression values [4]. The GAB1 gene
is located on chromosome 4q31.1 in humans [12]. Two isoforms of GAB1, lacking catalytic
activity, have been described, one high molecular weight (120 kDa) expressed exclusively
in the heart and one low molecular weight (100 kDa) expressed ubiquitously [4,11,13].
However, the role of different GAB1 isoforms in different cellular contexts and under
different stimuli remains unknown. Like its homologues, GAB1 has a highly conserved
pleckstrin homology (PH) domain (amino acids 14–99) at its amino-terminal end involved
in the interaction with phosphatidylinositol 3,4,5-triphosphate (PIP3) present in the plasma
membrane, a central proline-rich domain involved in the interaction with proteins with
SRC homology 3 (SH3) domains, 47 predicted phosphorylation sites on serine/threonine
residues, and 16 potential phosphotyrosine sites involved in the recruitment of proteins
with SRC homology 2 (SH2) domains [5,11]. Unlike its other family members, GAB1 has
a MET-binding domain (MBD) (amino acids 450–532) within the proline-rich domain,
responsible for direct association with the MET receptor [14]. In addition, GAB1 has a
nuclear localization signal (amino acids 15–23) at its amino-terminal end [15] (Figure 1).
GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities
in the heart, placenta, liver, skin, limb, and diaphragm myocytes [16,17].
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Figure 1. GAB1 structure and partner binding sites. Schematic representation of the GAB1 structure.
GAB1 has a pleckstrin homology (PH) domain at its amino-terminal end involved in the interaction
with phosphatidylinositol 3,4,5-triphosphate (PIP3), a nuclear localization signal (NLS), tyrosine
phosphorylation residues involved in the interaction with different proteins such as CRK, PLCγ, p85,
and SHP2, a proline-rich region involved in the canonical and atypical interaction with GRB2, and
the MET-binding domain (MBD) involved in the interaction with MET receptor.

2. Participation of GAB1 in Cell Signal Transduction

GAB1 is phosphorylated at tyrosine residues in response to a wide variety of stimuli
including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve
growth factor (NGF), hepatocyte growth factor (HGF), vascular endothelial growth fac-
tor (VEGF), keratinocyte growth factor (KGF), fibroblast growth factor (FGF), and in-
sulin and stem cell factor (SCF); cytokines such as erythropoietin (EPO), interleukin-6
(IL-6), interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-3 (IL-3), and thrombopoietin
(TPO); and various immune stimuli such as anti-IgM or F(ab’)2 and lysophosphatidic
acid (LPA) [11]. These phosphotyrosine residues are recognized by different proteins with
SH2 domains, such as the SH2-containing protein tyrosine phosphatase-2 (SHP2) (Y627,
Y659), p85 subunit of phosphoinositide 3-kinase (PI3K) (Y447, Y472, Y589), chicken tu-
mor virus number 10 (CT10) regulator of kinase (CRK) (Y424, Y259, Y317), and others
triggering the activation of different signaling pathways [4,14,18]. Furthermore, GAB1 is
not only phosphorylated by receptor protein tyrosine kinases, but also by kinases of the
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SRC family [19,20]. An approximately 40% reduction in GAB1 phosphorylation levels was
observed following HGF stimulation in cells derived from SRC null mice. Furthermore,
the expression of a constitutively active mutant of SRC increased HGF-independent GAB1
phosphorylation. Moreover, SRC has been shown to interact directly and phosphorylate
GAB1 through its SH2 domains by in vitro kinase assays [19]. Similarly, hematopoietic cell
kinase (HCK) has been reported to induce GAB1 phosphorylation in response to IL-6 in
multiple myeloma cells [20]. It has also been shown that GAB1 can be phosphorylated by
the non-receptor tyrosine kinase malectin-like receptor kinase FERONIA (FER) at tyrosine
residue 627 [21].

Analogously, GAB1 is also phosphorylated in response to different stresses such as
oxidative stress, fluid shear stress and ultraviolet (UV) light [22–24]. It has been outlined
that hydrogen peroxide stimulation induces a dose- and time-dependent phosphorylation
of GAB1. Furthermore, GAB1 has been shown to be an integrator of cell death through its
interaction with SHP2- jun N-terminal kinase (JNK) activation versus cell survival mediated
by p85/PI3K/ thymoma viral oncogene homolog (AKT) pathway activity in oxidative
stress [24]. By comparison, fluid shear stress-induced endothelial nitric oxide synthase
(eNOS) activation has been found to be GAB1-dependent [23,25]. Ultraviolet radiation has
been described to induce activation of the JNK signaling pathway to trigger cell apoptosis.
In this context, it has been established that GAB1-deficient mouse fibroblast cells do not
induce JNK activation as measured by UV, as well as a partial induction of caspase 3, DNA
fragmentation, and YOPRO-1 staining [22].

GAB1 recruitment from the cytoplasm to activated membrane receptors can be direct
or indirect (Figure 2). The direct recruitment mode (Figure 2A) appears to be unique to
the c-MET receptor. The GAB1 MBD domain interacts directly with the activated kinase
domain of c-MET upon binding to its ligand HGF, allowing signal transduction [26–28]. On
the other hand, the c-MET receptor also indirectly recruits GAB1 via growth factor receptor-
bound protein 2 (GRB2) or via SHC-GRB2 [27,29]. Upon the tyrosine kinase receptor
activation, the phosphotyrosine residues present in its cytoplasmic tails are recognized by
the SH2 and/or phosphotyrosine-binding (PTB) domains of GRB2, and GRB2 then binds to
the proline-rich region of GAB1 via its C-terminal SH3 domain [4,30]. The interaction of
GRB2 with GAB1 is mediated by distinct domains: the canonical proline-rich GRB2-binding
domain, PX3RX2KPX7PLD, and the atypical GRB2-binding domain present in the MBD,
PXXXR [31]. This indirect mode of GAB1 recruitment to activated receptors seems to apply
to all other receptors that recruit GAB1 (Figure 2B).

As mentioned, GAB1 can channel signaling from the external stimulus to the PI3K/AKT
pathway. Activation of this pathway is triggered by the direct interaction of GAB1 with the
SH2 domain of the p85 regulatory subunit of PI3K kinase [32,33]. Mutations experiments
on the binding sites of GAB1 to p85 have been reported, resulting in the loss of signal
transduction under several stimuli [32,34,35]. It has been demonstrated that this interaction
is essential for eyelid closure and for keratinocyte migration through the generation of
knock-in mice expressing a GAB1 protein defective in p85 recruitment [27]. The GAB1-p85
regulatory subunit of PI3K interaction has been described as critical for the flow-stimulated
PI3K/AKT/eNOS signaling pathway in endothelial cells [23]. GAB1 overexpression en-
hances AKT activation induced by FGF, VEGF, and HGF, whereas overexpression of the
p85-binding site mutant version of GAB1 results in decreased AKT activation [36]. This mu-
tant also fails to produce NGF-induced antiapoptotic signal transmission [32]. Furthermore,
PI3K phosphorylates phosphatidylinositol-3,4-diphosphate (PIP2) to phosphatidylinositol-
3,4,5-triphosphate (PIP3) [37–39]. This PIP3 recruits GAB1 to the plasma membrane via the
PH domain, leading to further activation of PI3K. This positive feedback loop amplifies
signals from different growth factors through this pathway [33,40,41].
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Among other proteins that bind to GAB1, the role of the SHP2 protein, which interacts
with the phosphotyrosine residues Y627 and Y659 located at the GAB1 C-terminal end, is
noteworthy [42]. The GAB1–SHP2 interaction is possibly the best characterized. All members
of the GAB family have been shown to interact with SHP2 or its homologues [6–8,11]. This
finding indicates that interaction with SHP2 is a conserved feature of the different members
of the GAB protein family. The functional significance of this interaction has been studied
using mutants of GAB1 that are unable to bind SHP2. This mutant has been reported
to cause alterations in MET-dependent morphogenesis and block the activation of the
mitogen-activated protein kinase (MAPK) signaling pathway mediated by HGF, EGF, and
LPA [42–45]. In addition, the Y627 tyrosine residue of GAB1 that enables GAB1–SHP2
interaction is essential for protein kinase A (PKA)-dependent fluid shear stress-induced
eNOS activation [25]. GAB1 also participates in the maintenance of MAPK activation down-
stream of IL-6 signaling [46]. Furthermore, the generation of knock-in mice expressing a
GAB1 mutant lacking the SHP2 interaction site has shown that the GAB1–SHP2 complex is
essential for Ras/ extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation.
These mice show abnormal placenta, an organ dependent on ERK signaling [47,48]. Sur-
prisingly, this recruitment is also required for SHP2 accessibility to its substrates. However,
the mechanism by which this interaction is required and the substrates of SHP2 are not yet
well elucidated [11,42,49].

As described above, GAB1 is phosphorylated in response to EGF and is involved in
PI3K/AKT and MAPK pathway signaling. GAB1 has been shown to be strictly required
in EGF-induced activation of the PI3K/AKT signaling pathway by associating it with
the p85 subunit of PI3K [33,50]. Furthermore, GAB1 overexpression has been described
to potentiate EGF-induced activation of the MAPK pathway [33]. On the other hand, it
has been reported that GAB1 downregulation in human head and neck squamous cell
carcinoma cell lines (HN4, HN6, HN12, HN13, and HN31) reduced PI3K/AKT and MAPK
pathway-mediated signaling as well as the duration of signaling after EGF stimulation,
potentially affecting EGFR stability [51]. Therefore, these studies demonstrate that GAB1



Cancers 2023, 15, 4179 5 of 16

exerts an important role in the amplification and maintenance of EGF-induced PI3K/AKT
and MAPK signaling.

On the other hand, GAB1 has been described to contain potential binding sites for
the SH2 domain of phospholipase C γ (PLCγ), CRK, CRK-like (CRKL), and other proteins
such as P21-activated kinase 4 (PAK4) or some members of the partitioning defective
(PAR) complex [52–55]. Phosphorylation of GAB1 at tyrosine residues Y307, Y373, and
Y407 has been shown to generate a binding site for PLCγ, which is required for HGF-
mediated tubulogenesis [56]. Upon HGF stimulation, the GAB1–CRK interaction leads
to RAC activation, enhancing cell scattering, invasive capacity, and xenograft growth in
synovial sarcoma cell lines [53]. GAB1 has been found to interact with CRKL by generating
a GAB1 mutant version with an internal amino acid deletion of 242–410. Furthermore, this
interaction is required for HGF-mediated activation of the repressor/activator protein 1
(RAP1) GTPase [54]. Similarly, the GAB1–PAK4 complex cooperates in HGF-induced
epithelial cell scattering and invasiveness [52]. Recently, GAB1 has been reported to act as
a negative regulator of cell polarity through interaction with the various proteins of the
PAR complex, particularly PAR1 and PAR3 [55].

In addition to the functions of GAB1 as a molecular integrator of different signals,
GAB1 also performs other functions. GAB1 acts as a molecular switch that allows the
interconnection of different cell signaling pathways such as the connection between the
EGFR/PI3K/AKT pathway and the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) pathway in glioblastoma cells. This interconnection has been determined to
be exerted through the GAB1–SHP2 complex using the mutant version of GAB1 unable to
bind SHP2 (Y627F). Furthermore, in this interconnected system of cell signaling pathways,
the phosphatase domain of SHP2 exerts a negative regulatory effect on GAB1 phosphoryla-
tion and, therefore, on NF-kB activity [57]. Additionally, in the context of urothelial cell
carcinoma, it has been described that GAB1 interacts with mammalian target of rapamycin
complex (mTORC) and activates it after exposure to EGF. Specifically, it has been depicted
that the recruitment of mTORC to the plasma membrane and, therefore, the regulation of
its activity is mediated through the PH domain of GAB1 [58]. Similarly, it has been found
that ERK1/2 moves to the nucleus by interacting with GAB1 through the MET-binding
domain, in which a nuclear localization signal is found [15]. These data suggest that GAB1
also behaves as a relocalizing element of different proteins.

All these findings point to GAB1 as a platform for integrating external signals to trigger
and amplify their emergent signaling. Consequently, these results suggest the presence of
sophisticated regulatory mechanisms. Since the PH domain of GAB1 is involved in the
interaction with PIP3 present in biological membranes and these are products of PI3K kinase
action, it has been reported that the lipid phosphatase and tensin homologue (PTEN) or
SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1/2) could negatively influence
the GAB1 membrane localization and thus lead to its inactivation [59,60]. Furthermore,
SHP2 has been shown to dephosphorylate the tyrosine residues of GAB1 involved in the
recruitment of p85 and Ras GTPase-activating protein (RasGAP) [61,62]. On the other hand,
a mechanism of GAB1 activity regulation by ERK1/2-mediated phosphorylation has been
described, although its functional consequences can be both positive and negative in a
context-dependent manner [63–65]. Upon HGF stimulation, GAB1 is phosphorylated by
ERK at threonine residue 477, enhancing the interaction of p85 to GAB1. Considering that
GAB1 regulates MAPK pathway activation via SHP2 and that the PI3K/AKT signaling
pathway activates ERK, this regulatory system could result in a positive feedback loop of
the pathway [66]. Conversely, EGF stimulation induces ERK2-mediated phosphorylation
of GAB1 at other residues that inhibit cell signaling via the PI3K/AKT pathway [63]. It
will be essential to determine how and when ERK2 regulates the channeling of signaling
of different stimuli through GAB1. Additionally, in the case of MET signaling, PKC-
α- and PKC-β1-mediated phosphorylation has been found to negatively regulate GAB1
activity [65].
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3. Role of GAB1 in Cancer

GAB1 is involved in diverse biological processes such as cell proliferation, survival,
invasion and migration, cell differentiation, angiogenesis, and inflammation [11,67–70].
All these functions of GAB1 appear to be fundamental to the processes underlying ma-
lignant transformation, including tumor angiogenesis and metastasis (Figure 3). GAB1
expression appears to be deregulated in a wide variety of tumors such as thyroid can-
cer, cervical cancer, breast cancer, meningiomas, cholangiocarcinoma, medulloblastomas,
chronic lymphocytic leukemia, head and neck cancer, and colorectal cancer, among others
(Figure 4). In breast cancer, GAB1 cancer-associated mutations, Y83C and T387N, have
been described and characterized. These GAB1 mutant versions resulted in the acquisition
of a more elongated fibroblastic phenotype in immortalized MCF10A mammary epithelial
cells, EGF-independent proliferation, and increased ERK activation [71,72]. In addition,
genetic rearrangements involving GAB1 have been described in different pediatric and
adult tumor contexts. GAB1:ABL1 (Abelson) fusion has been reported in perineurioma,
angiofibroma, and solitary fibrous tumors [73]. Also, eukaryotic translation initiation factor
4 gamma 2 (EIF4G2)–GAB1 fusion has been found in patients with non-small cell lung
cancer treated with EGFR TKI [74]. GAB1 germline copy number variation is linked to
breast cancer risk [75]. Furthermore, genetic polymorphisms in GAB1 have been reported
to increase susceptibility to developing some types of cancer, such as cholangiocarcinoma,
meningiomas, and lung cancer [76–79]. Interestingly, high levels of GAB1 expression are
associated with poor prognosis in patients with gliomas, hepatocellular carcinoma, and
ovarian cancer [80–82]. It has been delineated that GAB1 is a biomarker of poor prognosis
in meningiomas, medulloblastomas, and bone and soft tissue sarcomas [83–86].
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This review focuses on GAB1’s influence on cellular transformation particularly in prolif-
eration, evasion of apoptosis, metastasis, and angiogenesis—each of these processes being a
cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies.

3.1. GAB1 in Proliferation and Apoptosis

Alteration of cell cycle control and apoptosis evasion are two hallmarks of cancer. In
addition, another typical feature of tumor cells is uncontrolled proliferation [87,88]. It has
been shown that cell cycle progression induced by the expression of the MET receptor on-
coprotein (Tpr-Met) in Xenopus laevis oocytes depends on GAB1. The Met-binding domain,
the pleckstrin homology domain, and the PI3K and SHP2 binding sites are required to per-
form this function. Furthermore, this GAB1-dependent regulation of cell cycle progression
is also observed in the case of the FGF receptor [89]. Suppression of GAB1 expression leads
to G1 arrest in hilar cholangiocarcinoma and chondrosarcoma cell lines [90,91]. Also, GAB1
expression lacking the PH domain is associated with neoplastic progression by enhancing
colony-forming ability [92]. GAB1 downregulation inhibits proliferation in hilar cholan-
giocarcinoma cell lines by decreasing PI3K/AKT signaling pathway activation [90]. GAB1
overexpression promoted cell proliferation in oral squamous carcinoma cells by activating
the AKT/CDH1 pathway, and its silencing promoted cell apoptosis [93]. Moreover, it has
been found that microRNA-29a-3p downregulation induces GAB1 upregulation to promote
glioma cell proliferation [94]. In hepatocellular carcinoma cell lines, GAB1 knockdown
inhibited cell proliferation by reducing of ERK1/2 activation [95]. The absence of protein
tyrosine kinase 6 (PTK6) expression reduces the proliferative capacity of cervical cancer
cells and apoptosis induction in a GAB1-dependent manner [96]. HCK-mediated phospho-
rylation of GAB1 induces proliferation and survival in IL-6-induced multiple myeloma
cells. Furthermore, IL-6 induces the association of GAB1 with SHP2 and CRKL in these
tumor cells, promoting cell proliferation [20].

Fibroblasts’ oncogenic transformation leads to morphological changes that allow un-
controlled proliferation and progression even in the presence of inhibitory signals such as
cell–cell contact. The Tpr-Met and epidermal growth factor receptor 2 (EGFR2, ErbB-2, Neu)
oncoprotein has been reported to induce oncogenic transformation, and this mechanism
has been demonstrated to require GAB1 involvement [89,97,98]. On the other hand, GAB1
has been found to enhance cell growth and induce soft agar colony formation in NIH3T3
cells and this is dependent on interaction with SHP2 [5,99]. Moreover, the Py772- EPH
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Receptor A2 (EphA2) oncoprotein has been described to induce proliferation and anchorage-
independent growth and tumorigenicity in vivo in nasopharyngeal carcinoma cell lines in
a GAB1-dependent manner [100].

GAB1 suppression increased apoptosis in hilar cholangiocarcinoma, chondrosarcoma
cell lines by modulating the B-cell lymphoma 2 (BCL-2)/ Bcl-2 Associated X-protein (BAX)
axis, and pancreatic carcinoma through microRNA-383 regulation. It has been also depicted
that GAB1 leads to partial apoptosis induction in HCT116 colorectal cancer cells through
miR-5582-5p modulation [90,91,101,102].

3.2. GAB1 in Angiogenesis

Angiogenesis is a complex multistep process in which new blood vessels are produced
from pre-existing ones. This complex biological process is orchestrated by the interaction of
a wide variety of mediators, as well as the involvement of different cell types [103]. In 1971,
Folkman demonstrated that angiogenesis was crucial for the development and growth of
solid tumors beyond 1–2 mm3 [104,105]. Therefore, angiogenesis is currently considered a
hallmark of cancer [87,88]. Following this discovery, the development of antiangiogenic
therapies has become of great interest for study [104]. Tumor angiogenesis occurs due to an
imbalance between proangiogenic and antiangiogenic mediators. This alteration may be
due to genetic mutations in genes that control the production of angiogenic regulators and
to different types of stresses such as hypoxia, acid pH, and hypoglycemia [106]. Among all
these types of metabolic stresses, the best studied is tumor hypoxia, which markedly drives
tumor angiogenesis by inducing the production of VEGF and other angiogenesis-positive
agents [107].

Tumors engrafted in GAB1-ecKO mice have been shown to have a substantially lower
level of capillary density, as well as a marked decrease in tumor weight and volume [108].
It has been reported that GAB1 controls the autocrine secretion of VEGF in hilar cholan-
giocarcinoma tumor cells, promoting angiogenesis and tumor invasion [109]. Moreover,
GAB1 is associated with HGF-stimulated VEGF production in EGFR-mutant lung cancer
cell lines [110].

The role of GAB1 in the promotion and control of physiological angiogenesis is well
known [111]. However, further studies on the role of GAB1 in tumor angiogenesis are
needed. In addition, it might be useful to study the role of this protein in the response to
antiangiogenic therapies.

3.3. GAB1 in Tumor Migration and Invasion

The presence of metastases is often responsible for high cancer mortality [112]. Tumor
cells can metastasize to sites adjacent to or distant from the primary site due to their capac-
ity for cell migration and invasion [113]. GAB1 downregulation reduced migratory and
invasive capacity in hepatocellular carcinoma, hilar cholangiocarcinoma, oral squamous
cell carcinoma, and colorectal carcinoma cell lines [90,93,95,114,115]. In hepatocellular and
colorectal carcinomas, the association of reduced migratory and invasive capacity related
to GAB1 deletion is attributed to microRNA-200A, microRNA-105, and microRNA-409-3p,
respectively [95,114,115]. In intrahepatic cholangiocarcinoma, GAB1 regulates migration
through the PI3K/AKT signaling pathway [116]. Furthermore, GAB1 has been described to
be upregulated to promote migration in anaplastic thyroid carcinoma cells through modu-
lation of the AKT–Multidrug Resistance Protein 1 (MDR1) axis [117]. GAB1 overexpression
increases migratory and invasive activity in cervical cancer cell lines [96]. Also, GAB1 has
been reported to be closely involved in glioblastoma cell invasion through HGF-induced
activation of dedicator of cytokinesis 7 (DOCK7) and RAC1 [118]. Likewise, GAB1 has
been found to increase the migration of chronic lymphocytic leukemia cells by forkhead
box 1 (FOXO1) regulation [119]. Furthermore, in breast cancer, GAB1 overexpression
has been described to promote metastasis in vivo by PAR complex dissociation [120]. On
the other hand, GAB1 recruitment and phosphorylation for activation of the SHP2-ERK
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pathway have been shown to be essential in enhancing FER-induced metastasis in ovarian
cancer [21].

Epithelial–mesenchymal transition (EMT) is the process by which epithelial cells lose
polarity and adhesion to acquire mesenchymal cell characteristics. The acquisition of these
mesenchymal features depends on a wide variety of intracellular signaling networks such
as the MAPK pathway, PI3K/AKT, and others. In relation to EMT, the final convergence
of these cell signaling pathways is the expression of EMT-inducing transcription factors
such as SNAIL, SLUG, XEB1, and TWIST, among others. This process is the underlying
mechanism for the development of tumor metastasis [121,122]. High levels of GAB1 expres-
sion have been described in metastatic HER2+ and triple-negative breast cancer patients.
In vitro, elevated GAB1 expression has been reported to enhance the migration of MDA-
MB231 and SK-BR3 breast cancer cells through dissociation of the polarity-associated parti-
tioning defective (PAR) complex. It is worth noting that cells must lose cell polarity to migrate.
GAB1 overexpression in these cell lines led to decreased expression levels of E-cadherin and
Zonula occludens 1 (ZO-1) with increased expression levels of N-cadherin and vimentin [120].
Additionally, CRK knockdown in HGF-stimulated bladder cancer cells has been reported to
induce E-cadherin expression, downregulation of epithelial–mesenchymal transition markers
such as N-cadherin and vimentin, and decreased levels of GAB1 phosphorylation. Thus,
CRK has been shown to play a pivotal role in the induction of HGF-mediated EMT through
sustained phosphorylation of GAB1 [123]. In addition, the opioid receptor Mu has been
illustrated to promote EGF-induced migration and mesenchymal epithelial–mesenchymal
transition through GAB1 recruitment in the lung cancer cell line H358 [124]. Moreover,
EGF increases transforming growth factor-β (TGF-β)-induced EMT in lung and pancreatic
cancer cells and is due to the promotion of SHP2 binding to GAB1 [125]. These results
support a positive role for GAB1 in promoting cell migration through the EMT process.

Recent studies indicate that different elements of the tumor microenvironment such as
the extracellular matrix, fibroblasts, endothelial cells, and different immune populations
can modulate the migratory and invasive capabilities of cancer cells [126]. In most tumors,
tumor-associated macrophages (TAMs) represent the main stromal immune population.
These TAMs produce and release several inflammatory components that play a positive
role in cancer metastasis [127]. GAB1 has been reported to be required for the stimulation
of macrophage-mediated invasion in gastric carcinoma cell line CR-1739 and colorectal
carcinoma cell line CRL-2577 [128]. This study provides a solid basis for investigating the
role of GAB1 in the tumor microenvironment.

3.4. GAB1 in Resistance to Tumor Therapy

The clinical efficacy of cancer treatment has increased thanks to the contribution of
numerous studies and the increasing discovery of new targeted therapies. However, cancer
is a very heterogeneous and dynamic disease, so as treatment progresses, treatment efficacy
may be lost or even lead to a complete loss of therapeutic response following the emergence
of resistance mechanisms [129].

GAB1 has been described to be involved in alectinib resistance mediated by activa-
tion of the HGF/MET signaling pathway in anaplastic lymphoma kinase (ALK)-positive
non-small cell lung cancer [130]. It has also been shown that GAB1 participates in the mech-
anism of resistance to fibroblast growth factor receptor (FGFR) inhibitors, PD173074 and
BGJ398, through MET-induced activation of AKT and ERK in FGFR1-amplified lung cell
lines [131]. Additionally, GAB1 has been found to exert a positive role in HGF-mediated re-
sistance to the V-Raf murine sarcoma viral oncogene homologue B (BRAF) kinase inhibitors,
dabrafenib, and trametinib, and to the mitogen-activated protein kinase kinase (MEK)
inhibitor, PD0325901, in BRAFV600E mutant melanoma [132]. GAB1 has been depicted
as participating in the mechanism of HGF-induced EGFR-tyrosine kinase inhibitors (TKIs,
osimertinib and gefitinib) resistance in lung cancer cell lines [110,133]. GAB1 has been
established to participate in HGF-induced resistance to cetuximab in lung cancer cell lines
both in vitro and in vivo by promoting cell survival through AKT activation [134]. Also,
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head and neck squamous carcinoma cells are highly dependent on GAB1 in the presence
of the SHP2 inhibitor SHP099 [135]. Additionally, it has been described that decreased
GAB1 expression levels in head and neck cancer cell lines (HN4, HN6, HN12, HN13, and
HN31) increased sensitivity to the EGFR inhibitor gefitinib by decreasing MAPK and AKT
phosphorylation [51]. On the other hand, GAB1 has been reported to be responsible for
restoring PI3K/AKT1 pathway activation in HGF-induced resistance to MET inhibitors
(JNJ-38877605, PHA-665752, crizotinib) and anti-MET antibody (DN30 Fab) [136]. GAB1 is
associated with tamoxifen resistance in metastatic breast cancer patients [137]. Furthermore,
it has been reported that chronic lymphocytic leukemia (CLL) cells treated with ibrutinib
lead to an increase in GAB1 mRNA and protein levels. Elevated GAB1 expression levels in
ibrutinib-treated CLL cells have been associated with augmented tonic activation of pAKT,
implying cellular relocalization signals and cell survival. Thus, GAB1 inhibitors reduce
cell migration and increase cell apoptosis individually or in combination with ibrutinib by
altering the FOXO1–GAB1–pAKT axis [119]. On the other hand, numerous investigations
have studied IL-6-triggered dexamethasone resistance in multiple myeloma. In addition to
other resistance mechanisms, using GAB1 and SHP2-GAB1 binding mutants, GAB1 has
been shown to be associated with the IL-6-induced dexamethasone resistance mechanism
in multiple myeloma cells [138].

Besides the use of chemotherapy as a treatment for cancer patients, radiotherapy is
also an effective therapeutic option to treat some tumor types [139]. GAB1 is involved in
MET-mediated radiotherapy resistance mechanisms, promoting invasive growth in breast
cancer, melanoma, and glioblastoma cell lines [140].

3.5. GAB1 Inhibitors

As mentioned above, GAB1 acts as a signal integrator of multiple signaling pathways
and is deregulated in many cancers. Considering the GAB1 involvement in the different
hallmarks of cancer, this protein could be a potential therapeutic target to treat different
tumor types. Recently, selective inhibitors of GAB1 have been developed. These new
compounds, GAB-001 and GAB-004, target the PH domain of GAB1 by inducing a confor-
mational change that prevents its phosphorylation. They have only been tested in breast
cancer cell lines MDA-MB231 and T47D, showing potent cytotoxicity [141]. However, much
future work and further experimental validation are needed to develop new compounds
for translation to clinical practice. The main limitation in developing selective inhibitors
against this protein is based on the absence of its protein structure [141].

4. Conclusions

GAB1 behaves as a protein integrator of multiple cell signaling pathways regulating
cell survival and proliferation, angiogenesis, and cell migration and invasion, facilitating
cellular transformation, thus playing a crucial role in tumorigenesis. GAB1 also mediates
resistance/sensitivity to various chemotherapeutic drugs and radiotherapy. GAB1 expres-
sion is altered in a wide variety of tumors and is associated with poor patient prognosis in
several tumor types. GAB1 inhibitors have a good prospect in cancer therapy. Therefore,
GAB1 could be considered a potential therapeutic target for cancer treatment. However,
further pre-clinical studies and clinical trials are needed for the clinical application of GAB1
inhibitors in specific tumor contexts.
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