Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
Applications | Articles |
---|---|
Electronic equipment and wastes | Circuit boards |
Protective coatings and casings (PCs, TVs, office equipment) | |
Cable and wire sheets | |
Furniture and textiles | Cushioning and upholstery materials |
Carpet coatings | |
Paints | |
Transportation | Cushioning and upholstery materials |
Automotive seating | |
Construction materials | Sound insulation |
Packaging | |
Rigid polyurethane foam construction | |
Drilling | Drilling oils |
2. Toxicokinetics and Toxicodynamics
2.1. Routes of Exposure
2.2. Dose-Response and Time-Exposure Curves
2.3. Target Vulnerability
2.4. Combination Effect of Mixtures
3. Interactions between PBDE and the Endocrine System: Focus on Molecular Mechanisms
3.1. Insulin Receptors
3.2. Thyroid Hormone Receptors
3.3. Other Receptors
4. Clinical Effects of PBDE Exposure
4.1. Diabetes, Insulin Resistance, Obesity and Metabolic Syndrome
4.2. Thyroid Disease
4.3. Pubertal Effects
4.4. Ovarian Function and Reproductive Health
5. Cancer and PBDEs
5.1. Thyroid Cancer
5.2. Breast Cancer
5.3. Liver Cancer
5.4. Other Cancers
5.5. PBDE and Inflammation
6. Regulations and Efforts on Preventing Exposure to PBDE
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure Pathways, Levels and Toxicity of Polybrominated Diphenyl Ethers in Humans: A Review. Environ. Res. 2020, 187, 109531. [Google Scholar] [CrossRef]
- European Commission. DIRECTIVE 2011/65/EU of the European Parliament and of the Council of 8 June 2011—ROHS. Off. J. Eur. Union 2011, 54, 88–110. [Google Scholar]
- Turner, A. PBDEs in the Marine Environment: Sources, Pathways and the Role of Microplastics. Environ. Pollut. 2022, 301, 118943. [Google Scholar] [CrossRef] [PubMed]
- Bartalini, A.; Muñoz-Arnanz, J.; García-Álvarez, N.; Fernández, A.; Jiménez, B. Global PBDE Contamination in Cetaceans. A Critical Review. Environ. Pollut. 2022, 308, 119670. [Google Scholar] [CrossRef]
- Singh, V.; Cortes-Ramirez, J.; Toms, L.-M.; Sooriyagoda, T.; Karatela, S. Effects of Polybrominated Diphenyl Ethers on Hormonal and Reproductive Health in E-Waste-Exposed Population: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 7820. [Google Scholar] [CrossRef]
- Jinhui, L.; Yuan, C.; Wenjing, X.; Ali, I.; Damdimopoulou, P.; Stenius, U.; Adamsson, A.; Mäkelä, S.I.; Åkesson, A.; Berglund, M.; et al. Guidance for the Inventory of Polybrominated Diphenyl Ethers (PBDEs) Listed under the Stockholm Convention on Persistent Organic Pollutants. United Nations Environ. Programme 2015, 127, 66–75. [Google Scholar]
- Darnerud, P.O.; Eriksen, G.S.; Jóhannesson, T.; Larsen, P.B.; Viluksela, M. Polybrominated Diphenyl Ethers: Occurrence, Dietary Exposure, and Toxicology. Environ. Health Perspect. 2001, 109, 49–68. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polybrominated Diphenyl Ether; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2017.
- European Chemicals Bureau (2001) Diphenyl Ether, Pentabromo Derivative (Pentabromodiphenyl Ether), CAS-No: 32534-81-9, EINECS-No: 251-084-2. Summary Risk Assessment Report. European Commission, Joint Research Centre. Available online: Http://Echa.Europa.Eu/Documents/10162/05a9c558-9472-4163-9496-1a8ab1ee6918 (accessed on 20 October 2022).
- Earnshaw, M.R.; Jones, K.C.; Sweetman, A.J. Estimating European Historical Production, Consumption and Atmospheric Emissions of Decabromodiphenyl Ether. Sci. Total Environ. 2013, 447, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Marquès, M.; Nadal, M.; Domingo, J.L. Human Exposure to Polybrominated Diphenyl Ethers (PBDEs) through the Diet: An Update of the Scientific Literature. Food Chem. Toxicol. 2022, 167, 113322. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, B.; Yu, Y.; Li, H.; Li, Q.; Cui, Y.; Ma, Y. Polybrominated Diphenyl Ethers (PBDEs) in Household Dust: A Systematic Review on Spatio-Temporal Distribution, Sources, and Health Risk Assessment. Chemosphere 2023, 314, 137641. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zeng, Z.; Lin, Y.; Wang, Q.; Tian, Q.; Huo, X. Current Status of Indoor Dust PBDE Pollution and Its Physical Burden and Health Effects on Children. Environ. Sci. Pollut. Res. 2023, 30, 19642–19661. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, M.; Vorkamp, K.; Thomsen, M.; Knudsen, L.E. Human Internal and External Exposure to PBDEs—A Review of Levels and Sources. Int. J. Hyg. Environ. Health 2009, 212, 109–134. [Google Scholar] [CrossRef]
- Van der Schyff, V.; Kalina, J.; Govarts, E.; Gilles, L.; Schoeters, G.; Castaño, A.; Esteban-López, M.; Kohoutek, J.; Kukučka, P.; Covaci, A.; et al. Exposure to Flame Retardants in European Children—Results from the HBM4EU Aligned Studies. Int. J. Hyg. Environ. Health 2023, 247, 114070. [Google Scholar] [CrossRef]
- More, S.; Benford, D.; Hougaard Bennekou, S.; Bampidis, V.; Bragard, C.; Halldorsson, T.; Hernandez-Jerez, A.; Koutsoumanis, K.; Lambré, C.; Machera, K.; et al. Opinion on the Impact of Non-Monotonic Dose Responses on EFSA′s Human Health Risk Assessments. EFSA J. 2021, 19, e06877. [Google Scholar] [CrossRef] [PubMed]
- Kendig, E.L.; Le, H.H.; Belcher, S.M. Defining Hormesis: Evaluation of a Complex Concentration Response Phenomenon. Int. J. Toxicol. 2010, 29, 235–246. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P. How Does Hormesis Impact Biology, Toxicology, and Medicine? NPJ Aging Mech. Dis. 2017, 3, 13. [Google Scholar] [CrossRef]
- Barouki, R. Linking Long-Term Toxicity of Xeno-Chemicals with Short-Term Biological Adaptation. Biochimie 2010, 92, 1222–1226. [Google Scholar] [CrossRef]
- La Merrill, M.; Emond, C.; Kim, M.J.; Antignac, J.P.; Le Bizec, B.; Clément, K.; Birnbaum, L.S.; Barouki, R. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environ. Health Perspect. 2013, 121, 162–169. [Google Scholar] [CrossRef]
- Barouki, R. Endocrine Disruptors: Revisiting Concepts and Dogma in Toxicology. Comptes Rendus Biol. 2017, 340, 410–413. [Google Scholar] [CrossRef]
- Skinner, M.K.; Manikkam, M.; Guerrero-Bosagna, C. Epigenetic Transgenerational Actions of Endocrine Disruptors. Reprod. Toxicol. 2011, 31, 337–343. [Google Scholar] [CrossRef]
- Hamid, N.; Junaid, M.; Pei, D.-S. Combined Toxicity of Endocrine-Disrupting Chemicals: A Review. Ecotoxicol. Environ. Saf. 2021, 215, 112136. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Koike, E.; Win-Shwe, T.-T.; Takano, H. Decabromodiphenyl Ether Exacerbates Hyperglycemia in Diet-Induced Obese Mice. Toxicology 2019, 412, 12–18. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Jiang, S.-R.; Fan, Y.; Wang, J.-S.; Wang, M.-L.; Li, M.-Y. 2,2′,4,4′,5,5′-Hexabromophenyl Ether (BDE-153) Causes Abnormal Insulin Secretion and Disorders of Glucose and Lipid Metabolism in Mice. J. Chin. Med. Assoc. 2023, 86, 388–398. [Google Scholar] [CrossRef]
- Krumm, E.A.; Patel, V.J.; Tillery, T.S.; Yasrebi, A.; Shen, J.; Guo, G.L.; Marco, S.M.; Buckley, B.T.; Roepke, T.A. Organophosphate Flame-Retardants Alter Adult Mouse Homeostasis and Gene Expression in a Sex-Dependent Manner Potentially Through Interactions with ERα. Toxicol. Sci. 2018, 162, 212–224. [Google Scholar] [CrossRef]
- Karandrea, S.; Yin, H.; Liang, X.; Heart, E.A. BDE-47 and BDE-85 Stimulate Insulin Secretion in INS-1 832/13 Pancreatic β-Cells through the Thyroid Receptor and Akt. Environ. Toxicol. Pharmacol. 2017, 56, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of Thyroid Hormone Action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.-P.; Li, C.-H.; Guo, L.-H.; Ren, X.-M.; Zhang, J.-Q. Binding and Activity of Polybrominated Diphenyl Ether Sulfates to Thyroid Hormone Transport Proteins and Nuclear Receptors. Environ. Sci. Process. Impacts 2019, 21, 950–956. [Google Scholar] [CrossRef]
- Ren, X.M.; Guo, L.-H. Assessment of the Binding of Hydroxylated Polybrominated Diphenyl Ethers to Thyroid Hormone Transport Proteins Using a Site-Specific Fluorescence Probe. Environ. Sci. Technol. 2012, 46, 4633–4640. [Google Scholar] [CrossRef]
- Meerts, I.A.T.M. Potent Competitive Interactions of Some Brominated Flame Retardants and Related Compounds with Human Transthyretin In Vitro. Toxicol. Sci. 2000, 56, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.; Hinxlage, I.; Cea, P.A.; Gohlke, H.; Wesselborg, S. 40 Years of Research on Polybrominated Diphenyl Ethers (PBDEs)—A Historical Overview and Newest Data of a Promising Anticancer Drug. Molecules 2021, 26, 995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, F.; Xu, T.; Tian, Y.; Zhang, Y.; Cao, M.; Guo, X.; Yin, D. The Crosstalk Effects of Polybrominated Diphenyl Ethers on the Retinoic Acid and Thyroid Hormone Signaling Pathway. Sci. Total Environ. 2023, 883, 163590. [Google Scholar] [CrossRef] [PubMed]
- Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Kester, M.H.A.; Andersson, P.L.; Legler, J.; Brouwer, A. In Vitro Profiling of the Endocrine-Disrupting Potency of Brominated Flame Retardants. Toxicol. Sci. 2006, 92, 157–173. [Google Scholar] [CrossRef]
- Ren, X.-M.; Guo, L.-H. Molecular Toxicology of Polybrominated Diphenyl Ethers: Nuclear Hormone Receptor Mediated Pathways. Environ. Sci. Process. Impacts 2013, 15, 702. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Hu, X.; Zhang, X.; Zhang, Q.; Jiang, H.; Shi, W.; Yu, H. Effects of HO-/MeO-PBDEs on Androgen Receptor: In Vitro Investigation and Helix 12-Involved MD Simulation. Environ. Sci. Technol. 2013, 47, 11802–11809. [Google Scholar] [CrossRef]
- Barbosa, A.C.S.; Feng, Y.; Yu, C.; Huang, M.; Xie, W. Estrogen Sulfotransferase in the Metabolism of Estrogenic Drugs and in the Pathogenesis of Diseases. Expert. Opin. Drug Metab. Toxicol. 2019, 15, 329–339. [Google Scholar] [CrossRef]
- Wen, L.-L.; Lin, C.-Y.; Chou, H.-C.; Chang, C.-C.; Lo, H.-Y.; Juan, S.-H. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation. PLoS ONE 2016, 11, e0155190. [Google Scholar] [CrossRef]
- Kojima, H.; Takeuchi, S.; Uramaru, N.; Sugihara, K.; Yoshida, T.; Kitamura, S. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells. Environ. Health Perspect. 2009, 117, 1210–1218. [Google Scholar] [CrossRef]
- Billings, L.K.; Florez, J.C. The Genetics of Type 2 Diabetes: What Have We Learned from GWAS? Ann. N. Y. Acad. Sci. 2010, 1212, 59–77. [Google Scholar] [CrossRef]
- Taylor, K.W.; Novak, R.F.; Anderson, H.A.; Birnbaum, L.S.; Blystone, C.; de Vito, M.; Jacobs, D.; Köhrle, J.; Lee, D.H.; Rylander, L.; et al. Evaluation of the Association between Persistent Organic Pollutants (POPs) and Diabetes in Epidemiological Studies: A National Toxicology Program Workshop Review. Environ. Health Perspect. 2013, 121, 774–783. [Google Scholar] [CrossRef]
- Llm, J.S.; Lee, D.H.; Jacobs, D.R. Association of Brominated Flame Retardants with Diabetes and Metabolic Syndrome in the U.S. Population, 2003–2004. Diabetes Care 2008, 31, 1802–1807. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Liu, L.; Wang, L.; Xiao, X.; Sun, Z.; Wang, X.; Wang, C.; Wang, M.; Li, L.; et al. Environmental Exposure to BDE47 Is Associated with Increased Diabetes Prevalence: Evidence from Community-Based Case-Control Studies and an Animal Experiment. Sci. Rep. 2016, 6, 27854. [Google Scholar] [CrossRef]
- Ongono, J.S.; Dow, C.; Gambaretti, J.; Severi, G.; Boutron-Ruault, M.-C.; Bonnet, F.; Fagherazzi, G.; Mancini, F.R. Dietary Exposure to Brominated Flame Retardants and Risk of Type 2 Diabetes in the French E3N Cohort. Environ. Int. 2019, 123, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Jiao, Y.; Yan, H.; Liu, T.; Yan, H.; Yuan, J. Endocrine-Disrupting Chemicals and the Risk of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Environ. Health 2022, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Turyk, M.; Fantuzzi, G.; Persky, V.; Freels, S.; Lambertino, A.; Pini, M.; Rhodes, D.H.; Anderson, H.A. Persistent Organic Pollutants and Biomarkers of Diabetes Risk in a Cohort of Great Lakes Sport Caught Fish Consumers. Environ. Res. 2015, 140, 335–344. [Google Scholar] [CrossRef]
- Airaksinen, R.; Rantakokko, P.; Eriksson, J.G.; Blomstedt, P.; Kajantie, E.; Kiviranta, H. Association between Type 2 Diabetes and Exposure to Persistent Organic Pollutants. Diabetes Care 2011, 34, 1972–1979. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lind, P.M.; Jacobs, D.R.; Salihovic, S.; van Bavel, B.; Lind, L. Polychlorinated Biphenyls and Organochlorine Pesticides in Plasma Predict Development of Type 2 Diabetes in the Elderly. Diabetes Care 2011, 34, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- Ramhøj, L.; Svingen, T.; Mandrup, K.; Hass, U.; Lund, S.P.; Vinggaard, A.M.; Hougaard, K.S.; Axelstad, M. Developmental Exposure to the Brominated Flame Retardant DE-71 Reduces Serum Thyroid Hormones in Rats without Hypothalamic-Pituitary-Thyroid Axis Activation or Neurobehavioral Changes in Offspring. PLoS ONE 2022, 17, e0271614. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, Mechanisms, and Impacts of Endocrine-Active Flame Retardants. Curr. Opin. Pharmacol. 2014, 19, 125–133. [Google Scholar] [CrossRef]
- Stoker, T.E.; Laws, S.C.; Crofton, K.M.; Hedge, J.M.; Ferrell, J.M.; Cooper, R.L. Assessment of DE-71, a Commercial Polybrominated Diphenyl Ether (PBDE) Mixture, in the EDSP Male and Female Pubertal Protocols. Toxicol. Sci. 2004, 78, 144–155. [Google Scholar] [CrossRef]
- Zhou, T.; Taylor, M.M.; de Vito, M.J.; Crofton, K.M. Developmental Exposure to Brominated Diphenyl Ethers Results in Thyroid Hormone Disruption. Toxicol. Sci. 2002, 66, 105–116. [Google Scholar] [CrossRef]
- Fowles, J.R.; Fairbrother, A.; Baecher-Steppan, L.; Kerkvliet, N.I. Immunologic and Endocrine Effects of the Flame-Retardant Pentabromodiphenyl Ether (DE-71) in C57BL/6J Mice. Toxicology 1994, 86, 49–61. [Google Scholar] [CrossRef]
- Cooper, D.S.; Biondi, B. Subclinical Thyroid Disease. Lancet 2012, 379, 1142–1154. [Google Scholar] [CrossRef]
- Abdelouahab, N.; Langlois, M.F.; Lavoie, L.; Corbin, F.; Pasquier, J.C.; Takser, L. Maternal and Cord-Blood Thyroid Hormone Levels and Exposure to Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls during Early Pregnancy. Am. J. Epidemiol. 2013, 178, 701–713. [Google Scholar] [CrossRef]
- Bloom, M.; Spliethoff, H.; Vena, J.; Shaver, S.; Addink, R.; Eadon, G. Environmental Exposure to PBDEs and Thyroid Function among New York Anglers. Environ. Toxicol. Pharmacol. 2008, 25, 386–392. [Google Scholar] [CrossRef]
- Chevrier, J.; Harley, K.G.; Bradman, A.; Sjödin, A.; Eskenazi, B. Prenatal Exposure to Polybrominated Diphenyl Ether Flame Retardants and Neonatal Thyroid-Stimulating Hormone Levels in the CHAMACOS Study. Am. J. Epidemiol. 2011, 174, 1166–1174. [Google Scholar] [CrossRef]
- Makey, C.M.; McClean, M.D.; Braverman, L.E.; Pearce, E.N.; He, X.M.; Sjödin, A.; Weinberg, J.M.; Webster, T.F. Polybrominated Diphenyl Ether Exposure and Thyroid Function Tests in North American Adults. Environ. Health Perspect. 2016, 124, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.G.; Gale, S.; Zoeller, R.T.; Spengler, J.D.; Birnbaum, L.; McNeely, E. PBDE Flame Retardants, Thyroid Disease, and Menopausal Status in U.S. Women. Environ. Health 2016, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Rauch, S.A.; Tenerelli, R.; Huen, K.; Holland, N.T.; Lustig, R.H.; Kogut, K.; Bradman, A.; Sjödin, A.; Harley, K.G. In Utero and Childhood DDT, DDE, PBDE and PCBs Exposure and Sex Hormones in Adolescent Boys: The CHAMACOS Study. Int. J. Hyg. Environ. Health 2017, 220, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Deodati, A.; Sallemi, A.; Maranghi, F.; Germani, D.; Puglianiello, A.; Baldari, F.; Busani, L.; Mancini, F.R.; Tassinari, R.; Mantovani, A.; et al. Serum Levels of Polybrominated Diphenyl Ethers in Girls with Premature Thelarche. Horm. Res. Paediatr. 2016, 86, 233–239. [Google Scholar] [CrossRef]
- Tassinari, R.; Mancini, F.R.; Mantovani, A.; Busani, L.; Maranghi, F. Pilot Study on the Dietary Habits and Lifestyles of Girls with Idiopathic Precocious Puberty from the City of Rome: Potential Impact of Exposure to Flame Retardant Polybrominated Diphenyl Ethers. J. Pediatr. Endocrinol. Metab. 2015, 28, 1369–1372. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Rauch, S.A.; Chevrier, J.; Kogut, K.; Parra, K.L.; Trujillo, C.; Lustig, R.H.; Greenspan, L.C.; Sjödin, A.; Bradman, A.; et al. Association of Prenatal and Childhood PBDE Exposure with Timing of Puberty in Boys and Girls. Environ. Int. 2017, 100, 132–138. [Google Scholar] [CrossRef]
- Attfield, K.R.; Pinney, S.M.; Sjödin, A.; Voss, R.W.; Greenspan, L.C.; Biro, F.M.; Hiatt, R.A.; Kushi, L.H.; Windham, G.C. Longitudinal Study of Age of Menarche in Association with Childhood Concentrations of Persistent Organic Pollutants. Environ. Res. 2019, 176, 108551. [Google Scholar] [CrossRef]
- Chen, A.; Chung, E.; DeFranco, E.A.; Pinney, S.M.; Dietrich, K.N. Serum PBDEs and Age at Menarche in Adolescent Girls: Analysis of the National Health and Nutrition Examination Survey 2003–2004. Environ. Res. 2011, 111, 831–837. [Google Scholar] [CrossRef]
- Alvarez-Silvares, E.; Fernández-Cruz, T.; Domínguez-Vigo, P.; Rubio-Cid, P.; Seoane-Pillado, T.; Martínez-Carballo, E. Association between Placenta Concentrations Polybrominated and Polychlorinated Biphenyls and Gestational Diabetes Mellitus: A Case-Control Study in Northwestern Spain. Environ. Sci. Pollut. Res. 2021, 28, 10292–10301. [Google Scholar] [CrossRef]
- Kozlova, E.V.; Chinthirla, B.D.; Pérez, P.A.; DiPatrizio, N.V.; Argueta, D.A.; Phillips, A.L.; Stapleton, H.M.; González, G.M.; Krum, J.M.; Carrillo, V.; et al. Maternal Transfer of Environmentally Relevant Polybrominated Diphenyl Ethers (PBDEs) Produces a Diabetic Phenotype and Disrupts Glucoregulatory Hormones and Hepatic Endocannabinoids in Adult Mouse Female Offspring. Sci. Rep. 2020, 10, 18102. [Google Scholar] [CrossRef]
- Wu, J.; Deng, F.; Tang, X.; Chen, W.; Zhou, R.; Zhao, T.; Mao, X.; Shu, F. Long-Term Effect of PBDE-99 Prenatal Exposure on Spermatogenic Injuries via the Dysregulation of Autophagy. J. Hazard Mater. 2023, 452, 131234. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Goin, D.E.; Cushing, L.; DeMicco, E.; Park, J.-S.; Wang, Y.; Smith, S.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Mixture Effects of Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Polybrominated Diphenyl Ethers on Maternal and Newborn Telomere Length. Environ. Health 2021, 20, 76. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhou, L.; Zeng, Z.; Zhao, C.; You, L.; Lu, X.; Liu, X.; Ouyang, R.; Wang, Y.; et al. Metabolomics Insights into the Prenatal Exposure Effects of Polybrominated Diphenyl Ethers on Neonatal Birth Outcomes. Sci. Total Environ. 2022, 836, 155601. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; la Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Marotta, V.; Russo, G.; Gambardella, C.; Grasso, M.; la Sala, D.; Chiofalo, M.G.; D’Anna, R.; Puzziello, A.; Docimo, G.; Masone, S.; et al. Human Exposure to Bisphenol AF and Diethylhexylphthalate Increases Susceptibility to Develop Differentiated Thyroid Cancer in Patients with Thyroid Nodules. Chemosphere 2019, 218, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, G.; Li, J.; Zhao, H.; Wang, Y.; Chen, J.; Zhao, H. Association of Polybrominated Diphenylethers (PBDEs) and Hydroxylated Metabolites (OH-PBDEs) Serum Levels with Thyroid Function in Thyroid Cancer Patients. Environ. Res. 2017, 159, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cui, X.; Zhao, Q.; Sun, F.; Zhao, R.; Feng, T.; Sui, S.; Han, B.; Liu, Z. Long-Term Exposure to Decabromodiphenyl Ether Promotes the Proliferation and Tumourigenesis of Papillary Thyroid Carcinoma by Inhibiting TRß. Cancers 2022, 14, 2772. [Google Scholar] [CrossRef]
- Ullmann, T.M.; Liang, H.; Mora, H.; Greenberg, J.; Gray, K.D.; Limberg, J.; Stefanova, D.; Zhu, X.; Finnerty, B.; Beninato, T.; et al. Exposure to Polybrominated Diphenyl Ether Flame Retardants Causes Deoxyribonucleic Acid Damage in Human Thyroid Cells In Vitro. J. Surg. Res. 2022, 279, 77–83. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, M.; Wu, H.; Niu, Q.; Lu, X.; He, J.; Huang, F. Plasma Polybrominated Diphenyl Ethers, Urinary Heavy Metals and the Risk of Thyroid Cancer: A Case-Control Study in China. Environ. Pollut. 2021, 269, 116162. [Google Scholar] [CrossRef]
- Deziel, N.C.; Alfonso-Garrido, J.; Warren, J.L.; Huang, H.; Sjodin, A.; Zhang, Y. Exposure to Polybrominated Diphenyl Ethers and a Polybrominated Biphenyl and Risk of Thyroid Cancer in Women: Single and Multi-Pollutant Approaches. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1755–1764. [Google Scholar] [CrossRef]
- Hurley, S.; Reynolds, P.; Goldberg, D.; Nelson, D.O.; Jeffrey, S.S.; Petreas, M. Adipose Levels of Polybrominated Diphenyl Ethers and Risk of Breast Cancer. Breast Cancer Res. Treat 2011, 129, 505–511. [Google Scholar] [CrossRef]
- Holmes, A.K.; Koller, K.R.; Kieszak, S.M.; Sjodin, A.; Calafat, A.M.; Sacco, F.D.; Varner, D.W.; Lanier, A.P.; Rubin, C.H. Case–Control Study of Breast Cancer and Exposure to Synthetic Environmental Chemicals among Alaska Native Women. Int. J. Circumpolar Health 2014, 73, 25760. [Google Scholar] [CrossRef]
- Mancini, F.R.; Cano-Sancho, G.; Mohamed, O.; Cervenka, I.; Omichessan, H.; Marchand, P.; Boutron-Ruault, M.-C.; Arveux, P.; Severi, G.; Antignac, J.-P.; et al. Plasma Concentration of Brominated Flame Retardants and Postmenopausal Breast Cancer Risk: A Nested Case-Control Study in the French E3N Cohort. Environ. Health 2020, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Hurley, S.; Goldberg, D.; Park, J.-S.; Petreas, M.; Bernstein, L.; Anton-Culver, H.; Neuhausen, S.L.; Nelson, D.O.; Reynolds, P. A Breast Cancer Case-Control Study of Polybrominated Diphenyl Ether (PBDE) Serum Levels among California Women. Environ. Int. 2019, 127, 412–419. [Google Scholar] [CrossRef]
- He, Y.; Peng, L.; Zhang, W.; Liu, C.; Yang, Q.; Zheng, S.; Bao, M.; Huang, Y.; Wu, K. Adipose Tissue Levels of Polybrominated Diphenyl Ethers and Breast Cancer Risk in Chinese Women: A Case–Control Study. Environ. Res. 2018, 167, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Meerts, I.A.T.M.; Letcher, R.J.; Hoving, S.; Marsh, G.; Bergman, Å.; Lemmen, J.G.; van der Burg, B.; Brouwer, A. In Vitro Estrogenicity of Polybrominated Diphenyl Ethers, Hydroxylated PBDEs, and Polybrominated Bisphenol A Compounds. Environ. Health Perspect. 2001, 109, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Patrycja, K.; Anna, W.; Gregoraszczuk, E.Ł. Combinatory Effects of PBDEs and 17β-Estradiol on MCF-7 Cell Proliferation and Apoptosis. Pharmacol. Rep. 2011, 63, 189–194. [Google Scholar] [CrossRef]
- Li, Z.-H.; Liu, X.-Y.; Wang, N.; Chen, J.-S.; Chen, Y.-H.; Huang, J.-T.; Su, C.-H.; Xie, F.; Yu, B.; Chen, D.-J. Effects of Decabrominated Diphenyl Ether (PBDE-209) in Regulation of Growth and Apoptosis of Breast, Ovarian, and Cervical Cancer Cells. Environ. Health Perspect. 2012, 120, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, N.; Bernal, L.; Chang, G.; Yamamoto, T.; Nguyen, D.; Wang, Y.Z.; Park, J.S.; Warden, C.; Wang, J.; Wu, X.; et al. Molecular Mechanisms of Polybrominated Diphenyl Ethers (BDE-47, BDE-100, and BDE-153) in Human Breast Cancer Cells and Patient-Derived Xenografts. Toxicol. Sci. 2019, 169, 380–398. [Google Scholar] [CrossRef]
- Dunnick, J.K.; Shockley, K.R.; Pandiri, A.R.; Kissling, G.E.; Gerrish, K.E.; Ton, T.V.; Wilson, R.E.; Brar, S.S.; Brix, A.E.; Waidyanatha, S.; et al. PBDE-47 and PBDE Mixture (DE-71) Toxicities and Liver Transcriptomic Changes at PND 22 after in Utero/Postnatal Exposure in the Rat. Arch. Toxicol. 2018, 92, 3415–3433. [Google Scholar] [CrossRef]
- Shimbo, T.; Dunnick, J.K.; Brix, A.; Mav, D.; Shah, R.; Roberts, J.D.; Wade, P.A. DNA Methylation Changes in Tbx3 in a Mouse Model Exposed to Polybrominated Diphenyl Ethers. Int. J. Toxicol. 2017, 36, 229–238. [Google Scholar] [CrossRef]
- Dunnick, J.K.; Pandiri, A.R.; Merrick, B.A.; Kissling, G.E.; Cunny, H.; Mutlu, E.; Waidyanatha, S.; Sills, R.; Hong, H.L.; Ton, T.V.; et al. Carcinogenic Activity of Pentabrominated Diphenyl Ether Mixture (DE-71) in Rats and Mice. Toxicol. Rep. 2018, 5, 615–624. [Google Scholar] [CrossRef]
- Thompson, P.A.; Khatami, M.; Baglole, C.J.; Sun, J.; Harris, S.A.; Moon, E.-Y.; Al-Mulla, F.; Al-Temaimi, R.; Brown, D.G.; Colacci, A.M.; et al. Environmental Immune Disruptors, Inflammation and Cancer Risk. Carcinogenesis 2015, 36, S232–S253. [Google Scholar] [CrossRef] [PubMed]
- Lamkin, D.M.; Chen, S.; Bradshaw, K.P.; Xu, S.; Faull, K.F.; Sloan, E.K.; Cole, S.W. Low-Dose Exposure to PBDE Disrupts Genomic Integrity and Innate Immunity in Mammary Tissue. Front. Genet. 2022, 13, 904607. [Google Scholar] [CrossRef]
- Kamrin, M.A. The “Low Dose” Hypothesis: Validity and Implications for Human Risk. Int. J. Toxicol. 2007, 26, 13–23. [Google Scholar] [CrossRef]
- Goodson, W.H.; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Manaf Ali, A.; Lopez de Cerain Salsamendi, A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the Carcinogenic Potential of Low-Dose Exposures to Chemical Mixtures in the Environment: The Challenge Ahead. Carcinogenesis 2015, 36, S254–S296. [Google Scholar] [CrossRef]
- Marques, M.M.; Berrington de Gonzalez, A.; Beland, F.A.; Browne, P.; Demers, P.A.; Lachenmeier, D.W.; Bahadori, T.; Barupal, D.K.; Belpoggi, F.; Comba, P.; et al. Advisory Group Recommendations on Priorities for the IARC Monographs. Lancet Oncol. 2019, 20, 763–764. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Z.; Zhou, H.; Zhao, Q. Burdens of PBBs, PBDEs, and PCBs in Tissues of the Cancer Patients in the e-Waste Disassembly Sites in Zhejiang, China. Sci. Total Environ. 2009, 407, 4831–4837. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, G.; Moscato, M.; Montalbano, A.M.; Albano, G.D.; Gagliardo, R.; Marchese, R.; Fucarino, A.; Nigro, C.L.; Drago, G.; Profita, M. PBDEs Affect Inflammatory and Oncosuppressive Mechanisms via the EZH2 Methyltransferase in Airway Epithelial Cells. Life Sci. 2021, 282, 119827. [Google Scholar] [CrossRef]
- Wang, F.; Ruan, X.-J.; Zhang, H.-Y. BDE-99 (2,2′,4,4′,5-Pentabromodiphenyl Ether) Triggers Epithelial-Mesenchymal Transition in Colorectal Cancer Cells via PI3K/Akt/Snail Signaling Pathway. Tumori J. 2015, 101, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.; Longo, A.; Adamo, G.; Fiannaca, A.; Picciotto, S.; La Paglia, L.; Romancino, D.; La Rosa, M.; Urso, A.; Cibella, F.; et al. 2,2’4,4’-Tetrabromodiphenyl Ether (PBDE-47) Modulates the Intracellular MiRNA Profile, SEV Biogenesis and Their MiRNA Cargo Exacerbating the LPS-Induced Pro-Inflammatory Response in THP-1 Macrophages. Front. Immunol. 2021, 12, 664534. [Google Scholar] [CrossRef] [PubMed]
- Albano, G.D.; Longo, V.; Montalbano, A.M.; Aloi, N.; Barone, R.; Cibella, F.; Profita, M.; Colombo, P. Extracellular Vesicles from PBDE-47 Treated M(LPS) THP-1 Macrophages Modulate the Expression of Markers of Epithelial Integrity, EMT, Inflammation and Muco-Secretion in ALI Culture of Airway Epithelium. Life Sci. 2023, 322, 121616. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated Biphenyls and Polybrominated Biphenyls. IARC Monogr. Eval. Carcinog. Risks Hum. 2016, 107, 9–500. [Google Scholar]
- Polybrominated Diphenyl Ethers (PBDEs). Available online: Https://Www.Epa.Gov/Assessing-and-Managing-Chemicals-under-Tsca/Polybrominated-Diphenyl-Ethers-Pbdes (accessed on 8 August 2023).
- Pentabromodiphenyl Ether. Available online: Https://Iris.Epa.Gov/ChemicalLanding/&substance_nmbr=184 (accessed on 8 August 2023).
- Ballotari, P.; Vicentini, M.; Manicardi, V.; Gallo, M.; Chiatamone Ranieri, S.; Greci, M.; Giorgi Rossi, P. Diabetes and Risk of Cancer Incidence: Results from a Population-Based Cohort Study in Northern Italy. BMC Cancer 2017, 17, 703. [Google Scholar] [CrossRef] [PubMed]
Congener | Effects |
---|---|
2,3,4,5,6-Pentabromo-1-(2,3,4,5,6-pentabromophenoxy)benzene (BDE-209) | Long-term exposure increased proliferation of normal human thyroid follicular epithelial cell line, papillary thyroid carcinoma (PTC)-derived cell, in vitro and in mice. Could induce cancerogenesis in airway epithelial cells. Most toxicologically characterized PBDE. |
2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) | Alters retinoic acid pathway in zebrafish larvae. Linear association between BDE-47 serum concentration and type 2 diabetes risk. Centrilobular hypertrophy and fatty changes in liver. Could induce cancerogenesis in airway epithelial cells. |
2,2′,4,4′,5,5′-Hexabromodiphenyl ether (BDE-153) | Alteration of glucose and lipid metabolism in mice. U-shaped relationship between diabetes and metabolic syndrome on one side and exposure to BDE-153 on the other. |
2,2′,3,4,4′-Pentabromodiphenyl ether (BDE-85) | Enhances glucose-stimulated insulin secretion in INS-1 832/13 pancreatic β-cells. |
2,2′,4,4′,5,6′-Hexabromodiphenyl ether (BDE-154) | Increase in GDM risk. |
2,2′,4,4′,5-Pentabromodiphenyl ether (BDE-99) | Spermatogenic injuries in prenatally exposed rats. Could induce cancerogenesis in airway epithelial cells. Activation of epithelial–mesenchymal transition in colorectal cancer cells. |
DE-71 (mixture) | Liver toxicity. |
In Vitro | Animal Models | Human | |
---|---|---|---|
Insulin receptors | Enhance glucose-stimulated insulin secretion in INS-1 832/13 pancreatic β-cells [28]. | Increase in fasting blood glucose and reduced mRNA levels of Insr and Glut4 in mice fed with a normal diet [25]. Alteration of glucose and lipid metabolism in mice [26]. Increased expression of peptide hormone receptors in mice hypothalamus, affecting energy balance [27]. | |
Thyroid hormone receptors | Agonistic activity of PBDEs on transcription factor TRβ in the human thyroid follicular cell line [31]. OH-PBDEs bind THs transport proteins such as TBG and TTR [32]. PBDE stronger binding capacity to TTR than thyroxine [33]. PBDE sulfates could disrupt THs signaling through the interaction with THs transport proteins or TRs [34]. | Alteration of retinoic acid pathway in zebrafish larvae [35]. | |
Other receptors | Directly bind steroid hormone receptors [36,37]. Interaction with estrogen receptors [38]. Inhibition of estradiol sulfotransferase [39]. Reduced PPARγ transactivational activity [40]. Antagonistic action towards glucocorticoid receptors [41]. | ||
Diabetes, insulin resistance, obesity and metabolic syndrome | U-shaped relationship between diabetes and metabolic syndrome and PBDE-153 [44]. Positive linear association between PBDE47 serum concentration and type 2 diabetes risk [45]. Potential association between dietary PBDE and risk of diabetes [46]. Increased risk of gestational diabetes mellitus (GDM) [47]. No association between PBDE exposure and diabetes risk [48,49,50]. | ||
Thyroid disease | Hypothyroxinemia in rodents [53,55,56]. | No strong association between PBDE exposure and thyroid dysfunction [57,58,59,60]. Reduced TT4 levels [60]. Thyroid disease in women [61]. | |
Pubertal effects, ovarian function and reproductive health | Diabetic offspring in mice [69]. Spermatogenic injuries in prenatally exposed mice [70]. | Increased FSH, LH and testosterone in children [62]. Premature thelarche [63] Increased levels of PBDE in girls with precocious puberty [64]. Prenatal and childhood exposure to PBDE resulted in later age at menarche in females [65,66] and earlier pubarche in males [65]. Earlier menarche onset [67]. Increased risk of GDM [47]. Impaired semen quality [6]. Increase telomer length in newborns [71]. Lower head circumference and Apgar at 1 min [72]. | |
Thyroid cancer | DNA single-stranded and double-stranded breaks [77]. | Increased proliferation of normal human follicular epithelial cell line and papillary thyroid carcinoma (PTC)-derived cell lines (both in vivo and in vitro) [76]. Cell proliferation stimulus (both in vivo and in vitro) [76]. | Effect on thyroid hormone levels in patients operated for thyroid cancer [75]. Case–control study showed increased thyroid cancer risk [78]. Case–control study did not show increased papillary thyroid cancer risk [79]. |
Breast cancer | Possible estrogenic effect and therefore proliferation stimulus [85,86,87,88]. | No significant association with breast cancer [80,81,82,83]. Increased breast cancer risk [84]. | |
Liver cancer | Liver toxicity in mice [89]. Potential causality for PBDE exposure in liver carcinomas from mice [90]. Liver cancer in mice [91]. | ||
Other cancers | Cancerogenesis in airway epithelial cells [98]. Activation of epithelial–mesenchymal transition (EMT) in colorectal cancer cells [99]. | PBDE found in tissue samples from surgical cancer patients [97]. | |
Inflammation | Altered innate immune response [100,101]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzelli, V.; Gallo, M.; Morviducci, L.; Marino, G.; Ragni, A.; Tuveri, E.; Faggiano, A.; Mazzilli, R.; Natalicchio, A.; Zatelli, M.C.; et al. Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers 2023, 15, 4237. https://doi.org/10.3390/cancers15174237
Renzelli V, Gallo M, Morviducci L, Marino G, Ragni A, Tuveri E, Faggiano A, Mazzilli R, Natalicchio A, Zatelli MC, et al. Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers. 2023; 15(17):4237. https://doi.org/10.3390/cancers15174237
Chicago/Turabian StyleRenzelli, Valerio, Marco Gallo, Lelio Morviducci, Giampiero Marino, Alberto Ragni, Enzo Tuveri, Antongiulio Faggiano, Rossella Mazzilli, Annalisa Natalicchio, Maria Chiara Zatelli, and et al. 2023. "Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer" Cancers 15, no. 17: 4237. https://doi.org/10.3390/cancers15174237
APA StyleRenzelli, V., Gallo, M., Morviducci, L., Marino, G., Ragni, A., Tuveri, E., Faggiano, A., Mazzilli, R., Natalicchio, A., Zatelli, M. C., Montagnani, M., Fogli, S., Giuffrida, D., Argentiero, A., Danesi, R., D’Oronzo, S., Gori, S., Franchina, T., Russo, A., ... Silvestris, N. (2023). Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers, 15(17), 4237. https://doi.org/10.3390/cancers15174237