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Simple Summary: Brain metastases affect up to thirty percent of the adult cancer population. One of
the treatment options is stereotactic radiosurgery (SRS). To better understand SRS-related side-effects,
we used advanced imaging techniques to study both the vascular and metabolic reserve capacity
of the brain in nine patients with brain metastases before and three months after SRS. We observed
larger declines in both vascular and metabolic markers in healthy brain regions that received a higher
dose of SRS, but also saw substantial variation within- and between individuals. Our case analysis
showed that the markers used in this study were able to pick up differences between patients who
had either tumor growth or tumor shrinkage three months after SRS. These preliminary findings
suggest there are no immediate detrimental effects on healthy brain tissue following SRS, but larger
groups with a longer follow-up are needed to investigate potential late side-effects.

Abstract: Brain metastases occur in ten to thirty percent of the adult cancer population. Treatment
consists of different (palliative) options, including stereotactic radiosurgery (SRS). Sensitive MRI
biomarkers are needed to better understand radiotherapy-related effects on cerebral physiology and
the subsequent effects on neurocognitive functioning. In the current study, we used physiological
imaging techniques to assess cerebral blood flow (CBF), oxygen extraction fraction (OEF), cerebral
metabolic rate of oxygen (CMRO2) and cerebrovascular reactivity (CVR) before and three months
after SRS in nine patients with brain metastases. The results showed improvement in OEF, CBF
and CMRO2 within brain tissue that recovered from edema (all p ≤ 0.04), while CVR remained
impacted. We observed a global post-radiotherapy increase in CBF in healthy-appearing brain
tissue (p = 0.02). A repeated measures correlation analysis showed larger reductions within re-
gions exposed to higher radiotherapy doses in CBF (rrm = −0.286, p < 0.001), CMRO2 (rrm = −0.254,
p < 0.001), and CVR (rrm = −0.346, p < 0.001), but not in OEF (rrm = −0.004, p = 0.954). Case analyses
illustrated the impact of brain metastases progression on the post-radiotherapy changes in both
physiological MRI measures and cognitive performance. Our preliminary findings suggest no ra-
diotherapy effects on physiological parameters occurred in healthy-appearing brain tissue within
3-months post-radiotherapy. Nevertheless, as radiotherapy can have late side effects, larger patient
samples allowing meaningful grouping of patients and longer follow-ups are needed.
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1. Introduction

Approximately twenty percent of the basal metabolic rate of the body is consumed by
the human brain, making it the most energy demanding organ [1,2]. The primary sources
of energy for the brain include oxygen and glucose, which are delivered by arterial blood.
To ensure the adequate delivery of nutrients necessary for homeostasis, autoregulatory
functions serve to maintain stable cerebral blood flow (CBF) in response to changes in
perfusion pressure or other hemodynamic events [2,3]. However, this autoregulatory
system can be disturbed by the presence of brain metastases.

Brain metastases represent a distressing aspect of cancer progression and occur in
ten to thirty percent of the adult cancer population [4,5]. To metastasize to the brain, can-
cer cells sequentially complete a series of processes (e.g., penetration of the blood–brain
barrier) [6] that may lead to alterations in the surrounding metabolic and vascular mi-
croenvironment [7–10]. Moreover, both primary brain tumors and brain metastases are
frequently surrounded by vasogenic edema, which is the result of local blood–brain barrier
disruptions, allowing protein-rich fluid to accumulate in the extracellular space [11]. A
previous study has reported a lower fractional extraction of oxygen in edema surrounding
diffuse gliomas and lower regional blood flow in edema surrounding brain metastases [12].
Moreover, impaired cerebrovascular reactivity (CVR) has been observed within edema
surrounding both diffuse gliomas [13] and brain metastases [14], which could reflect a local
pressure effect restricting the ability of vessels to dilate and maintain adequate perfusion.
Treatment and management of edema is aimed at reducing swelling and alleviating symp-
toms. However, it is unknown whether the metabolic and vascular reserves within these
regions also recover once edema subsides.

Radiotherapy is the cornerstone of (palliative) treatment for brain metastases, in
combination with surgery, chemotherapy or immunotherapy [15]. Unfortunately, brain
radiation can also damage surrounding healthy tissue, as shown by largely reduced vessel
density in the brain after fractionated radiotherapy in rats [16]. Likewise, studies have
found vascular damage resulting in reduced blood perfusion in brain areas that received
at least 10–15 Gy [17]. Other studies have even shown reduced CBF at radiation doses
below 10 Gy [18]. Research on metabolic changes after radiotherapy is rather limited.
Hypothetically, radiation damage to vessels could reduce the ability to regulate CBF,
leading to an increased oxygen extraction fraction (OEF) in order to maintain a sufficient
cerebral metabolic rate of oxygen (CMRO2). On the other hand, the irradiation of healthy
brain tissue can also cause cell damage [19], possibly resulting in a lowered metabolism
and need for oxygen. Conclusively, the various metabolic and vascular changes that can
occur after radiotherapy highlight the complexity of radiation-induced damage.

These complex and multifaceted changes in the brain may partially explain the large
individual differences in radiation-induced cognitive decline experienced by patients with
brain metastases [20]. Non-invasive, sensitive MRI biomarkers are needed to better under-
stand radiotherapy-related changes in the brain and its subsequent effect on neurocognitive
functioning. With this in mind, the main aim of the current study was to assess the added
value of using physiological imaging techniques to assess CVR, CBF, OEF and CMRO2
in both healthy-appearing tissue and malignant tissue before and after stereotactic radio-
surgery (SRS) in patients with brain metastases. Acquiring both OEF and CBF in the same
scan session can provide insight as to whether changes in brain oxygen metabolism (i.e.,
CMRO2) occur due to abundant or insufficient blood supply or because the tissue itself has
(partly) lost the ability to extract and consume oxygen. The addition of a CVR measurement
can give insight into the regulatory state of the tissue at baseline. As a secondary analysis,
we investigated cognitive changes after radiotherapy in relation to changes in these physio-
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logical MRI parameters on a case-by-case basis. This preliminary study aims to establish
a foundational framework for advancing our understanding of radiation-induced brain
damage and its relation to cognitive functioning, thereby providing a basis to generate
novel hypotheses to guide future research.

2. Materials and Methods
2.1. Study Set-Up and Population

MRI datasets were acquired between October 2022 and February 2023 for the ongoing
Assessing and Predicting Radiation Influence on Cognitive Outcome using the cerebrovas-
cular stress Test (APRICOT) study. Participation consists of an elaborate neurocognitive
assessment (NCA) and MRI before radiotherapy and approximately three months after
radiotherapy. The study population consists of adult patients (≥18 years) with either
radiographic and/or histologic proof of metastatic disease in the brain that were referred to
the radiotherapy department of the UMC Utrecht for radiotherapy of the brain metastases.
Specific in- and exclusion criteria for participation in the APRICOT study are listed in
Appendix A. The study was performed in accordance with the Declaration of Helsinki [21]
and the UMCU institutional ethical review approved the study (METC# 18-747). Written
informed consent was obtained from all participants prior to participation.

2.2. Data Acquisition
2.2.1. Imaging Protocol

The participants were scanned on a 3 Tesla MRI scanner (Achieva, Philips Medical Sys-
tems, Best, The Netherlands) using a 32-channel receive coil. The same scanning protocol
was used as described before [14]. To acquire the CVR measurements, whole-brain multi-
slice single-shot gradient-echo EPI BOLD images (TR = 1050 ms, TE = 30 ms, flip angle:
65◦, voxel size: 2.292 × 2.292 × 2.5 mm3, acquisition matrix: 96 × 96 × 51, 1000 dynamics,
multi-band factor = 3, SENSE factor = 1.8) were acquired through a computer-controlled
hypercapnic breathing protocol (described below). An additional dataset pair was acquired
for EPI phase (distortion) correction. Perfusion data were acquired using a multi-delay
ASL sequence. A whole volume was acquired at 4 post-labeling delays (660, 1325, 1989,
2654 ms), using a pCASL Look-Locker multi-slice EPI read-out (total scan time = 240 s,
labelling train duration = 1650 ms, TR = 5 s, TE = 12 ms, flip angle: 25◦, acquired
resolution: 3 × 3 × 7 mm3, acquisition matrix: 80 × 80 × 17, 23 volumes of label-control
pairs, SENSE factor = 2, 2 background suppression pulses). The first volume contained the
calibration (M0) images for each post-label delay where the labelling, saturation pulses and
background suppression were turned off. No breathing challenges were performed during
the ASL imaging. The ASL was planned using a fast phase contrast angiography scan,
with the labeling plane carefully placed perpendicular to the internal carotid arteries and
vertebral arteries. The whole brain SWI was acquired using a multi-echo gradient-echo (ME-
GRE) sequence (TE1 = 8.5 ms, TE2 = 17.5 ms, TE3 = 26.5 ms, TE4 = 35.5 ms, TE5 = 44.5 ms,
echo spacing: 8 ms, TR: 50 ms, flip angle: 17◦, voxels size: 0.342 × 0.342 × 2 mm3, acqui-
sition matrix: 384 × 383 × 63). Additionally, a 3D T1-weighted magnetization-prepared
rapid gradient-echo imaging (MPRAGE) sequence (TR = 8 ms, TE = 3.25 ms, flip angle: 10◦,
isotropic resolution: 1 mm, acquisition matrix: 240 × 240 × 180) and a 3D T2-weighted
FLAIR sequence (TR: 4800 ms, TE: 240 ms, TI = 1650 ms, flip angle: 90◦, isotropic resolution:
1 mm, acquisition matrix: 256 × 256 × 182) were acquired for anatomical reference.

2.2.2. Clinical CT and MRI Acquisition

CT and MRI scans were acquired as part of clinical care as usual, 1 to 5 days be-
fore receiving SRS. CT scans were acquired on a Brilliance Big bore 22 scanner (Philips
Medical Systems, Best, The Netherlands) with a tube potential of 120 kVp, matrix size of
512 × 512 and inplane slice thickness of 1 mm. The participants were scanned on a 1.5 Tesla
MRI scanner (Ingenia, Philips Medical Systems, Best, The Netherlands) using a 15-channel
receive coil. A 3D SPGR sequence after injection of 0.1 mL gadovist/kg was performed
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(TR = 7.6 ms, TE = 3.4 ms, flip angle: 8◦, isotropic resolution: 1 mm, acquisition matrix:
232 × 232 × 170). The clinician used this clinically acquired MRI, registered to the CT, to
plan the radiotherapy and delineate the so-called gross tumor volume (GTV; i.e., brain
metastases). The prescribed dose was recalculated into equivalent total doses per 2-Gy
fractions (EQD2) to aid comparability between and generalizability to different radiation
schemes. The CT, dose maps, planned target volume (PTV) and GTV were extracted for
each patient. For the current analysis, the GTV was divided into newly treated brain metas-
tases, resection cavities of brain metastases and previously irradiated brain metastases.
Analyses were only performed on newly treated brain metastases. If a patient had multiple
brain metastases, averages were calculated from all voxels corresponding to the multiple
brain metastases. Dose maps were subdivided into regions of interests (ROIs) with low
(<10 Gy), medium (10–15 Gy) and high (>15 Gy) doses, following previous research on
vascular damage described at radiotherapy doses higher than 10–15 Gy [17] (Figure 1).

2.2.3. Breathing Protocol

Hypercapnic stimuli were delivered using a computer-controlled gas blender and
sequential delivery system (RespirAct, Thornhill Research Institute, Toronto, Canada). The
breathing mask was sealed to the patients’ faces using transparent dressings (Tegaderm,
3M, St. Paul, MN, USA) to acquire an air tight seal. Before starting the breathing challenges
inside the MRI scanner, patients performed a test round with a CO2 challenge which is
similar to the CO2 block given during the protocol. Only after successful completion of
the test round were the breathing challenges inside the scanner performed (see Figure A1).
The breathing challenges started with a 5-min baseline period, followed by a block-shaped
increase of end-tidal CO2 (PetCO2) 10 mmHg relative to a patient’s baseline for 90 s. After
this so-called CO2-block, the PetCO2 values returned to baseline values for 120 s, followed
by a PetCO2 ramp increase of 12 mmHg relative to the patient’s baseline for 180 s, after
which the patient was returned to baseline for 90 s.

2.2.4. Neurocognitive Assessment

An extensive battery of neuropsychological tests was used to assess cognitive perfor-
mance both before and three months after SRS. All tests are internationally widely used,
standardized psychometric instruments for assessing neurocognitive deficits in the major
neurocognitive domains (see Table A1) [20,22]. Each neuropsychological test was scored ac-
cording to standardized scoring criteria. Individual change in neurocognitive performance
post-radiotherapy was assessed and classified using the reliable change index (RCI) as for-
mulated by Jacobson and Truax [23,24]. RCI values ≥ 1.645 present improvement, ≤−1.645
present decline and values not exceeding ±1.645 indicate stable cognitive performance on
the task. Change in neurocognitive performance per domain was defined as improved if
at least one task within that domain showed improvement, as declined if at least one task
showed a decline, as mixed if at least one task indicated improvement and one task indi-
cated decline and as stable when all tasks within that domain showed stable performance.

2.3. Pre-Processing

Pre-processing steps were performed using the Oxford Centre for Functional MRI of
the BRAIN (FMRIB) Software Library (FSL—version 6.0) [25]. First, brain extraction was
performed on the T1 and T2 FLAIR images using BET [26]. Tissue segmentation into grey
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) was performed on the T1
images using the FSL Automated Segmentation Tool (FAST) [27]. Additionally, an edema
mask was created based on the T1 and T2FLAIR images using the lesion growth algorithm
as implemented in the Lesion Segmentation Tool (LST, https://www.statistical-modelling.
de/lst.html, accessed on 28 June 2021) for SPM [28]. Based on previous experience, the
initial threshold was set at 0.14. The resulting edema mask was manually adapted to
eliminate any false positives or false negatives from the LST edema mask.

https://www.statistical-modelling.de/lst.html
https://www.statistical-modelling.de/lst.html
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BOLD data were motion-corrected (MCFLIRT) [26], corrected for geometric distortion
using TOPUP [29,30] and linear spatial co-registered to the T1 images using the ‘epi_reg’
function [26,31]. QSM maps were calculated from the raw phase and magnitude data of
the ME-GRE images using the MEDI toolbox [32]. The local field was estimated by the
projection onto dipole field (PDF) method [33], and susceptibility values were computed
by Morphology Enabled Dipole Inversion (MEDI) [34].
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Figure 1. Data analysis steps for the MRI data. MRI analysis was performed for the BOLD, ASL and
QSM data. (1) CVR maps were generated with the SeeVR toolbox using the BOLD time series and
PetCO2 traces, quantitative CBF maps were generated based on the multi-delay ASL data using the
ClinicalASL toolbox and FSL BASIL, and OEF maps were generated from the QSM data with the
QQ-CTV software package. (2) All MRI maps were transformed to the baseline T1 patient space.
(3) The CMRO2 map was generated by multiplying the CBF map with the OEF map. Multiple masks
were generated. Edema masks were made based on the T2FLAIR hyper intensities for both baseline
(T0) and follow-up (T1). From this, new masks including regions only exhibiting edema at baseline
(edema T0), regions only exhibiting edema at follow-up (edema T1) and regions exhibiting edema at
both time points (edema T0 + T1) were created. The brain metastases were excluded from the edema
regions. Next, the edema and brain metastases masks were excluded from the whole-brain mask to
create a mask with healthy-appearing brain tissue at both time points. This healthy-appearing brain
tissue was subdivided into grey matter (GM) and white matter (WM). Difference maps subtracting
the follow-up (T1) data from the baseline (T0) were calculated for CVR and CMRO2. Positive values
represent an increase in either CVR or CMRO2 at follow-up (T0 < T1) and negative values represent a
decrease in either CVR or CMRO2 at follow-up (T0 > T1). The subtraction process was restricted to
pixels that contained values in both the pre- and post-radiotherapy images. Images were masked to
exclude CSF. Finally, dose maps were extracted with one map showing the total delivered dose in
EQD2 and the other map dividing the dose into ROIs with low (<10 Gy), medium (10–15 Gy) and
high (>15 Gy) doses, as described above.
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2.4. Data Analysis
2.4.1. MRI Analysis

CVR maps were derived using the open-source seeVR toolbox (Figure 1) [35]. In brief,
in order to remove the signal contribution from large veins that might overshadow tissue
responses, a modified whole-brain mask was generated using the ‘remLV.m’ function of
the seeVR toolbox [35]. For this, a temporal noise-to-signal (tNSR) map was calculated
by taking the inverse of the temporal signal-to-noise (tSNR) map. Next, voxels showing
values higher than the 98th percentile tNSR value were removed from the original whole
brain-mask to remove the large veins. This modified mask was then used in subsequent
analyses [35]. Next, a manual bulk alignment was performed between the PetCO2 and
average GM time series to minimize alignment errors that can occur when using automated
correlation methods. Thereby, any bulk delays between the end-tidal gas measurements
at the lungs and the BOLD signal responses in the brain were accounted for. Residual
motion signals with a correlation higher than 0.3 with the GM time series, along with a
linear drift term were regressed out using a general linear model. The BOLD data were
then temporally de-noised using a wavelet-based approach [36]. A linear regression was
performed between the bulk-aligned PetCO2 trace with each processed BOLD voxel time
series. The slope of this linear regression was taken as the CVR (%∆BOLD/mmHg PetCO2).

The multi-delay ASL was processed using the open-source ClinicalASL toolbox [37]
and FSL BASIL for quantitative CBF maps [38]. As described before [14], a T1-weighted
image was generated based on the M0 images from each PLD, which was used for subse-
quent image registration and outlier removal. Outlier removal was performed based on the
SCORE method by Duloi et al. (Figure 1) [39].

ME-GRE data were used to generate OEF maps using the integrative QQ approach
of Cho et al. (Figure 1), with an unsupervised machine learning algorithm, temporal
clustering, tissue composition and total variation (CCTV) [40–44]. QQ estimates OEF maps
based on the QSM processing of the ME-GRE phase and qBOLD modeling of ME-GRE
magnitude data. The robustness of QQ against noise was improved substantially by using
CCTV [45], which groups voxels with similar signal evolution and the same tissue type
(GM/WM/CSF) into a cluster and assumes that the voxels have similar model parameters
including OEF.

All MRIs were registered to the T1 image acquired at baseline using FMRIB’s Linear
Image Registration Tool (FLIRT; Figure 1) [26,31]. Next, CMRO2 maps were generated by
combing the OEF and CBF data according to the following equation:

CMRO2 = OEF·CBF·[H]α (1)

in which [H]α is the oxygenated heme molar concentration in the arteriole expressed in
µmol/mL. In this study, an oxygenated heme molar concentration of 7.377 µmol/mL was
used in accordance with research by Zhang and colleagues (Figure 1) [46]. Difference maps
for CVR and CMRO2 were created by subtracting the follow-up (T1) MRI map from the
baseline (T0) MRI map (Figure 1—Difference maps). Hereby positive values represent an
increase in either CVR or CMRO2 at follow-up (T0 < T1) and negative values represent
a decrease nown either CVR or CMRO2 at follow-up (T0 > T1). Lastly, based on the
previously created edema masks, new masks were generated (Figure 1) to incorporate
regions only exhibiting edema at baseline (edema T0), regions only exhibiting edema at
follow-up (edema T1), and regions exhibiting edema at both time points (edema T0 + T1).
The GTV (i.e., brain metastases) were excluded from all edema masks. Next, masks were
created that incorporated healthy-appearing brain tissue at both time points. Therefore, the
edema mask (edema T0 + T1) and PTV were extracted from the whole-brain tissue to make
sure any possible malignant tissue was excluded. Then the healthy-appearing brain tissue
was subdivided into grey matter (GM) and white matter (WM).
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2.4.2. Statistical Analysis

First, we compared the differences in the physiological MRI parameters between various
tissue types before SRS. For each physiological MRI map, we calculated the average value per
tissue type (GM, WM, edema and brain metastases) prior to SRS for each patient separately. We
used Wilcoxon signed-rank tests to compare the average values across the different tissue types
for each physiological MRI map. Secondly, we investigated whether there was a relationship
between the extent of edema and the physiological MRI parameters within healthy-appearing
brain tissue before SRS. Therefore, we computed the average value within the healthy-appearing
brain tissue for each patient and then used Spearman’s rank correlations to assess the correlation
between this value and the volume of edema (expressed as a percentage of voxels contained
within the (extracted) whole brain mask).

Post-radiotherapy changes in the physiological MRI parameters were assessed separately
for edematous tissue regions and healthy-appearing tissue. Regarding the edematous regions,
we divided them into three distinct categories based on their temporal occurrence: (1) regions
with edema at either T0 or T1 (i.e., all edema), (2) regions with edema exclusively at T1 (i.e., new
edema), and (3) regions with edema exclusively at T0 (i.e., old edema; Figure 1). To evaluate
the differences between the pre- and post-radiotherapy values for each type of edema and each
physiological MRI map, we used Wilcoxon signed-rank tests. For healthy-appearing brain tissue,
we calculated the mean values of each physiological parameter separately for the pre- and
post-radiotherapy MRI scans, for each patient. Subsequently, we used Wilcoxon signed-rank
tests to determine whether any changes occurred in the healthy-appearing brain tissue after
SRS, by comparing the mean pre-radiotherapy values to the mean post-radiotherapy values.

Dose-related changes in healthy-appearing brain tissue were assessed using three differ-
ent methods. First, we calculated the mean value for each physiological parameter map for
each dose ROI (i.e., low, medium, high). Next, Wilcoxon signed-rank tests were performed to
compare each of the ROIs to assess whether there was a significant difference between regions
receiving either low, medium or high doses. For the second method, the radiotherapy dose
map was sorted based on ascending values. The sorted dose values were then subdivided
into 20 bins, each containing 5 percent of the data. Using the boundaries of these ‘5%-bins’,
the dose map was divided into ROIs. Each ROI contained 5 percent of the dose data, where
the lowest bin value represented the 5 percent lowest dose values and the highest bin value
the 5 percent highest dose values. For each physiological MRI difference map, the mean
value for each of these binned ROIs was calculated and used in the subsequent correlation
analysis to assess whether the mean change in physiological MRI parameters in each bin-ROI
correlated with the mean dose received by the tissue within that bin. As this binning results
in 20 mean values per individual (i.e., for each binned ROI), a repeated measures correlation
was chosen to account for the within-individual variance between these values. The ‘rmcorr’
package [47] implemented in rStudio (Version 2021.9.1.372) [48] was used to perform this
repeated measures correlation. This analysis estimates the common regression slope for
repeated measures. In addition to the two regional dose analyses, voxel-wise Spearman’s rank
correlations were calculated between the delivered dose and physiological MRI difference
maps for each patient separately. We performed Wilcoxon signed-rank tests to assess whether
the correlation values significantly differed from zero on the group level for each physiological
MRI parameter. For all statistical tests, a p-value < 0.05 was considered statistically significant,
corrected for multiple comparisons when necessary.

3. Results
3.1. Participants

In total, 17 patients completed both the baseline and follow-up MRIs and NCAs
within the given time period. Of these, nine patients (four females) were included for the
current analysis (Table 1). Most patients were excluded from the analysis due to artefacts
in the MRI data (Figure A2). Three of the nine patients did not want to perform the
breathing challenges during the BOLD imaging at follow-up, leading to missing CVR data
for those patients.
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Table 1. Patient, treatment and volume information of the included subjects in this study.

# Age
(Years) Sex Primary

Tumor #BMs Total BMs
vol (cc)

Prescribed
SRS Dose
(Gy/1 fr)

Previous
RT

In between
RT

Post-RT
Systemic
Therapy

Edema vol
T0 (cc)

Edema vol
T1 (cc)

Dexamethasone
Dose Pre-RT

(mg/Day)

Dexamethasone
Dose Post-RT

(mg/Day)

RT
Response a

3 57 F Lung 7 4.3 21 N N N 54.3 21.4 0.0 1.5 Decrease
5 66 M Melanoma 18 0.9 21 Y N Y 12.5 98.8 0.0 0.0 Stable
6 81 M Melanoma 2 7.1 21 N N Y 17.1 155.3 0.0 0.5 Growth
7 62 F Lung 11 11.2 21 N N Y 19.5 1.4 0.0 0.0 Decrease
8 72 M Kidney 1 17.6 18 N N Y 80.1 5.7 4.0 0.0 Decrease

11 b 52 F Lung 8 50.6 15 N N Y 29.4 4.7 4.0 0.0 Decrease
18 72 M Lung 2 1.8 21 N N N 13.2 0.4 2.0 0.0 Decrease

23 b 74 F Lung 1 3.5 18 N Y N 16.3 56.4 0.5 2.5 Growth
24 b 62 M Melanoma 10 1.6 24 N N Y 3.1 4.5 0.0 0.0 Mixed

a based on the radiology report of the clinical scan; b no post-radiotherapy CVR maps available. Abbreviations: BMs, brain metastases; F, female; M, male; N, no; RT, radiotherapy;
T0, pre-radiotherapy, T1, post-radiotherapy; vol; volume; Y, yes.
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All nine patients received SRS on a linear accelerator (Elekta) with conebeam CT
imaging guidance, most commonly 21 Gy delivered in one fraction. The median age of the
patients was 66 years and most patients had a primary lung tumor (all non-small cell lung
cancers). The median number of brain metastases was seven (IQR 2-10) and the median
total volume was 4 cc. Before SRS, the median edema volume excluding BM volumes was
17 cc and three months after SRS 6 cc, with extensive inter-individual variability. Most
patients (6/9) had received systemic therapy during the follow-up period. The responses
to SRS were evaluated approximately three months after treatment completion and the
majority (4/9) showed decreased brain metastases volumes on follow-up scans, while 2/9
showed growth of new brain metastases. One patient had a mixed response, indicating
some brain metastases had grown and others had shrunk.

3.2. Baseline Tissue Comparison

For each physiological MRI parameter, the group mean values were compared between
different tissue (GM, WM, edema, brain metastases) using Wilcoxon signed-rank tests
(Figure 2 and Table A2). A subset of these parameters has been reported previously [14].
In the current analyses, the GM had a higher CBF and CVR than both WM and edema
(all p = 0.004). The WM CVR was higher than the CVR in edema regions (p = 0.008). For
CMRO2, the GM values were higher than both WM and edema (p = 0.008 and p = 0.004,
respectively), and the WM had higher CMRO2 values than edema (p = 0.008). For OEF, the
GM values were lower than WM (p = 0.004), and the WM OEF values were higher than
edema (p = 0.004). The brain metastases had lower OEF than in WM (p = 0.004) and higher
CBF and CMRO2 than the edema regions (both p = 0.004). Excluding subcortical GM areas
from the analyses did not lead to changes in these significant differences between tissues
(Figure A3).
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Figure 2. Violin plots displaying the differences in OEF, CBF, CMRO2 and CVR values across
different tissue types. Asterisks indicate significant differences using a corrected p-value = 0.017
for multiple comparisons.

3.3. Edema Regional Comparisons
3.3.1. Edema Volume Pre-Radiotherapy

The relationship between the volume of edema (expressed as a percentage of the total
brain volume) and the average physiological parameters within the healthy-appearing
brain tissue pre-radiotherapy was calculated using Spearman’s rank correlations for each
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MRI metric (Figure 3). There were no significant correlations between the pre-radiotherapy
edema volumes and the average whole-brain OEF (r = 0.02, p = 0.982), CBF (r = 0.43,
p = 0.250), CMRO2 (r = 0.62, p = 0.086) or CVR (r = −0.45, p = 0.223).
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Figure 3. Relationship between the volume of edema pre-radiotherapy and the average physiological
MRI parameters in the healthy-appearing brain tissue.

3.3.2. Post-Radiotherapy Changes

To assess the influence of the presence of edema on the assessed MRI metric, the
average values within the edematous regions were compared before and after SRS (Figure 4).
Within edematous tissue, a distinction was made between regions with edema at both T0
and T1 (i.e., edema), regions with edema exclusively at T1 (i.e., new edema) and regions
with edema exclusively at T0 (i.e., old edema). Comparisons were made using Wilcoxon
signed-rank tests. The OEF, CBF and CMRO2 values in the old edema (T0 edema) regions
were higher post-radiotherapy than pre-radiotherapy (all p ≤ 0.04), while the CVR values
did not change in old edema (T0 edema) regions over time. When the outliers as visible
in Figure 4 were removed from the analyses, the CBF values in the old edema regions
(T0 edema) were no longer statistically significantly higher post-radiotherapy than pre-
radiotherapy (p = 0.078). For OEF and CMRO2, the pre-post radiotherapy differences in old
edema (T0 edema) remained statistically significant after outlier removal.
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Figure 4. Violin plots of the pre- and post-radiotherapy values within different edema regions. Edema
regions encompass any region with edema either pre- or post-radiotherapy. New edema indicates
those areas with edema exclusively at post-radiotherapy and old edema indicates those areas with
edema exclusively at pre-radiotherapy. Asterisks indicate significant differences.

3.4. Healthy-Appearing Brain Tissue
3.4.1. Global Post-Radiotherapy Changes

To assess whether there were global effects of the radiotherapy on the healthy-
appearing brain tissue, average MRI values were compared pre- and post-radiotherapy
using Wilcoxon signed-rank tests (Figure 5). Only the CBF values were significantly higher
post-radiotherapy than pre-radiotherapy (p = 0.02). This indicates that perfusion through-
out healthy-appearing brain tissue increased after radiotherapy. None of the other MRI
metrics showed significant changes after radiotherapy.
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3.4.2. Dose-Related Changes

Changes in the MRI metrics from pre- to post-radiotherapy were compared between
healthy-appearing brain regions that had received low, medium and high radiotherapy
doses (Figure 6). Differences between the dose groups were assessed using Wilcoxon
signed-rank tests, which indicated none of the dose regions significantly differed from each
other for any of the MRI metrics.
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Figure 6. Comparison between the post-radiotherapy changes in the three dose ROIs within healthy-
appearing brain tissue. Corrected p-value = 0.025.

In addition to the ROI dose comparison, repeated measures correlations were per-
formed between the dose and the change in each MRI metric post-radiotherapy using the
dose-binned ROIs (Figure 7). The changes in OEF post-radiotherapy were not related to
the delivered radiotherapy dose (rrm = −0.004, p = 0.954). There was a significant negative
relationship between the delivered dose and the post-radiotherapy changes in healthy-
appearing brain tissue regarding CBF (rrm = −0.286, p < 0.001), CMRO2 (rrm = −0.254,
p = 0.001) and CVR (rrm = −0.346, p < 0.001). This indicates that post-radiotherapy declines
in CBF, CMRO2 and CVR were related to higher delivered radiotherapy doses. Addition-
ally, the voxel-wise Spearman’s rank correlations between the delivered radiotherapy dose
and post-radiotherapy changes in OEF, CBF, CMRO2 and CVR were performed for each
individual (see Figure A4). One-sample Wilcoxon signed-rank tests indicated that the
correlation values did not significantly differ from zero on the group-level (all p > 0.05).
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Figure 7. Repeated measures correlations of the post-radiotherapy changes and the dose in the
healthy-appearing brain. Each color represents a different patient and the lines represent the common
linear relationship between the MRI metrics when all participants are taken into account. Statistics
for each relationship are provided for each plot separately.

3.5. Case Analysis

As group analysis indicates significant heterogeneity in the post-radiotherapy changes
in OEF, CBF, CMRO2 and CVR, a case-study analysis was performed. Three diverse cases
were chosen, based on their response to the radiotherapy: growth of new brain metastases,
shrinkage of brain metastases and a mixed response three months after SRS (Figure 8).
Besides changes in the physiological MRI parameter maps, the cognitive changes post-
radiotherapy were assessed. For the patient that had new tumor growth after radiotherapy,
the MRI differences and cognitive changes aligned; there was a general worsening of
the physiological MRI parameters and cognitive decline in the majority of the cognitive
domains. The largest changes in the physiological MRI values were near the tumor area. For
the patient with tumor shrinkage, the improvement in the physiological MRI parameters
was most pronounced for OEF where a post-radiotherapy increase of OEF was visible in
the areas surrounding the tumor area. This improvement was also reflected in the cognitive
changes, with improvement or stability in the majority of the cognitive domains. For the
patient with a mixed response after radiotherapy, no clear pattern emerged from the MRI
and cognitive data. See Figure A5 for a visual representation of all the included patients.
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Figure 8. Visual comparison of MRI-related and cognitive changes in three subjects with different
radiotherapy responses. Subject 006 had new brain metastases, subject 007 had brain metastases
shrinkage and subject 024 had a mixed response whereby some brain metastases grew and some
shrunk. Pre- and post-radiotherapy MRI maps are shown separately for pre-radiotherapy (T0) and
three months post-radiotherapy (T1). Additionally, the delivered radiotherapy dose and difference
scores (T1-T0) for the MRI maps are shown alongside the cognitive changes that were observed across
the cognitive domains. Hereby grey indicates stable performance, green improvement, red decline
and yellow mixed response. As patient 24 did not perform the CVR assessment post-radiotherapy,
no difference maps for CVR are available. Abbreviations: EF, executive functioning; FMC, fine motor
coordination; IPS, information processing speed; Visuo, visuoperception.

4. Discussion

In this study, we employed state-of-the-art physiological imaging techniques to com-
prehensively evaluate properties linked to both the metabolic and vascular reserve in
patients with brain metastases before and three months after SRS. Our findings revealed
a significant improvement in metabolic measures (OEF and CMRO2) within brain tissue
that recovered from edema three months post-radiotherapy, while the vascular reserve
remained impacted. Additionally, we observed a global post-radiotherapy increase in CBF
in healthy-appearing brain tissue. No dose-related changes in any of the MRI metrics
were detected when regions were categorized into low, medium and high-delivered doses.
Correlation analyses highlighted larger reductions in CBF, CMRO2 and CVR within regions
exposed to higher radiotherapy doses, but also indicated considerable variability both
among patients and across dose regions. Case analyses suggested that part of this hetero-
geneity may be attributed to brain metastases progression following SRS. Collectively, our
findings suggest that in this small patient sample no large metabolic or vascular changes
occurred in the late-acute phase following SRS in patients with brain metastases.

Tissue-specific differences were observed pre-radiotherapy across both metabolic and
vascular parameters. The tissue differences for CBF and CVR were similar to those reported
in our previous study [14] and in healthy subjects [49], with both the WM areas and edema
characterized by a lower CBF and CVR than GM. The CMRO2 values were higher in
GM compared to WM, consistent with the higher neuronal density in GM and previous
studies [50]. The OEF in GM was lower than in WM, while previous research has shown
relatively homogeneous OEF in GM and WM using either QQ-CCTV [42] or PET [51].
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Lower OEF values in deep GM structures due to iron depositions [52] cannot explain this
phenomenon, as restricting the comparison to cortical GM yielded similar results. This may
indicate the lower GM OEF is a compensatory auto-regulatory response to the increased
GM CBF, aiming to sustain stable GM CMRO2. However, due to the smaller number of
voxels present in the GM and thereby its heightened susceptibility to extreme values and
minor spatial misalignment, this could also potentially account for some of the observed
differences.

Large variability in the physiological parameters was seen within tissue containing
untreated brain metastases, as was expected based on previous literature [12,14,53]. The
primary tumor (i.e., origin of metastatic cells), might cause some of this heterogeneity as it
affects the brain metastases growth pattern, metabolism and vasculature [6,10,54,55]. As the
CMRO2 was not different from that of healthy-appearing tissue, this could be illustrative of
the Warburg effect (i.e., less reliant on oxidative metabolism and more on aerobic glycolysis),
especially since the OEF was lower than in healthy-appearing WM [56–58]. Moreover, we
observed low OEF, CBF, CMRO2 and CVR within the edema regions. This is in line
with previous research [13,14] and may be reflective of the local pressure in these regions
restricting the ability of vessels to dilate and thus maintain adequate perfusion. However,
the extent of the edema did not correlate to either the metabolic or vascular reserve in the
healthy-appearing brain tissue. This indicates that the edema volume, which is indicative
of the pressure exerted on the whole brain, does not appear to impact the overall vascular
and metabolic capacities of the brain. Instead, its effects seem to be primarily localized.
As the effect sizes of these non-significant relationships were moderate-to-high, future
research should further validate these findings in larger samples. As patients with signs of
increased intracranial pressure were excluded from participation, the generalizability of
these findings to the wider brain metastases population may be limited.

We observed post-radiotherapy changes within the edematous regions. Notably, re-
gions that recovered from edema three months after SRS showed increased OEF, CBF and
CMRO2. Contrarily, CVR remained unchanged within these regions, with values lower
than those observed in healthy-appearing tissue. These findings suggest that while these
resolved edema regions show metabolic recuperation, the vascular reserve continues to be
impacted. While there was a trend towards decreased OEF, CMRO2 and CVR in regions
with new edema post-radiotherapy, statistical significance for CVR was almost reached
(p = 0.078) after removing outliers. This lack of significance may be attributed to the
limited number of patients available for analysis, emphasizing the need for further inves-
tigation. Altogether, our findings suggest that CVR might be more susceptible to, and
serve as a sensitive marker of edema-induced effects, warranting continued exploration in
future studies.

We observed a global increase in CBF throughout the brain after SRS, while other
physiological measures remained constant. Studies have shown that exposure to radiation
leads to an inflammatory response in the tissue [59,60]. The observed increase in CBF
may thereby be either reflective of a restorative mechanism of the brain in response to
radiation-induced inflammation or ongoing inflammation. However, as the majority of
patients did not use dexamethasone three months after SRS, it is most likely indicative
of a restorative mechanism. Previous studies have demonstrated that tissue exposed
to a radiation dose exceeding 15 Gy suffers irreversible damage to its vasculature [17].
Surprisingly, our regional analysis did not reveal differences in post-radiotherapy changes
among regions exposed to low (<10 Gy), medium (10–15 Gy) or high (>15 Gy) doses.
However, it is important to consider that all patients in the current study received SRS,
which effectively limits the radiation dose to the healthy brain tissue surrounding the
tumor. This may have influenced our analysis, particularly in the high dose regions, where
the number of voxels available for examination was considerably lower. In order to gain
further insights, we therefore conducted regional analysis using equivalently sized ROIs
(bins) that corresponded to increasing radiotherapy doses. Our analysis revealed a negative
correlation between the dose and CBF, CMRO2 and CVR, but not OEF. This suggests
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that as the radiotherapy dose increases, the impact on both the metabolic and vascular
capacities becomes more pronounced. While voxel-wise analyses did not support the
associations observed in this ROI-based analyses, regional analysis is often more precise
in evaluating these associations as demonstrated in previous research [14,61], due to the
inherent measurement noise associated with these physiological MRI measures. As our
current analyses focused solely on linear relationships, exploring non-linear relationships,
especially those seen at low radiotherapy doses, would be valuable for future research.
Further investigation is warranted regarding the potential vascular damage caused by the
high fractional doses delivered during SRS, as previous studies have indicated that single
fraction doses in particular may contribute to this effect [17].

Importantly, the analyses highlighted substantial variations both among patients and
within dose regions. The case analyses suggested that part of this heterogeneity could
be attributed to tumor progression following SRS. In our case study we examined three
distinct cases with varying responses to SRS, including tumor growth, tumor shrinkage and
a mixed response. In the case of new brain metastases growth, there was a deterioration
in both physiological MRI parameters and cognitive function, particularly in areas near
the tumor which also showed edema increases. Conversely, for the patient with tumor
shrinkage, there was an improvement in physiological MRI parameters, specifically in
OEF, which corresponded to positive changes in cognitive performance. In the case of a
mixed response, less clear patterns emerged from the MRI and cognitive data with both
improvements and declines. These results underscore the complex interplay between
physiological changes, tumor response and cognitive outcomes, highlighting the need for
individualized assessment and further research in this domain.

In this research we used state-of-the-art physiological imaging techniques in a het-
erogeneous patient population with the goal of identifying potential challenges and op-
portunities for future research. Due to the sensitivity of physiological MRI measures to
acquisition artifacts, stringent patient selection was implemented, yet variations in the data
could still arise from measurement and calculation discrepancies. For example, the choice
of ASL technique can impact perfusion maps and subsequent CMRO2 calculations. An
example is that too short post-labeling delays can lead to arterial transit artefacts or less
accurate CBF measures [62–64]. We used a multi post-labeling delay ASL pcASL sequence
and found CBF values that were close to the ground truth as measured using PET. The
QQ-CCTV method used in this study has been validated against the reference standard
15O-PET with a good scan–rescan reproducibility [40] and demonstrated sensitivity for
detecting physiological OEF changes, like the expected decreased OEF in hypercapnia
compared to normoxia [65]. Also, QQ-CCTV has demonstrated OEF abnormalities in
neurological disorders, including multiple sclerosis [66], ischemic stroke [46,67], brain
tumor [68], dementia [69], pre-eclampsia [70], and hydrocephalus [71].

Several limitations should be considered when interpreting the findings of this study.
In creating the QSM images, the precise positioning of the patients’ heads in the main
magnetic field (B0) is crucial for accurate dipole inversion, which becomes challenging
when scanning patients at multiple time points due to the inability to reproduce exact
head positions. Thereby, subtle changes in QSM, and consequently OEF and CMRO2,
may be attributed to variations in head positioning. Additionally, the biophysical model
used to estimate OEF is not optimized for regions with edema. Specifically, the prolonged
T2 relaxation time (~200 ms) observed in these regions exceeds the maximum echo-time
of the ME-GRE sequence (44.5 ms) [72]. However, as CVR is also affected within edema
regions, it is likely other autoregulatory mechanisms, including OEF, play an important role.
Furthermore, an inherent limitation of using BOLD-metrics is the dependency of the BOLD
response on multiple factors, including changes in cerebral blood volume, the cerebral
metabolic rate of oxygen consumption, the arterial partial pressure of oxygen, and baseline
parameters such as hematocrit, OEF, CMRO2 and blood volume [73,74]. This complex
interplay hinders the identification of precise underlying mechanisms, but also underscores
the value of integrating multiple physiological MRI measures. Lastly, compared to 7T
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scanners, the BOLD and ASL signal sensitivity, especially in WM and edema, is notably
lower. Combined with the heterogeneous and small patient sample in this preliminary
study, a lack of significant findings could partly be attributed to these factors.

5. Conclusions

Our findings suggest that resolved edema regions show metabolic recuperation but
ongoing vascular damage, highlighting the sensitivity of CVR as a marker for vascular
changes. We also observed a global increase in CBF in healthy-appearing brain regions
following SRS, possibly indicating a restorative mechanism against radiation-induced
inflammation. While regions exposed to higher doses exhibited larger declines in CBF,
CMRO2 and CVR, there was notable heterogeneity among patients and across dose regions.
The case analysis demonstrated some of this heterogeneity may be attributed to the tumor
response. Overall, our preliminary results suggest that within the 3-month follow-up
window no radiotherapy effects on physiological parameters occurred in healthy-appearing
brain tissue. Nevertheless, while SRS can lead to local control of the brain metastases it
can also have long-term side-effects (i.e., months to years) [75,76]. Continued long-term
research with larger patient samples allowing for meaningful grouping of patients will
enhance our understanding of the intricate interplay between radiation dose, brain health
and physiological responses.
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Abbreviations
The following abbreviations are used in this manuscript:
ASL, arterial spin labeling; APRICOT, Assessing and Predicting Radiation Influence on Cog-

nitive Outcome using the cerebrovascular stress Test; BOLD, blood oxygen level dependent; CBF,
cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen; CSF, cerebrospinal fluid; CVR,
cerebrovascular reactivity; EF, executive functioning; EQD2, equivalent total doses per 2-Gy fractions;
FMC, fine motor coordination; (f)MRI, (functional) magnetic resonance imaging; GM, grey matter;
GTV, gross tumor volume; Gy, gray; IPS, information processing speed; MEDI, morphology en-
abled dipole inversion; ME-GRE, multi-echo gradient-recalled-echo (ME-GRE); NCA, neurocognitive
assessment; PetCO2, end-tidal CO2; PDF, projection onto dipole field; PLD, post label delay; PTV,
planned target volume; QQ, QSM + qBOLD; QQ-CCTV, QQ-based combined cluster analysis of time
evolution and tissue type with total variation denoising; SEPIA, Susceptibility mapping pipeline tool
for phase images; OEF, oxygen extraction fraction; ROI, region of interest; T1FFE, three-dimensional
T1 weighted fast field echo; Visuo, visuoperception; WM, white matter.

Appendix A In- and Exclusion Criteria

Inclusion criteria:

• Age ≥ 18 years;
• Either radiographic and/or histologic proof of metastatic brain disease eligible for

brain radiation therapy;
• Eligible for brain irradiation for prophylaxis or treatment;
• Expected survival ≥ 5 months, as determined by graded prognostic assessment (GPA)

score;
• Sufficient knowledge of the Dutch language to allow reliable use of the standardized

tests and understand the study information;
• Participation in the COIMBRA cohort, with given consent for filling in quality of life

questionnaires.

Exclusion criteria:

• Standard contraindications for 3T MRI scanning;
• Standard contraindications for using the RespirAct RA-MRTM MRI UNIT (see D2

IMDD 2.5 contraindications);
• Medical contraindications to limited hypercapnia (known metabolic acidosis or alkalosis);
• Unwilling or unable to cooperate with breathing maneuvers or keeping still;
• Noncompliance with prescribed anti-seizure medication;
• Severe current neurological or psychiatric diseases not related to the primary malig-

nancy or cerebral metastases;
• History of cerebrovascular disease (ischemic stroke or intracranial hemorrhage);
• Non-prophylactic use of >4 mg dexamethasone on the day of participation;
• Cardiovascular disease: congestive heart failure (New York Heart Association Class III

to IV), symptomatic ischemia, conduction abnormalities uncontrolled by conventional
intervention or myocardial infarction within past 6 months;

• Pulmonary disease: oxygen dependency at rest or with exercise, restrictive lung
disease with resting respiratory rate over 15 breaths/min;

• Concurrent severe or uncontrolled medical disease (e.g., active systemic infection);
• History of bleomycin treatment;
• Body weight < 30 kg or >100 kg;
• Pregnancy.
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Appendix B Neuropsychological Tests

Table A1. Neuropsychological tests per neurocognitive domain.

Attention

Wechsler Adult Intelligence Scale (WAIS-IV), Digit Span Forward Score
Trail Making Test (TMT), switching ratio B/A
Stroop/Delis Kaplan Executive Function System (DKEFS), switching ratio IV vs. III

Executive functioning

WAIS-IV, Digit Span Backward Score
Letter fluency (3 letters)
Stroop D’KEFS, inhibition ratio III vs. I

Memory

Hopkins Verbal Learning Test—Revised (HVLT-R), immediate, delayed and recognition
Rey–Osterieth Complex Figure Test (ROCFT), delayed copy
Visual Association Test (VAT), long form, immediate and delayed
Semantic fluency

Processing speed

TMT A
Stroop/DKEFS, naming [I] and reading [II]
Psychomotor speed
Lafayette Grooved Pegboard, dominant and non-dominant hand

Visuospatial functioning

ROCFT, direct copy
Hooper Visual Organization Test (HVOT), fragmented

Social cognition

Facial Expressions of Emotion—Stimuli and Tests (FEEST), total score

Language

HVOT, non-fragmented [clinical interpretation]

Appendix C Numerical Baseline Physiological Values

Table A2. Group mean values (standard deviation) per MRI metric (OEF, CBF, CMRO2, CVR) per
tissue type (WB, GM, WM, edema and brain metastases).

MRI Metric GM WM Edema Brain Metastases

OEF (percentage) 16.9
(1.1)

23.4
(1.5)

15.5
(6.1)

16.0
(4.3)

CBF (mL/100 mL/min) 41.0
(9.1)

29.6
(7.0)

22.8
(5.2)

46.8
(25.5)

CMRO2 (µmol/100 g/min) 60.1
(10.7)

53.7
(12.3)

27.9
(13.4)

63.6
(38.1)

CVR (∆BOLD/∆PetCO2) 0.17
(0.06)

0.11
(0.04)

0.05
(0.05)

0.10
(0.09)

Abbreviations: GM, grey matter; WM, white matter.
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Figure A4. Voxel-wise correlation values for the association between delivered dose and post-
radiotherapy change in OEF, CBF, CMRO2 and CVR in healthy-appearing brain tissue. Left col-
umn shows box-plots of the correlation values. p-values of the one-sided Wilcoxon signed-rank
test are shown in the upper corner. Left column shows the correlation values for each individ-
ual patient. Abbreviations: CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen;
CVR, cerebrovascular reactivity; OEF, oxygen extraction fraction.
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Figure A5. Visual comparison of MRI-related and cognitive changes in all subjects. Pre- and post-
radiotherapy MRI maps are shown separately for pre-radiotherapy (T0) and three months post-
radiotherapy (T1). Additionally, the delivered radiotherapy dose and difference scores (T1–T0) for 
the MRI maps are shown alongside the cognitive changes that were observed across the cognitive 

Figure A5. Visual comparison of MRI-related and cognitive changes in all subjects. Pre- and post-
radiotherapy MRI maps are shown separately for pre-radiotherapy (T0) and three months post-
radiotherapy (T1). Additionally, the delivered radiotherapy dose and difference scores (T1–T0) for
the MRI maps are shown alongside the cognitive changes that were observed across the cognitive
domains. Hereby grey indicates stable performance, green improvement, red decline and yellow mixed
response. As some patients did not perform the CVR assessment post-radiotherapy, no difference maps
for CVR are available for those patients. Abbreviations: CBF, cerebral blood flow; CMRO2, cerebral
metabolic rate of oxygen; CVR, cerebrovascular reactivity; EF, executive functioning; FMC, fine motor
coordination; IPS, information processing speed; OEF, oxygen extraction fraction; Visuo, visuoperception.
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