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Simple Summary: Colorectal cancer (CRC) is among the leading causes of cancer-related deaths.
Despite extensive efforts, a limited number of biomarkers and therapeutic targets have been identified.
Therefore, novel prognostic and therapeutic targets are needed in the management of patients and
to increase the efficacy of current therapy. The majority CRC patients follow the conventional
chromosomal instability (CIN), which is started by several mutations such as APC, followed by
genetic alterations in KRAS, PIK3CA and SMAD4, as well as the hyperactivation of pathways such as
Wnt/TGFβ/PI3K. Although the underlying genetic changes have been well identified, the mutational
signature of tumor cells alone does not enable us to subclassify tumor types or to accurately predict
patient survival and suppression of those pathways have often not been effective in treatment. Our
data showed some new genetic variants in ASPHD1 and ZBTB12 genes, which were associated with
a poor prognosis of patients.
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Abstract: Introduction: Colorectal cancer (CRC) is among the leading causes of cancer-related deaths.
Despite extensive efforts, a limited number of biomarkers and therapeutic targets have been identified.
Therefore, novel prognostic and therapeutic targets are needed in the management of patients and
to increase the efficacy of current therapy. The majority CRC patients follow the conventional
chromosomal instability (CIN), which is started by several mutations such as APC, followed by
genetic alterations in KRAS, PIK3CA and SMAD4, as well as the hyperactivation of pathways such as
Wnt/TGFβ/PI3K. Although the underlying genetic changes have been well identified, the mutational
signature of tumor cells alone does not enable us to subclassify tumor types or to accurately predict
patient survival and suppression of those pathways have often not been effective in treatment. Our
data showed some new genetic variants in ASPHD1 and ZBTB12 genes, which were associated with
a poor prognosis of patients. Colorectal cancer (CRC) is a common cancer associated with poor
outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets
to improve outcomes. This study aimed to identify genetic variants and differentially expressed
genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large
cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to
identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and
Human Disease Ontology were employed to study the biological process and pathways involved
in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox
regression and Kaplan–Meier analysis. The STRING database was used to construct a protein–protein
interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and
the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified
genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene
variants affecting the regulation of candidate gene expressions were further validated followed
by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in
the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1
and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination
of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with
an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of
these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic
variants—the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1—as being
potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof
of concept for the prognostic values of two novel genes—ASPHD1 and ZBTB12—and their associated
variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate
the value of emerging biomarkers in colorectal cancer.

Keywords: machine learning; colorectal cancer; bioinformatics; biomarker; prognosis

1. Introduction

Colorectal cancer (CRC) is the second most common cause of cancer-related mortal-
ity [1], and its incidence is increasing despite the advances in the detection of prognostic
and/or therapeutic targets. This is partly due to the limited number of therapeutic agents
that have been identified. A high proportion of patients with CRC develop metastatic
cancer(s) or become resistant to therapy. Therefore, novel prognostic biomarkers and new
therapeutic targets that can help to assess the risk of developing CRC recurrence or increase
the efficacy of current therapy are urgently needed.

Integrated analyses of multi-omics data provide useful insight into the pathogenesis of
CRC and help to identify novel diagnostic and prognostic biomarkers. With the success of
artificial intelligence technologies, machine learning (ML) is being used in healthcare. ML
methods provide novel techniques of integration and analyzing omics for the discovery of
novel biomarkers [2,3]. Hammad and collaborators [4] identified 105 differential expression
genes (DEGs) using datasets from the Gene Expression Omnibus (GEO). Functional enrich-
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ment analysis revealed that these genes were enriched in cancer-related biological processes.
The protein–protein interaction (PPI) network selected 10 genes, including IGF1, MYH11,
CLU, FOS, MYL9, CXCL12, LMOD1, CNN1, C3, and HIST1H2BO, as hub genes. Support
Vector Machine (SVM), Receiving Operating Characteristic (ROC), and survival analyses
demonstrated that these hub genes can be considered potential prognostic biomarkers
for CRC.

Maurya et al. [5] used Least Absolute Shrinkage and Selection Operator (LASSO) and
Relief for feature selection from the Cancer Genome Atlas (TCGA) dataset and applied RF,
K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) to check the accuracy
of the models. The joint set of selected features between LASSO and DEGs was 38 genes,
among which VSTM2A, NR5A2, TMEM236, GDLN, and ETFDH were correlated with the
overall survival (OS) of patients with CRC and could be used as prognostic biomarkers. For
example, Liu et al. [6] identified 16 lncRNAs as an immune-related lncRNA signature (IRLS)
for predicting patients’ prognosis of CRC using machine learning-based integrated analysis.
They performed further investigations to validate the application of IRLS in practice. The
efficacy of immune-related lncRNA signature was validated using qRT-PCR on CRC tissues
collected from 232 patients. A prospective cohort study, RECOMMEND (NCT05587452),
aimed to assess the accuracy of a novel AI-based integrated analysis screening method for
CRC and advanced colorectal adenomas using plasma multi-omics data.

Genome-wide association studies (GWAS) have already allowed significant progress
in the understanding of the complex genetics behind the pathogenesis of CRC. There are at
least three major molecular pathways that can lead to CRC, including the chromosomal
instability pathway (characterized by aneuploidy or structural chromosomal abnormalities),
chromosomal instability, and mutations (e.g., APC, KRAS, PIK3CA, SMAD4, or TP53).
There is a growing body of evidence on targeting deregulated intracellular pathways, such
as the hyperactivation of WNT–β-catenin, PI3K/Akt, or RAS signaling, although it has
been shown that inhibiting these pathways has often not been effective in the clinical
management of CRC [7–10]. Many patients with CRC had conventional chromosomal
instability (CIN), which is started by several mutations such as APC, followed by genetic
alterations in KRAS, PIK3CA, and SMAD4, as well as the hyperactivation of pathways
such as Wnt/TGFβ/PI3K. Although the underlying genetic changes have been sufficiently
identified, the mutational signature of tumor cells alone does not enable us to subclassify
tumor types or to accurately predict patients’ survival, and the suppression of those
pathways has often not been effective in treatment [11]. In this study, we attempted to
develop and validate novel prognostic biomarkers based on ML-based integrated analysis
as well as validation of novel candidate genes in two additional cohorts of CRC in DNA and
RNA levels using whole exome sequencing (WES) and reverse transcription polymerase
chain reaction (RT-PCR), respectively.

2. Materials and Methods
2.1. Data Sources and Data Processing

RNA-sequencing (RNA-seq) expression data and clinicopathological information were
retrieved from The Cancer Genome Atlas (TCGA) database, which included 287 CRC tissue
samples and 41 non-cancers tissue samples. In this study, RNA-seq data were obtained
from TCGA-colorectal adenocarcinoma. Patients with colorectal cancer were classified into
early-stage and late-stage. Early-stage CRCs were classified into three subgroups based on
microsatellite instability (MSI) status: low MSI (MSI-L), high MSI (MSI-H), and MSI-stable
(MSI-S). Late-stage CRCs were classified into two subgroups based on the therapeutic
regimens (chemotherapy versus targeted therapy).

2.2. Patient’s Samples

Sixty-four CRCs were included in this study based on histological confirmation by
two pathologists. All the eligible patients were chemotherapeutic naive patients treated at
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the Omid Hospital of Mashhad University of Medical Sciences. The study was approved
by the local Hospital Ethic Committee of Mashhad University of Medical Sciences.

2.3. DNA-Seq and Whole Exome Sequencing

Data from the TCGA database were downloaded and prepared for further analysis in
the R programming language. The data were downloaded in the Mutation Annotation For-
mat (MAF). MAF is a standardized format used by TCGA for storing and analyzing various
types of somatic mutations in cancer. The patients were divided into two groups: patients
in the early stages (I, II) of CRC and patients in the advanced metastatic stage (IV). The first
group consisted of 118 patients, while the second group consisted of 28 patients. MAF data
belonging to each group is analyzed with the maftools package in R programming.

The genes with a significant p-value of less than 0.05 obtained from the survival
analysis were combined with the whole exome sequencing data of TCGA for colorectal
cancer. Then, the variants of the candidate genes obtained from sequencing data were
analyzed using the Maftools package. Then, two candidate genes, ASPHD1 and ZBTB12,
were further evaluated for their impact on gene expression using RegulomeDB and
3DSNP. Subsequently, the candidate genes were further confirmed in an additional
cohort performed for the Whole Exome Sequencing (WES) data of 15 patients with CRC,
as described previously.

2.4. Differential Gene Expression Analysis

Normalization was performed, while the PCA plots, volcano plots, heatmap, and
karyoplote were represented by the R packages “ggplot2”, “heatmap”, and karyoploteR to
visualize data. Significance analysis of differentially expressed genes (DEGs) was performed
using DESeq2 in R software with the cutoff criteria of |log fold change | ≥ 1.5 and an
adjusted p-value of <0.05.

2.5. Gene Set, Ontology, and Pathway Enrichment Analysis

The significant enrichment analysis of DEGs was assessed based on Gene Ontology
(GO), Reactom, GSEA, and Human Disease Ontology (DO). GO analysis (http://www.
geneontology.org/) is used for annotating genes and gene products and investigating the
biological aspects of high-throughput genome or transcriptome data, including biological
processes, cellular components, and molecular function. The Reactom database was used
for the analysis of gene functions in biological signaling pathways. We set a p-value < 0.05
and a false discovery rate (FDR) < 0.05 as the statistically significant criteria to output. The
whole transcriptome was employed for GSEA, and only gene sets with p-value < 0.05 and
FDR q < 0.05 were set as statistically significant criteria. Statistical significance was set
at an adjusted p-value of <0.05. Several R packages were utilized to perform enrichment
analyses, including ReactomePA, enrichplot, clusterProfiler, and topGO.

2.6. Survival Analysis

The univariate/Cox proportional hazards regression model was used to identify
DEGs that were significantly correlated with overall survival and assess the independent
prognostic factors. R version 4.2.1 software was used to analyze the data.

2.7. Machine Learning Method

Two machine learning techniques were used, including the decision tree learning and
deep learning. Deep learning models were applied to identify the effective factors. The
significant variables obtained from the feature selection method (Weight by Correlation)
were the final parameters in creating the model. The coefficient of correlation between
variables is presented as a correlation matrix. The correlation coefficient is measured from
–1 to 1; positive values represent that the variables are in the same direction, and negative
correlations show the variables in opposite directions. The lack of correlation was displayed
as 0.

http://www.geneontology.org/
http://www.geneontology.org/
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2.8. Computational Workflow

Python3.7 was utilized for modeling. Parameters of epochs = 10, activation function = Rec-
tifier, and learning rate = 0.01 were set in deep learning. The standard workflow was utilized
as follows: Splitting the source data set into a training set and test set was performed to
provide some independent evaluation levels. Subsequently, the model was optimized using
the training data and then independently evaluated using the test data. In this study, a 70/30
train/test ratio was determined for the ML models. For each workflow, a model with the
fixed optimal hyperparameter values was retrained on data and randomly sampled from
the complete dataset. Machine learning method assessment was performed by 5 indicators,
including accuracy, R2, MSE, and AUC.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.

MSE (Mean Squared Error) = (1/n) × Σ (actual − forecast)2

where Σ represents a symbol that means “sum”, n is the sample size, actual is the actual
data value, and the forecast is the predicted data value.

R2 (R-Squared) = 1 − Unexplained Variation/Total Variation

R2 is the coefficient of determination, and it tells you the percentage variation in y
explained by x-variables. AUC (Area Under the Curve) represents the degree of separability
and illustrates the capability of the model in distinguishing the classes.

2.9. Protein–Protein Interaction (PPI) Network

The STRING database (https://string-db.org/) was checked to find the relationship
between the studied proteins obtained from DEG and the proteins that are directly or
indirectly involved in the development of cancers. A minimum effective binding score of
≥0.4 was established. Genes with significant interactions were screened.

2.10. Kaplan–Meier Survival Curve

Kaplan–Meier survival curve comparison was conducted to measure the prognostic
value of candidate genes in CRC using the log-rank test.

2.11. Receiver Operating Characteristic (ROC) Curve Analysis

Receiver operating characteristic (ROC) curves are a fundamental analytical tool for
assessing diagnostic tests and identifying diagnostic biomarkers. ROC curve analysis
evaluates the accuracy of a test to differentiate between diseased and healthy cases, thereby
measuring the overall diagnostic performance [12]. A ROC curve and the area under the
curve (AUC) were employed to determine the specificity, sensitivity, likelihood ratios,
positive predictive values, and negative predictive values using the R package (pROC,
version 1.16.2).

2.12. Quantitative Real-Time-PCR Validation

Total RNAs were extracted from tissues using a total RNA extraction kit according
to the manufacturer’s protocol (Parstous, Tehran, Iran). RNA quantity and quality were
assessed using a Nanodrop 2000 spectrophotometer (BioTek, USA EPOCH), and forty RNAs
that passed the quality control were used for the next step. The RNAs were then reverse-
transcribed into complementary DNA (cDNA) using a cDNA Synthesis Kit (Parstous,
Tehran, Iran) according to the manufacturer’s instructions. Primers were designed (Forward
Reverse: ASPHD1: AGTGGCTCACAATGGCTCC and AAGACAAAGTCGAGGGCCTG
and ZBTB12: TTGCTCCTCTCCTGCTACACG and AACTGGCTGAGGGCATTCCG), and
RT-PCR was performed via the ABI-PRISM StepOne instrument (Applied Biosystems,

https://string-db.org/
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Foster City, CA, USA) using the SYBR green master mix (Parstous Co. Tehran, Iran).
Gene expression data were standardized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) using a standard curve of cDNAs obtained from quantitative polymerase chain
reaction (qPCR) Human Reference RNA (Stratagene, La Jolla, CA, USA).

3. Results
3.1. Whole Exome Sequencing

The Mutation Annotation Format (MAF) data were divided into two groups: patients
in the early stages and advanced metastatic stage, as shown in Figures 1 and 2, containing
118 and 28 patients, respectively. The MAF data were analyzed using the maftools package
in R programming. Figures 1 and 2 show different plots, including plot maf Summary,
oncoplots, Transition and Transversions reports, Plotting VAF (Variant Allele Frequencies),
Somatic Interactions reports, Drug–Gene Interactions, and Oncogenic Signaling Pathways
to visualize the MAF distribution in a different group. As shown in Figures 1A and 2A, in
the early and late stages, missense mutations were more frequent than other mutations,
and they were typically referred to as single-nucleotide polymorphism (SNP) types. Ad-
ditionally, in both groups, 70–71% of patients had mutations in their APC or TP53 genes.
Most of the variants are involved in Wnt/B-catenin _signaling, Genome integrity, and
MAPK signaling (Figures 1B and 2B). The clonal status of the most mutated genes can be
estimated using the Variant Allele Frequencies plot; clonal genes usually have an average
allele frequency of about 50% in pure samples. In the early stages of tumor development,
TP53 was observed to have clonal status in the tumor tissue, while SMAD4, RYR4, and
TP53 exhibit such a status in the late stages, as shown in Figures 1D and 2D.
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Figure 1. Visualization and summary of the analysis results of MAF data in the early-stage group
(I, II stages) with the maftools package. (A) Bar and box plots display the frequency of different
variants across samples (DEL: Deletion, INS: Insertion, SNP: Single-nucleotide polymorphism, ONP:
Oligo-nucleotide polymorphism). (B) Oncoplots (note: variants annotated as Multi_Hit are genes
that are mutated repeatedly within the same sample). (C) Transition and Transversion mutations (Ti:
Transition; Tv: Transversions). (D) A boxplot of Variant Allele Frequencies. (E) Somatic Interactions
show results of exclusive/co-occurrence event analysis. (F) Drug–gene interaction analysis based on
the Drug–Gene Interaction database. (G) Oncogenic Signaling Pathways.
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Figure 2. Visualization and summary of the analysis results of MAF data in the advanced-stage
group (IV stage) with the maftools package. (A) Bar and box plots display the frequency of different
variants across samples (DEL: Deletion, INS: Insertion, SNP: Single-nucleotide polymorphism, ONP:
Oligo-nucleotide polymorphism). (B) Oncoplots (note: variants annotated as Multi_Hit are genes
that are mutated repeatedly within the same sample). (C) Transition and Transversion mutations (Ti:
Transition; Tv: Transversions). (D) Boxplot of Variant Allele Frequencies. (E) Somatic Interactions
show the results of exclusive/co-occurrence event analysis. (F) Drug–gene interaction analysis based
on the Drug–Gene Interaction database. (G) Oncogenic Signaling Pathways.

Somatic Interactions analysis indicated exclusive or co-occurrence (Figures 1E and 2E).
Mutually exclusive events happen in cancer when mutations in one gene prevent the occurrence
of mutations in another gene. Co-occurring events, on the other hand, arise when mutations
in two or more genes occur together more frequently than would be expected by chance.
Determining mutually exclusive genes implies that these genes may participate in the same
pathway or process, and there might be functional overlap between them. On the other hand,
identifying genes that co-occur may indicate that they collaborate to facilitate the growth
of tumors, or that their cumulative impact is essential for the development of cancer. The
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interaction between genes and drugs that target tyrosine kinase, transcription factor complex,
DNA repair, and other related processes is illustrated in Figures 1F and 2F. The involvement of
mutated genes in colorectal cancer across different oncogenic signaling pathways, including
RTK-RAS, Wnt, Hippo, Notch, and others, is demonstrated in Figures 1G and 2G.

3.2. Gene Expression Profiling, Identification of DEGs, and Pathway Enrichment Analysis

We performed gene expression profiling in 287 CRC cases, analyzed by the DESeq2
package, according to the adjusted p-value of <0.05 and a |logFC| ≥ 1.5 (Table S1). The PCA
plots, volcano plots, and heat maps of each subgroup are shown in Figures 3 and S1. Moreover,
the gene expression of each subgroup, obtained from the DEG analysis was exhibited in the
ideogram of chromosomes using the karyoploteR package (Figure 3C). Enrichment analysis
showed that DEGs were significantly enriched in biological processes related to cancer pro-
gression. Based on GO analysis, the main biological processes involving the DEGs included
ion homeostasis, inorganic cation transmembrane transport, and the regulation of hormone
levels. In terms of cellular components, the DEGs were mostly enriched in the external
encapsulating structure and extracellular matrix (ECM). In terms of molecular functions, the
DEGs were linked by cation transmembrane transport activity, receptor regulator activity,
signaling receptor activator activity, etc. (Figures 4A and S2–S6).
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pathways in colorectal adenocarcinoma (COAD). The p-value is less than 0.05 and is shown by the
color. (D) A Venn diagram indicating the number of survival-related genes and the overlap between
the different subgroups.

GSEA analysis showed that there was a relationship between identified DEGs and
cell cycle, cell cycle checkpoint, DNA repair, mitotic nuclear division, cellular response
to DNA damage stimulus, programmed cell death, epithelial cell differentiation, DNA-
binding transcription factor activity, regulation of transcription by RNA polymerase II, Wnt
signaling pathway, keratin filaments. According to the Reactom database analysis, DEGs
were involved in GPCR signaling and its downstream signaling pathways, the regulation of
Insulin-like growth factor (IGF), SLC-mediated transmembrane transport, the degradation
of the extracellular matrix (ECM), collagen degradation, biological oxidation, and the
activation of matrix metalloproteinases. (Figure 4B,C).

To further explore the prognostic value of emerging DEGs, we performed univariate
Cox proportional hazards regression (Table S2).
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3.3. Machine Learning Analysis

The results of the ML analysis are shown in Table 1. The deep learning method
achieved an accuracy of 97.14%, 97%, 98%, and 92% for predicting CRC in the MSI-H, MSS,
chemotherapy, and targeted therapy subgroups, respectively, with AUC values of 1.0, 1.0,
1.0, and 0.88. This model had the best performance in the MSI-H and MSS subgroups.
Then, 14 candidate genes were identified as novel genes which were dysregulated in
both DNA and RNA levels. Also, the candidate genes and common genes resulting from
the survival analysis were then displayed on a Venn diagram (Figure 4D and Table S3).
Following the visualization described in the MAF data analysis stage, 232 variants from
14 candidate genes related to survival were analyzed (Figure 5). Then, we confirmed the
candidate genes in an additional cohort of our patients, which was detected by whole
genome sequencing (WES) in 15 cases. Then, 11 genes emerged between the different
cohorts, including ASPHD1, C2orf61, C6orf223, CADPS, CCDC150, DCAF4L1, MIA, NEK5,
ONECUT3, PNPLA3, and TMEM145 (Table S4).

Table 1. Results of machine learning analysis.

Subgroups R2 AUC MSE RMSE Accuracy Prauc
MSI-H 0.99 1.0 1.95 0.0044 97.14% 1.0
MSI-S 0.99 1.0 0.0023 0.0489 97% 1.0
Receiving chemotherapy 0.95 1.0 0.0076 0.0876 98% 1.0
Receiving targeted therapies 0.64 0.88 0.0554 0.0235 92% 0.95
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3.4. The Prognostic Value of ZBTB12 and ASPHD1

Of note, RNA-seq data certified the dysregulation of candidate genes identified from
Ml and DNA-seq and shortlisted ZBTB12 and ASPHD1 as the disease-associated genes
(Figure 6). According to the Human Protein Reference Database, ZBTB12 and ASPHD1
interact with HRAS, Ras-associated protein 1, and HRAS, PRRC2A, MSL3, and PIK3CA
(Figure 6A,B). The results of WES found nine genetic variants in ASPHD1 and ZBTB1
(Figure 6C,D). According to the RegulomeDB database and 3DSNP, the rs925939730 variant
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of the ASPHD1 and rs1428982750 variant of the ZBTB1 regulate gene expression and affect
chromatin state in the colon and rectum (Tables S5 and S6). Moreover, the rs1428982750
variant was linked to VARS and EHMT2 genes, and the rs925939730 variant was associated
with the MAZ gene (Tables S7 and S8). The rs1428982750 variant of the ZBTB12 gene had
a score of 0.60906 for its role in gene expression regulation. Also, this variant affected
the state of the chromatin transcription activity in the colon and rectum. Chromatin
immunoprecipitation coupled with sequencing (CHIP-seq) results showed that the ZBTB12
gene variant affects the binding site of transcription factors and various regulatory factors.
(Figure S7C). The rs925939730 variant of the ASPHD1 gene had a score of 0.77967 for its
role in regulating gene expression. Also, this variant affected the state of the chromatin
transcription activity in the colon and rectum. CHIP-seq results showed that the ASPHD1
gene variant affects the binding site of transcription factors and various regulatory factors.
(Figure 6E). The results of the rs1428982750 variant of the ZBTB12 gene in the 3DSNP
database showed that the association of this variant with the regulatory factors of gene
expression has a score of 58.4 (Figure S7A). The different positions of this variant. The
results of the rs925939730 variant of the ASPHD1 gene in the 3DSNP database showed that
the association of this variant with the regulatory factors of gene expression has a score of
59.7 (Figure S7B).
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Figure 6. (A,B) Protein–protein interaction (PPI) network of the two genes (ZBTB12, ASPHD1)
identified by survival analysis from STRING. (C,D) The different types of ZBTB12 and ASPHD1
variants, along with their respective alterations in the amino acid sequence on chromosomes, as well
as the rate of somatic mutation. (E) CHIP-seq results have shown that variants of two genes (ZBTB12,
ASPHD1) affect the binding site of transcription factors and various regulatory factors from the
Regulome DB Database. (F,G) Kaplan–Meier plot of ZBTB12 and ASPHD1 with a prognostic value,
p-value < 0.05. (H) ROC curve analysis revealed the biomarker potency of ZBTB12 and ASPHD1
individually and together using R 4.3.1’s combioROC package. (I) qRT-PCR results indicate that the
expression levels of the two genes (ZBTB12 and ASPHD1) are elevated in tumor tissue compared to
non-neoplastic tissue. *** p > 0.01; **** p > 0.001.

ROC curve data was obtained by plotting the rate of sensitivity versus specificity.
Also, Kaplan–Meier revealed that the overall survival of patients with cancer having low
ASPHD1 expression had higher overall survival (OS) than patients with cancer with high
ASPHD1 expression (p < 0.05). Similarly, cancers with high ZBTB12 expression were
associated with poor patient survival compared to cancers with low ZBTB12 expression
(p < 0.05) (Figure 6F,G). As shown in Figure 6H and Tables 2 and 3, ASPHD1, ZBTB12,
and their combination were able to discriminate CRC with an area under the curve (AUC)
of 0.948, 0.96, and 0.986, respectively. At the cutoff values of 0.863, 0.891, and 0.886, the
sensitivities of ASPHD1, ZBTB12, and their combination were 0.878%, 0.861%, and 0.934%,
respectively, with specificities of 1. The combination of ASPHD1 and ZBTB12 showed
higher AUC and sensitivity than each of these candidate genes alone.

Table 2. The area under the curve (AUC) and a cut-off value of ASPHD1, ZBTB12, and their
combination in CRC.

Biomarker AUC SE SP Cutoff ACC TN TP FN FP NPV PPV
ASPHD1 0.948 0.878 1 0.863 0.893 41 252 35 0 0.539 1
ZBTB12 0.96 0.861 1 0.891 0.878 41 247 40 . 0.506 1
Combination 0.986 0.934 1 0.886 0.942 41 268 19 . 0.683 1

Table 3. Results for the ROC curve for ASPHD1, ZBTB12, and their combination in CRC.

Biomarker Intercept Coefficients Degrees of Freedom Null Deviance Residual Deviance AIC
ASPHD1 −10.37 Log (ASPHD1 + 1):3.032 327 247.2 136.3 140.3
ZBTB12 −22.345 Log (ASPHD1 + 1):5.165 327 247.2 118.3 122.3
Combination 1 −36.814 5,6,2 327 247.2 63.99 69.99

To further verify their values, the expression of these two candidate genes was evalu-
ated in an additional cohort of CRC via qRT-PCR. The data showed a significantly higher
expression of ASPHD1 and ZBTB12 in CRC tissues (p < 0.05) (Figure 6I).

4. Discussion

Colorectal cancer ranks as the third most common cause of cancer-related mortal-
ity [13]. Early diagnosis of this disease leads to more effective treatment, reduced treatment
costs, reduced disease progression, and decreased morbidity and mortality. Since cancer
is intimately linked to genetic alterations, pinpointing these changes is especially critical



Cancers 2023, 15, 4300 14 of 18

for early diagnosis. Implementing the right analyses of gene expression information can
promote optimal treatment selection in the early stages of the development of various
cancers. Identifying prognostic biomarkers and achieving diagnosis constitute a worth-
while tactic for disease management and care [14,15]. Artificial intelligence (AI) and deep
learning (DL) are being widely adopted in medicine to enhance diagnosis, treatment, and
research on diagnosing colorectal cancer (CRC) has followed this trend. DL is now inte-
grated across CRC diagnostic approaches such as histopathology, endoscopy, radiology,
and biochemical blood tests. By automating complex data analysis, DL allows for more
precise CRC detection and characterization. Although AI adoption faces regulatory hurdles,
it has the potential to optimize the diagnosis of CRC recurrence and personalized care
by synthesizing diverse medical data and uncovering new insights. Overall, AI and DL
are transforming the management of patients with CRC through improved diagnostic
accuracy [16].

Our previous studies identified prognostic and diagnostic biomarkers in colorectal
cancer and gastric cancer using RNA-seq analysis and machine learning [17–19]. In contrast
to our previous study, the current study was designed based on an integrated two omics
and deep learning approach to identify prognostic and diagnostic biomarkers in colorectal
cancer (CRC) patients at different disease stages (early and metastatic). By combining
multi-omics data and advanced computational methods, the present study provides novel
insights into stratifying CRC patients based on genetic and expression profiles correlated
with disease progression and outcomes. To the best of our knowledge, this is the first study
showing the potential association of two genetic variants, rs1428982750 in ZBTB12 and
rs925939730 in ASPHD1 genes, and the prognostic value of these genes in colorectal cancer.
Bian Wu et al. used WES and RNA-seq to indicate prognosis prediction in patients with
stage IV colorectal cancer. The results showed the following mutations in the genes: APC,
TP53, KRAS, TTN, SYNE1, SMAD4, PIK3CA, RYR2. BRAF did not reveal any significant
associations between the mutational status of those genes and patient prognosis [20]. Our
study revealed that mutations in the genes ZBTB12 and ASPHD1 may serve as potential
prognostic markers in patients. Specifically, we demonstrated that the mutational status of
ZBTB12 and ASPHD1 was associated with clinical outcomes in the patient cohort examined.
Chen et al. analyzed gene expression data from the GEO and TCGA databases and
identified 10 hub genes with high diagnostic values based on ROC curve analysis. A nine-
gene prognostic signature was also identified and shown to predict overall survival [21].
Importantly, we validated the expression of ASPHD1 and ZBTB12 genes through qPCR
and their variants using whole exome sequencing in additional patient cohorts.

Data from the PPI network showed that ASPHD1 is related to several proteins and
genes such as KIF22, INO80E, SEZ6L2, and DOC2A, most of which are cancer-related.
Kinesin family member 22 (KIF22) is a regulator of cell mitosis and cellular vesicle transport.
It is involved in spindle formation and the movement of chromosomes during mitosis. The
alteration of KIF22 is associated with several cancers, including CRC. A previous study
indicated that KIF22 is upregulated in CRC samples and that KIF22 expression is correlated
with tumors and the clinical stage of CRC. Moreover, the suppression of KIF22 inhibited
cell proliferation and xenograft tumor growth [22].

SEZ6L2 regulates cell fate by involving the transcription of type 1 transmembrane
proteins. A study showed that SEZ6L2 was significantly upregulated in CRC tissues, and
this upregulation was associated with poor prognosis in patients with CRC [23]. Lastly,
INO80E is involved in transcriptional regulation, DNA replication, and probably DNA
repair. Therefore, we hypothesize that ASPHD1 may play a critical role in the pathogenesis
of CRC.

PRRT2 is also related to several kinds of human solid tumors [24]. The results of
the Protein–protein interaction network demonstrated that ZBTB12 is linked to numerous
genes, including HRAS, PIK3CA, MSL3, and PRRC2A.

Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), an important kinase involved
in the PI3K/AKT1/MTOR pathway, plays a crucial role in the growth and proliferation of



Cancers 2023, 15, 4300 15 of 18

various solid tumors, and PIK3CA is one of the most frequently mutated genes in CRC [25].
Harvey rat sarcoma viral oncogene homolog (HRAS) is involved in the activation of Ras
protein signal transduction, and its mutations can be found in bladder and head and neck
squamous cell carcinomas [26]. It has been shown that proline-rich coiled-coil2A (PRRC2A)
takes part in tumorigenesis and immunoregulation. Recent studies have revealed that
PRRC2A impacts pre-mRNA splicing and translation initiation [27]. In this context, several
studies have demonstrated that there is a relationship between PRRC2A and several kinds
of human cancers, such as hepatocellular carcinoma [28] and non-Hodgkin lymphoma [29].

Collectively, ASPHD1 and ZBTB12 are linked to multiple proteins and genes which are
associated with cancer initiation and progression. Moreover, our results from WES analysis
indicated that the rs925939730 variant of the ASPHD1 gene and the rs1428982750 variant
of the ZBTB1 gene regulate gene expression and affect the chromatin state in the colon
and rectum.

In addition, our findings demonstrated that there was an interaction between the
rs1428982750 variant and VARS and EHMT2 genes. Valyl-tRNA synthetase (VARS) was
linked with CRC [30], breast cancer [31], and leukemia [30]. Euchromatic histone-lysine
N-methyltransferase 2 (EHMT2) methylates histone H3 lysine 9 to generate heterochro-
matin and inhibit tumor suppressor genes [32]. Furthermore, the rs925939730 variant
was associated with the MAZ gene. MAZ acts as a transcription factor that can be com-
bined with c-MYC and GA box to regulate the initiation and termination of transcription.
The deregulated expression of MYC-associated zinc finger protein (MAZ) is correlated
with the progression of tumors such as colorectal adenocarcinoma [33], hepatocellular
carcinoma [34], renal cell carcinoma [35], glioblastoma [36], breast carcinoma [37], and
prostate adenocarcinoma [38]. Altogether, the rs925939730 and rs1428982750 gene variants
of ASPHD1 might be involved in gene expression and epigenetic regulation.

5. Conclusions

Our data show the prognostic value of ASPHD1 and ZBTB12 in CRC, warranting
further investigations to validate their clinical potential as prognostic markers and pre-
dictive markers for colorectal cancer. Our study had some limitations and challenges,
including the difficulty we experienced obtaining access to more patients for evaluating
gene expression, carrying out functional studies, and analyzing other omics data to assess
important pathways and biological processes in cancer. Expanding our omics approaches
beyond just transcriptomics to also include proteomics, metabolomics, etc., would provide
a more comprehensive understanding of the key mechanisms in cancer. Overcoming these
limitations will be critical for future efforts to elucidate the complex molecular landscape
of cancer and identify novel therapeutic targets or biomarkers.
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