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Simple Summary: The article presents the role of alpha-fetoprotein in the diagnosis and monitoring
of treatment for selected genetic diseases and early childhood cancers. The authors draw attention to
diagnostic pitfalls related to physiological AFP production in the first year of life, inconsistencies in
laboratory tests, and result interpretation.

Abstract: Alpha-fetoprotein (AFP) is a protein commonly found during fetal development, but its
role extends beyond birth. Throughout the first year of life, AFP levels can remain high, which
can potentially mask various conditions from the neurological, metabolic, hematological, endocrine,
and early childhood cancer groups. Although AFP reference values and clinical utility have been
established in adults, evaluating AFP levels in children during the diagnostic process, treatment, and
post-treatment surveillance is still associated with numerous diagnostic pitfalls. These challenges
arise from the presence of physiologically elevated AFP levels, inconsistent data obtained from
different laboratory tests, and the limited population of children with oncologic diseases that have
been studied. To address these issues, it is essential to establish updated reference ranges for AFP in
this specific age group. A population-based study involving a statistically representative group of
patients could serve as a valuable solution for this purpose.

Keywords: AFP; genetic syndrome; neonatal tumor; pediatric oncology; diagnostic pitfalls

1. Introduction

The half-life of AFP in neonatal and infant populations has been determined to be
5.5 days at birth, 11 days between 14 and 30 days after birth, and 33 days up to 4 months
of age. The rate at which AFP degrades depends on factors such as birth weight, feeding
method, gestational age at birth, and the additional production of this fetal protein by
the neonatal liver after delivery [1] (see Table 1 and Figure 1). Immediately after delivery,
newborns typically exhibit alpha-fetoprotein (AFP) concentrations ranging from approxi-
mately 17,200 to 44,300 ng/mL [1,2]. However, prematurely born neonates tend to have an
average concentration of 158,125 ng/mL [2]. The higher AFP level in premature neonates is
attributed to their lower body weight and a less pronounced dilution effect. Over the course
of the first 12 months after birth, the infant’s AFP concentration gradually decreases [1,2].
Pediatricians should bear in mind that the AFP levels can be high in first year of life and
not implement hasty oncological diagnostics. Generally, the most significant decline occurs
within the first 8 months postpartum, after which the AFP levels reach values typical for
adults, with a maximum of 10–15 ng/mL in the serum [1,2].
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Table 1. Serum alpha-fetoprotein (AFP) levels in term neonates [2].

Neonatal Age (Days) AFP Mean (ng/mL) AFP 95.5% Interval (ng/mL) Half-Life (Days)

0 41,687 9120–190,546

1 36,391 7943–165,959

2 31,769 6950–144,544

3 27,733 6026–125,893

4 24,210 5297–109,648

5 21,135 4624–96,605 5.1

6 18,450 4037–84,334 5.1

7 16,107 3524–73,621 5.1

8–14 9333 1480–58,887 5.1

15–21 3631 575–22,910 5.1

22–28 1396 316–6310 5.1

29–45 417 30–5754 14

46–60 178 16–1995 14

61–90 80 6–1045 28

91–120 36 3–417 28

121–150 20 2–216 42

151–180 13 1.25–129 42

181–720 8 0.8–87 no correlation
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Figure 1. Serum AFP changes (and 95.5% interval) in term neonates modified from [2].

2. AFP—Diagnostic Difficulties in Pediatrics

The precise definition of reference ranges and clinical utility of AFP in adults contrasts
with the ambiguity surrounding its application in pediatric oncology. Studies conducted
in pediatric oncology since the 1970s have employed varying reference standard ranges
for AFP and lack stringent reference values for biological materials other than serum, such
as cerebrospinal fluid (CSF) [3]. Several factors contribute to this situation, which are
outlined below.
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2.1. Postpartum AFP Concentrations

Differentiating pathological AFP concentrations in newborns poses significant chal-
lenges due to the ongoing high physiological production of AFP during the fetal period.
The AFP level produced by a neoplasm may not exceed the physiological concentrations
observed in infancy. Therefore, it becomes particularly challenging to exclude a neoplastic
process, especially in children born prematurely and up to 4 months of age [3,4].

2.2. Methods of Determination and Establishment of AFP Reference Values

Current recommendations in pediatric oncology continue to rely on AFP reference
ranges that are based on tests conducted over 40 years ago, utilizing RIA tests calibrated
to internal standards. However, the diagnostic tests employed today yield results that are
essentially incomparable to those obtained 20–40 years ago. Furthermore, due to the lack
of studies employing modern tests on newborns, the veracity of the previously reported
high physiological values for the neonatal period remains uncertain.

2.3. Comparing the Results of AFP Concentrations

Currently, the harmonization of diagnostic tests for AFP among laboratories con-
tinues to rely on the 1975 WHO international standard. The test results are reported in
international units (IU). However, the prevailing practice is to convert these results into
micrograms per liter or milliliter (µg/L or µg/mL). It is usually assumed that 1200 ng of
AFP corresponds to 1000 IU [5]. However, the interpretation of this conversion can vary
depending on the specific test, leading to significant variability in results. In fact, some
laboratories even dispute the validity of this standard altogether [3].

2.4. Size of Study Groups

Setting reference standards for AFP in pediatric oncology is challenging due to the
limited number of cases available for testing. The rarity of cancer in children makes it
difficult to obtain data from a larger population, resulting in a reliance on case reports and
small case series. As a consequence, the reliability of reference ranges for AFP in pediatric
oncology is relatively low. It may be more practical to focus on evaluating the dynamics of
changes in AFP concentrations, which tend to increase for primary lesions and gradually
decrease for recurrent tumors. Additionally, assessing the half-life of AFP, which is pro-
longed in tumors, can provide valuable information [6]. In pediatric oncology, diagnostic
imaging and histopathology should be prioritized as more reliable methods, while AFP
evaluation serves a complementary role. Nonetheless, there are selected genetic syndromes
and pediatric cancers in which AFP holds the potential for diagnostic, monitoring, and
prognostic applications (Figure 2).
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syndrome, tyrosynemia type I, neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD),
progressive familiar intrahepatic cholestasis (PFIC2), transaldolase deficiency (TALDO), hepatitis B
(HBV); 3—malignant saccrococygeal GCT; 4—Fanconi anemia; 5—congenital hypothyroidism, van
Wyk–Grumbach syndrome.

3. Liver
3.1. Ataxia Telangiectasia (AT)

The condition occurs with a frequency of 1:40,000 to 1:100,000 live births, making it
the second most common autosomal recessive ataxia in children, following Friedrich ataxia.
The underlying cause is a mutation in the ATM gene located on chromosome 11 at locus
q22–23, which is responsible for DNA repair and regulation of the cell cycle by controlling
the synthesis of the suppressor protein TP53. In 90% of patients, AFP levels are elevated,
which distinguishes it from Friedrich ataxia [7,8]. This was demonstrated by Waldmann
et al. in the 1970s, who conducted a study involving parents and siblings of children with
AT [7,8]. AFP testing is not feasible in AT patients until they reach 2 years of age, primarily
due to the high physiological levels of AFP in infants and the postnatal decline dynamics.
Carrier individuals with the mutated gene typically have normal AFP levels, while AFP
levels are high and tend to increase with age in AT patients [9]. There are several hypotheses
regarding elevated AFP levels in certain conditions. The first hypothesis suggests that
the increase in AFP is associated with progressive liver damage. The second hypothesis
focuses on the role of the suppressor protein TP53, which plays a role in DNA damage
repair and also acts as a repressor of the gene responsible for AFP synthesis during liver
development and regeneration. When TP53 is deficient due to ATM mutations, AFP levels
rise. A third hypothesis suggests that AFP synthesis increases in response to the damaged
CNS’s need for building blocks for cell membranes during the process of myelination. AFP
serves as a carrier protein for polyunsaturated fatty acids (PUFAs), which are essential for
this purpose [9–12].

3.2. Primrose Syndrome

The condition occurs with a frequency of 1:1,000,000 births and follows an autosomal
dominant inheritance pattern. It is associated with a de novo mutation in the ZBTB20
gene, which leads to a microdeletion at locus 3q13.31. The ZBTB20 gene acts as a key
repressor of DNA transcription during birth and is responsible for various processes such as
neurogenesis, fetal liver development, cell growth, detoxification, and glucose metabolism.
The clinical presentation of the condition includes intellectual disability, macrocephaly,
high postnatal growth, cataracts, deafness, auricular calcifications, and myopathy. The high
levels of AFP observed in this condition are a consequence of the mutation in the ZBTB20
gene, which leads to the unblocking of AFP synthesis in the liver (normally, the gene acts
as a repressor) [13].

3.3. Type I Tyrosinemia

The condition is found in approximately 1:100,000 births and follows an autosomal
recessive inheritance pattern due to a mutation in the FAH gene located on chromosome
15q23–q25. This mutation results in a deficiency of fumarylacetoacetase hydrolase, leading
to the accumulation of toxic tyrosine metabolites, namely fumarylacetoacetate and maley-
lacetoacetate, in the liver and kidneys. These metabolites have mutagenic properties and
inhibit porphobilinogen synthesis, leading to porphyria-like seizures [14].

In the early form of the disease (<2 months of age), there is acute liver failure, which
carries a high mortality rate. High levels of AFP, a marker of early liver regeneration
that begins in fetal life, are particularly observed in this form. In the late form (occurring
after 6 months of age), cirrhosis, hypophosphatemic rickets, and liver failure are typical.
With time, the risk of liver cancer increases; it occurs in 37% of patients over 2 years of
age, typically between 4 and 5 years of age. The most common form is hepatocellular
carcinoma (HCC), but hepatoblastoma (HB), as well as mixed types, can also occur. AFP
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serves as an early marker of hepatic remodeling, neoplastic transformation, and porphyria
seizures in this condition [15–17]. According to Koelink et al., not only an increase in
AFP levels but also a sustained steady level with a weak downward trend can predict
the onset of HCC [18]. Long-term administration of nitisinone (2-(2-nitro-4-3 trifluoro-
methylbenzoyl)-1,3-cyclohexanedione—NTBC), a well-established therapy for patients
with type I tyrosinemia, is recommended. NTBC reduces the risk of HCC and porphyria
attacks and leads to a decrease in AFP levels [19,20]. However, Bhushan et al. observed in
their patient cases that even with long-term NTBC therapy and normalization of AFP, the
risk of HCC is not completely eliminated [16,21].

3.4. Progressive Familial Intrahepatic Cholestasis—PFIC2

The condition occurs with a frequency of approximately 1:50,000–1:100,000 births and
follows an autosomal recessive inheritance pattern. The underlying mutation affects the
ABCB11 gene, located on chromosome 2 (2q24), which is responsible for encoding the BSEP
protein. BSEP is a membrane transport protein found on the surface of hepatocytes. The
mutation disrupts the normal transport of bile from hepatocytes to the bile ducts, resulting
in its accumulation within hepatocytes. This leads to chronic inflammation and carcinogen-
esis. Patients with this condition typically present with jaundice and increased pruritus
either in the newborn period or early childhood. It accounts for approximately 10–15% of
cases of neonatal cholestasis. The disease progresses rapidly, resulting in cirrhosis, HCC
(5–15% of children with PFIC-2), biliary tract cancer, and liver transplantation. AFP is a
marker of increased disease progression to neoplasia [17,22,23].

3.5. Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency—NICCD

NICCD is an autosomal recessive disorder resulting from a mutation in the SLC25A13
gene, which is responsible for encoding the citrin protein. Citrin is a mitochondrial transport
protein involved in the urea cycle. A deficiency of citrin leads to serum hyperammonemia as
well as abnormalities in glycolysis and beta-oxidation of fatty acids. As a result, hepatocytes
are unable to utilize glucose and fatty acids as an energy source, leading to hyperlipidemia
and hepatic steatosis. The condition is most commonly reported in East Asian countries
such as China, Japan, and Korea, but cases have been documented worldwide. Neonatal
cholestasis, accompanied by low birth weight and elevated AFP levels, is a characteristic
feature. Despite these symptoms, NICCD is generally considered a benign disease, as it
tends to spontaneously resolve within the first year of life with the introduction of lactose-
free and/or medium-chain fatty acid (LF/MCT) nutrition. However, if left untreated, it can
progress to cirrhosis, necessitating liver transplantation [24–26].

3.6. Transaldolase Deficiency—TALDO

The deficiency of transaldolase, caused by a mutation in the transaldolase gene lo-
cated at 11p15.5–p15, is an autosomal recessive disorder that occurs with a frequency of
1:1,000,000 births. Transaldolase is an enzyme produced in the liver that plays a role in the
pentose phosphate pathway. Deficiency of this enzyme results in a defect in the pentose
phosphate pathway and the accumulation of polyols in the blood, urine, and CSF. Elevated
AFP levels serve as a marker of liver regeneration and tumorigenesis [27]. In a study by Ro-
dan et al., the administration of N-acetylcysteine, a precursor of glutathione, resulted in the
normalization of AFP levels and a reduced risk of HCC in later life. N-acetylcysteine was
shown to improve beta-catenin phosphorylation, which blocks carcinogenesis [28]. On the
other hand, Lipinski et al. observed a spontaneous decrease in AFP levels with increasing
age in TALDO patients without the introduction of any specific treatment [17,28–30].

3.7. Hepatitis B (HBV) in Children

The infection is primarily transmitted vertically. Approximately 90% of newborns from
HbsAg and HbeAg-positive mothers will develop chronic infections if they do not receive
postnatal immunoprophylaxis. In contrast to adults, where only 5–10% develop chronic
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hepatitis when infected, 25–90% of infected newborns experience chronic hepatitis. To
predict the occurrence of HCC, determining the levels of AFP is useful. Elevated AFP levels
typically coincide with increased aminotransferases and the presence of fibrosis, indicating
necro-inflammatory changes. Elevated AFP levels can also be observed in asymptomatic
chronic carriers with normal aminotransferase values. It is important to consider the possi-
bility of HBV infection in patients with other tumors that secrete AFP to avoid unnecessary
surgical interventions and chemotherapy [31]. A small percentage (0.01–0.03%) of children
who are chronic HBV carriers will develop HCC before reaching adulthood. Kim et al.
demonstrated that individuals with high AFP levels (>100 ng/mL) who are not diagnosed
with HCC often have either HBV or HCV infections. Furthermore, persistently high AFP
levels for over a year despite antiviral treatment significantly contribute to the development
of HCC [32]. HBV-related HCC in children predominantly affects males, occurs later in life,
and tends to be more aggressive compared to HCC caused by other factors. In countries
where neonatal HBV vaccination is implemented, the incidence of hepatitis and liver cancer
related to HBV has been dramatically reduced [17,33,34].

4. Hematopoietic System
Fanconi Anemia

The condition occurs with a frequency of 1–5/1,000,000 births and is inherited in
an autosomal recessive manner. The genetic basis of the condition involves numerous
mutations, approximately 19 in total, that affect genes responsible for DNA repair. A diag-
nostic feature is the instability of chromosome structure following exposure to alkylating
drugs. Aslan et al., based on serial measurements of serum AFP levels in pregnant carriers,
demonstrated that AFP cannot serve as a marker for amniotic fluid in prenatal diagnosis,
as even pregnant women carrying affected fetuses exhibit typical serum AFP levels [35].
In this disease, AFP levels are elevated from birth, remain constant, and are independent
of concurrent liver conditions and androgen treatment (originally, AFP measurement was
used to detect liver adenomas resulting from androgen treatment). Studies have shown that
other bone marrow disorders with a genetic basis, such as Blackfan–Diamond syndrome,
Shwachman–Diamond anemia, or congenital dyskeratosis congenital, exhibit normal AFP
levels [36]. Until recently, AFP was used as a simple diagnostic tool for Fanconi ane-
mia (FA), with studies indicating varied sensitivity: 93% sensitivity and 100% specificity
(Cassinat et al., 2000) [37]; 46% sensitivity (Aslan et al., 2002) [19]; and 71% sensitivity
(Salem et al., 2019) [17]. However, a recent study by Alter et al. suggests a sensitivity of
approximately 25%, although their study included a group of FA patients with a higher me-
dian age [36]. The primary treatment for FA is bone marrow transplantation, which does not
completely normalize AFP levels, but may slightly reduce them [29,30,38]. Regarding the
source of elevated AFP in patients, there is uncertainty. Studies by Salem et al. and Blanche
et al. demonstrated significantly higher AFP levels in patients with FANCD1/BRCA2
mutations compared to other types of mutations [36,38]. Aslan et al. propose that impaired
postnatal suppression of the AFP gene and/or a shift in production from AFP to albumin
may be contributing factors [35]. It is also believed that multipotent progenitor cells in the
bone marrow play a role. Two subtypes are recognized: fetal hepatic stem/progenitor cells
(FHSC) and intrinsic hematopoietic stem/progenitor cells (HSPC), as well as bone marrow
mesenchymal cells that can differentiate into hepatic stem cells and migrate to the liver
when it is damaged. HSPCs can also migrate to the liver and serve as precursors to oval
liver stem cells [37,39].

5. Endocrine System
Hypothyroidism

The level of AFP during fetal life is influenced by the levels of thyroid hormones. This
is because thyroid-stimulating hormone (TSH) binds with AFP in the fetal blood plasma. It
is believed that triiodothyronine (T3) plays a role in the transcriptional switch from AFP to
albumin early in life. In the absence of T3 (hypothyroidism), this physiological process is
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delayed [40]. T3 has been shown to induce the differentiation of hepatic oval cells (HOC)
into hepatocytes in the rat liver. It is worth noting that only HOC in the liver produces AFP
during infancy [7,41]. A laboratory study demonstrated that the level of AFP decreased
in mice treated with thyroxine (T4). Conversely, in cases of congenital hypothyroidism,
AFP levels increase alongside elevated TSH levels and low T4 levels. These elevated AFP
levels persist after birth, whereas in healthy children, AFP levels decrease rapidly. This is
attributed to the prolonged half-life of AFP, which extends to 12 days (typically 5–6 days),
as a result of its impaired breakdown rate in the liver due to low T4 levels [1]. AFP is also
used as a diagnostic marker for ovarian tumors in van Wyk–Grumbach syndrome, when
long-term untreated hypothyroidism in children leads to precocious puberty [42–44].

6. Cancers

In the field of pediatric oncology, AFP is utilized as a diagnostic tool and for monitoring
the effectiveness of surgical treatment and chemotherapy in cases of embryonal HB, HCC,
and germ cell tumors (GCTs) [45].

6.1. Hepatoblastoma

HB is the most common malignant liver tumor in children, accounting for 67–80% of
cases and occurring at a rate of 1–10/1,000,000 births. It represents approximately 1–2%
of pediatric cancers [46]. The tumor is predominantly localized in the right lobe of the
liver, as observed in 55–60% of cases [4]. Less than 10% of HB cases develop prenatally,
and the average age of diagnosis is 18 months. HB is more frequently diagnosed in
premature infants, particularly those with birth weights below 1500 g [47]. Prematurity
poses challenges for diagnosis due to the typically high levels of AFP in this group of
newborns compared to full-term babies. Histopathologically, HB is classified into epithelial
types (including fetal, embryonal/fetal, macrotrabecular, and small cell undifferentiated)
and epithelial-mesenchymal types (two subtypes). Some HB subtypes, such as fetal and
undifferentiated small cells, exhibit normal AFP levels [45,48]. Only around half of HB cases
show elevated AFP levels above the upper reference values, as tumor-derived AFP levels
are often not significantly higher than the physiologically high levels observed during the
first months of life [4]. In the past, AFP was considered to have prognostic value, with
very high (>1,000,000 ng/mL) or very low (<100 ng/mL) levels indicating poor prognosis
in HB [49]. However, the Children’s Hepatic Tumors International Collaboration (CHIC),
after analyzing its databases and identifying SMARCB1 mutations in a group of HBs with
the small cell undifferentiated subtype or HBs with low AFP levels (with survival rates
of 24–37.5%), concluded that some of these HBs were rhabdoid tumors with an extremely
unfavorable prognosis (3-year OS—0%). After excluding rhabdoid tumor cases from the
analyzed group, it was found that the presence of the small cell undifferentiated subtype
or low AFP levels no longer had poor prognostic significance [49]. After surgery, AFP
levels are expected to decrease below the upper reference range, and failure to do so
indicates unsuccessful tumor resection or early recurrence. Similarly, during chemotherapy,
a slow decline in AFP levels indicates an unfavorable prognosis. Following the completion
of treatment, an increase in AFP levels above age-specific reference values, even in the
absence of clinical and imaging evidence of the tumor, suggests recurrence. Currently,
there are insufficient data to determine whether there is a correlation between AFP levels at
diagnosis and relapse after complete remission (CR). A study by Li et al. showed that AFP
levels >1000 ng/mL at diagnosis are not an independent prognostic factor for relapse after
CR, as there was no statistically significant difference in relapse-free survival (RFS) (data
were inconclusive for cases <100 vs. >100) [45,48,50].

6.2. Hepatocellular Carcinoma

HCC is the second most common malignant liver tumor in children, accounting for
2–33% of cases. It occurs at a rate of 0.41/1,000,000 births. Several predisposing factors
contribute to its development, including the vertical transmission of HBV, tyrosinemia,
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progressive familial intrahepatic cholestasis, glycogen storage diseases, Alagille syndrome,
congenital portal-systemic shunts, Wilson disease, alpha-1-antitrypsin deficiency, transal-
dolase deficiency, Gardner’s syndrome, FA, ataxia-telangiectasia, familial adenomatous
polyposis, and primary sclerosing cholangitis [51] (see Table 2). HCC primarily affects
children over 5 years of age and can arise in the presence or absence of de novo cirrhosis,
sometimes associated with underlying liver diseases. Histopathologically, HCC can be
classified as conventional HCC, fibrolamellar HCC, or HCC with HB elements [52]. On
average, approximately 50% of HCC cases exhibit elevated AFP levels [51]. In the fibro-
lamellar form, only 10% of cases have elevated AFP levels. High AFP levels are associated
with higher mortality rates [52]. Surgical treatment, including complete tumor resection
(possible in only 30% of diagnosed cases) along with additional chemotherapy or liver
transplantation, is the standard approach for managing HCC [17,39,52,53].

Table 2. Common risk factors for hepatocellular carcinoma (HCC) in infancy and childhood.

Risk Factor with Elevated AFP Risk Factor with Decreased or Normal AFP

Hepatitis B Alpha-1 antitrypsin deficiency
Tyrosinemia Glycogenosis

Progressive familiar intrahepatic cholestasis type 2 Parto-systematic shunts
Transaldolase deficiency Alagille syndrome

Ataxia teleangiectasia Gardner syndrome
Fanconi anemia Familial adenomatous polyposis
Biliary artesia Budd–Chiari syndrome

6.3. Germ Cell Tumors

GCTs account for 3.5% of cancers in children up to the age of 15 and 13.9% in the
15–19 age group [54]. They are characterized by male dominance, with the exception of
SCT. GCTs encompass a group of neoplasms derived from pluripotent germ cells, includ-
ing both benign and malignant tumors. They can occur within the gonads (50% of cases
up to age 4) as well as outside the gonads (50% of cases up to age 4, and 10–15% after
puberty) [55]. These tumors are commonly found in midline locations of the body, such
as the sacrococcygeal region, mediastinum, skull (pineal region), retroperitoneal space,
nasopharynx, orbit, neck, uterus, and vagina [56]. The prevailing hypothesis is that their
presence in these locations results from the misplacement of primordial germ cells (PGCs)
during their migration from the yolk sac to the genital ridges, from which the definitive
gonads develop. Aberrant migration leads to the ectopic localization of germ cells along
the midline of the body. Malignant transformation of these cells in extragonadal sites gives
rise to GCTs [56]. Elevated levels of AFP in these tumors are attributed to the presence of
immature or malignant tissue elements derived from the yolk follicle [55,56]. The combina-
tion of AFP and beta-HCG can detect 5–60% of GCTs, depending on the histopathological
subtype, with detection rates reaching up to 85% in extracranial localizations. Only 20% of
early-stage GCTs exhibit elevated AFP levels [57,58]. According to Erlich et al., AFP alone
detects 10–60% of nonsquamous GCTs [59]. The prognostic value of AFP at the time of GCT
diagnosis remains controversial. Frazier et al., in a summary of seven trials conducted by
the Children’s Oncology Group and the Children’s Cancer and Leukemia Group, suggested
that AFP levels above 10,000 ng/mL at diagnosis were associated with a worse prognosis,
indicated by lower event-free survival (EFS) and overall survival (OS), although statistical
significance was not achieved (p = 0.45) [5,60]. In contrast, Freseneau et al., in the TGM
95 study, reported that baseline AFP levels did not affect 5-year recurrence-free survival
(5y-RFS) [61]. In adults with malignant GCTs, the decrease in AFP during treatment is
an important prognostic factor [61]. However, in children, there is no consensus in the
literature regarding the prognostic significance of AFP normalization. According to the
French TGM 95 study conducted by Freseneau et al., the predicted time to normalization
of AFP did not have significant prognostic value [61]. On the other hand, a study by
Faure-Conter et al. on the TGM13-NS protocol, which aimed to achieve high cure rates
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with minimized chemotherapy doses in children with GCT, demonstrated that AFP nor-
malization had a prognostic impact on EFS (HR = 1.003 [1000–1007]) [62]. O’Neill et al.,
analyzing data from the Children’s Oncology Group (COG) AGCT0132 protocol, showed
that children who had a satisfactory decrease in AFP (with normalization of any of the
first two measurements more than 7 days after starting chemotherapy or an AFP half-life
of ≤7 days) had a lower cumulative 3-year recurrence rate compared to those with an
unsatisfactory decrease (11 vs. 38%) [63]. AFP can serve as a useful tool for diagnosing
GCT recurrences; however, it cannot be solely relied upon as a diagnostic measure. In a
study conducted by Trigo et al., it was found that 68% of patients with recurrence had ele-
vated levels of the marker (AFP or beta-HCG) at both initial diagnosis and recurrence [64].
Conversely, Keskin et al. demonstrated no significant disparity in AFP levels between
patients with and without GCT recurrence, despite receiving the same treatment regimen.
The only distinction observed was in the AFP half-life [65]. Nevertheless, it is important to
note that not all GCTs secrete AFP, and some present challenges in terms of localization
through biopsy. Therefore, a more precise alternative appears to be emerging in the form
of microRNAs (miR-371a-3p/-5p—373 and miR-302/367), which offer simplicity and ease
of use for diagnostic purposes. These microRNAs are short single-stranded fragments
of noncoding RNA responsible for regulating gene expression by influencing translation
blocking or mRNA degradation. Alterations in microRNA expression contribute to the
initiation of carcinogenesis [66]. In terms of diagnosis and recurrence monitoring, miRNA
demonstrates higher specificity (93.4%) and sensitivity (88.7%) compared to AFP, regardless
of the histopathological type, patient age, or anatomical location of the tumor [57,67,68].

6.4. Intracranial Germ Cell Tumors (IC-GCTs)

IC-GCTs account for 0.3–3.4% of childhood CNS tumors in North America and Europe,
but the incidence rises to 15% in East Asia [69]. IC-GCTs can be categorized into two main
types: germinomas (GER) and nongerminoma GCTs (NG-GCT), which include YST, EC,
choriocarcinomas, teratomas, and mixed GCTs [70]. Intracranial teratomas are the most
common, followed by immature teratomas. They can present in various forms, ranging
from large tumors causing mass effects and spreading into the nasopharynx and orbit to
smaller lesions causing hydrocephalus. The most common sites of origin are around the
pineal gland, the Turkish saddle, and the third ventricle. In approximately one-third of
cases, the starting point cannot be determined due to the mass effect. To avoid the need
for a biopsy, determination of AFP and b-HCG levels in CSF and serum can be performed.
If AFP is confirmed to be >25 ng/mL and b-HCG is confirmed to be >50 IU/L in at least
one sample of serum or fluid, a biopsy can be avoided. According to the International
Society of Pediatric Oncology (SIOP) study, serum and/or CSF AFP levels ≥25 ng/mL
and/or b-HCG levels greater than or equal to 50 IU/L indicate a diagnosis of NG-GCT.
The Children’s Oncology Group (COG) suggests cutoff points of 10 ng/mL for AFP and
100 IU/L for b-HCG [71,72]. In a study by Sathisamitphong et al. involving 63 IC-GCT
cases, there was an 84.3% concordance between serum AFP and CSF levels [73]. Frappaz
et al. reported that AFP levels are higher in serum compared to CSF, whereas b-HCG
levels are comparable [71]. Legault et al. demonstrated that AFP levels are highest in
serum, followed by CSF obtained through a lumbar puncture, and finally, CSF obtained
through a ventricular puncture [74]. Takami et al. showed that the sensitivity of individual
markers in detecting NG-GCT CNS is as follows: b-HCG (>100 IU/L) at 61.5%, AFP
(>10 ng/mL) at 83.3%, and both markers together at 94.7% [75]. If these two markers are
negative, a biopsy is required to differentiate between teratoma and germ cell carcinoma,
as the treatment regimens differ [70]. In cases where there is no admixture of YST within
the tumor mass, high levels of AFP are attributed to the presence of immature elements
from glandular epithelium characteristic of the gastrointestinal tract and/or ependyma (a
type of glial tissue) lining the ventricular system, and occasionally structures resembling
liver tissue. Hong et al. demonstrated that only the determination of AFP (≥10 ng/mL)
along with beta-HCG (≥50 IU/mL) has prognostic value for NG-GCT or malignant GCT,
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indicating worse EFS and OS compared to the determination of a single marker alone [76].
In the SIOP-CNS-GCT-96 trial, patients with serum AFP >1000 ng/mL and/or CSF post-
treatment with the established residual disease had worse progression-free survival [72].
Among patients with recurrence, those who had AFP in serum or CSF ≤25 ng/mL had a
better prognosis [56,77,78].

6.5. Malignant Saccrococygeal Germ Cell Tumor

The occurrence of SCT has a frequency of 1 in every 35,000–40,000 births. The most
common type is mature teratoma; however, 11–35% of cases involve a mixture of a ma-
lignant component, most commonly YST or EC [60]. Unlike other GCTs, this condition
is more prevalent among girls. It presents as the most common tumor in newborns, typi-
cally as an outward-growing mass. It can also manifest after infancy, typically before the
age of 3, with an inward-growing growth pattern characterized by buttock asymmetry
and gastrointestinal and/or urinary tract issues, as well as lower limb dysfunction. The
risk of malignant transformation increases with the child’s age, from 11 to 35% at birth
to over 70% in cases diagnosed after >1 year of age. The primary treatment is surgical
intervention, with the addition of chemotherapy for malignant cases. The use of AFP for
detecting prenatal lesions is not reliable, as it does not consistently elevate in maternal
serum in most cases, regardless of whether the tumor is mature or immature or whether
it is covered by skin [56]. However, AFP is valuable as an early marker for assessing the
completeness of tumor resection as well as for monitoring malignant recurrence after initial
surgery (75% of recurrences show elevated AFP) and chemotherapy (monitoring for up
to 3–5 years post-treatment) [79]. This is because teratomas prone to malignancy often
contain a mixture of YST (present in 22–56% of recurrences). It has been demonstrated
that AFP has a prolonged half-life in SCT tumors with a tendency for recurrence (with
YST admixture) and in immature teratomas (without YST admixture). AFP levels have
prognostic significance [56,80–82].

6.6. Special Histopathological Cases of GCT Connected with High AFP Levels
6.6.1. Yolk Sac Tumor (YST = Endodermal Sinus Tumor)

YST is the most common malignant germ cell tumor in children and is histologically
composed of yolk sac mesenchymal cells. Approximately 70–90% of YST cases secrete
AFP [83,84], but in some instances, metastatic lesions or treatment remnants may lose the
ability to produce AFP [85]. It primarily occurs in the male and female gonads [55,56].
In boys, it is the leading cause of testicular cancer, while in girls, it is a rare tumor of the
ovary [55]. YST can occur independently in about 60% of cases, mainly in the pediatric
population, or as a component of other GCTs, most commonly teratomas or dysgerminomas,
accounting for 40% of cases in the postpubertal age group [56,86]. Approximately 15%
of YST lesions can occur extragonadal in midline organs of the body, such as the CNS,
paranasal sinuses, bladder, vagina, prostate, and retroperitoneal space [83] (known as
extragonadal germ cell tumors—EGGCT). It can also manifest in the liver, where it must be
differentiated from HB, as both tumors can exhibit high levels of AFP. Another extramedian
site of occurrence is the kidneys, which can sometimes be mistaken for a Wilms tumor [87].
Except for AFP, no other feature of the preoperative clinical examination differentiates these
two tumors [88]. However, AFP is not produced in the kidneys during prenatal or childhood
stages, and thus AFP has never been a marker for Wilms tumor. There are rare situations
in which Wilms tumors consist of tissue resembling nephroblastoma as well as tissue
morphologically corresponding to a teratoma, leading to AFP production [89–91]. In giant
mixed GCTs, small foci of YST, the source of AFP, may be accidentally overlooked during
the examination of tumor samples [56,92]. AFP is used for monitoring and evaluating the
effectiveness of treatment but is not helpful for prognosis [54]. A meta-analysis by Guo et al.
on the prognostic value of AFP in ovarian YST demonstrated that only postoperative AFP
values are useful. High postoperative AFP levels were associated with worse OS (OR = 0.16,
95% CI: 0.05–0.48) and RFS (OR = 0.18, 95% CI: 0.08–0.43) compared to low postoperative
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AFP levels in ovarian yolk sac tumor (OYST) patients [93]. De la Motte Rouge et al. showed
that an early decline in AFP levels during chemotherapy for OYST predicts better OS (100%)
compared to an unfavorable decline (OS 49%, 95% CI: 26–72%) [94]. Currently, a more
sensitive marker, ZBTB16 (Zinc finger and BTB ((Broad/complex/Tramtrack/Bric a Brac)
domain-containing 16)), is used, which can also detect extragonadal and metastatic YST
lesions with a sensitivity of 91.6% [85].

6.6.2. Embryonal Carcinoma (EC)

Histopathologically, germinoma is the most primitive form of germ cell tumor, capable
of differentiating into YST or immature teratoma. It consists of cells that produce AFP
(from YST) and b-HCG (from choriocarcinoma) [56]. Germinoma is a common component
of mixed germ cell tumors (MGCT). According to a study by Ataikiru et al. involving
Romanian children with MGCT, 87.5% of cases before puberty and 64.7% after puberty
had an EC component [57]. It primarily affects males and is extremely rare in females [95].
Germinoma can occur in both the gonads and the CNS. In the CNS, it typically arises in the
region of the third ventricle and pineal gland. The diagnosis can be improved by measuring
B-HCG and AFP levels in both serum and CSF, as mentioned earlier [96].

7. Ovarian Sertoli-Leydig Cell Tumor (SLCT)

A rare, unilateral mixed-sex cord-stromal tumor. It is mainly found in young women
(75% of cases), but the youngest known case was 9 months old [97]. Approximately 40–50%
produce androgens (virilization symptoms), less often estrogens, and least often both
types of sex hormones simultaneously [56,97]. The tumor is composed of Sertoli cells,
Leydig cells, fibroblasts, and stromal cells in varying proportions, but may also have a
component of glandular intestinal cells producing mature or immature hepatocytes, which
are responsible for AFP production [98]. Another hypothesis is that Leydig cells and
hepatocytes are morphologically similar. Still, other authors suggest that the source of
AFP is the presence of cells similar to Leydig cells, but without the presence of typical
crystals on histopathological examination [99]. Another AFP-producing component may
be poorly differentiated tissue fragments of the endodermal sinus difficult to identify on
histopathological examination (YST-like) [99–101].

8. Conclusions

Careful consideration should be given to using AFP levels as a basis for clinical
decisions in neonatology since they are physiologically elevated from birth until the first
year of life.

In young children, elevated AFP levels can mask the presence of certain genetic
diseases, liver regeneration in chronic diseases, and tumorigenesis processes.

In pediatric cases, AFP remains a valuable marker for liver tumors and GCTs that
involve tissue elements derived from the yolk follicle. Monitoring AFP levels in children
with various chronic liver diseases can help predict the early onset of HCC.

It is necessary to develop new pediatric reference ranges for modern AFP diagnostic
tests based on current laboratory techniques.
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Abbreviations

AFP alpha-fetoprotein
AT ataxia-telangiectasia
AOA ataxia with oculomotor apraxia
BRCA2 BReast CAncer gene 2
CR complete remission
CSF cerebrospinal fluid
EC embryonal carcinoma
EGGCT extragonadal germ cell tumors
EFS event-free survival
FA Fanconi anemia
FHSC fetal hepatic stem/progenitor cells
HBV hepatitis B virus
HCC hepatocellular carcinoma
HB hepatoblastoma
HOC hepatic oval cell
HSPC hematopoietic stem/progenitor cells
GCTs germ cell tumors
IC-GCT intracranial germ cell tumor
LF/MCT medium-chain triglyceride
NICCD neonatal intrahepatic cholestasis caused by citrin deficiency
NTBC 2-(2-nitro-4-3 trifluoro-methylbenzoyl)-1,3-cyclohexanedione
MGCT mixed germ cell tumor
miRNA micro ribonucleic acid
OS overall survival
OYST ovarian yolk sac tumor
PGC primordial germ cell
PFIC-2 progressive familial intrahepatic cholestasis type 2
PUFA polyunsaturated fatty acid
RIA radioimmunoassay
RFS relapse-free survival
SCT sacrococcygeal teratoma
SLCT Sertoli–Leydig cell tumor
T3 triiodothyronine
T4 thyroxine
TALDO transaldolase deficiency
VATER/VACTERL VATER/VACTERL association
YST yolk sac tumor
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