DCIS and LCIS: Are the Risk Factors for Developing In Situ Breast Cancer Different?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Review of Risk Factors for Developing In Situ Breast Cancer
2.1. Genetic/Inherited Risk Factors
2.1.1. Family History
2.1.2. Genetic Mutations
2.2. Age
2.3. Reproductive Factors
2.3.1. Parity
2.3.2. Age at First Birth
2.3.3. Breastfeeding
2.4. Menstrual Factors
2.5. Lifestyle Factors
2.6. Exogenous Hormones
3. Materials and Methods
3.1. Participants
3.2. Data
3.3. Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer in Women: Burden and Trends. Cancer Epidemiol. Biomark. Prev. 2017, 26, 444–457. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Kole, A.J.; Park, H.S.; Johnson, S.B.; Kelly, J.R.; Moran, M.S.; Patel, A.A. Overall survival is improved when DCIS accompanies invasive breast cancer. Sci. Rep. 2019, 9, 9934. [Google Scholar] [CrossRef]
- Braasch, M.C.; Amin, A.L.; Balanoff, C.R.; Wagner, J.L.; Larson, K.E. Prognostic Significance of Lobular Carcinoma In-Situ (LCIS) Diagnosed Alongside Invasive Breast Cancer. Breast Cancer 2022, 16, 11782234211070217. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Statistics; Cancer Research UK: London, UK, 2021.
- Pinder, S.E. Ductal carcinoma in situ (DCIS): Pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 2010, 23, S8–S13. [Google Scholar] [CrossRef] [PubMed]
- van Seijen, M.; Lips, E.H.; Thompson, A.M.; Nik-Zainal, S.; Futreal, A.; Hwang, E.S.; Verschuur, E.; Lane, J.; Jonkers, J.; Rea, D.W.; et al. Ductal carcinoma in situ: To treat or not to treat, that is the question. Br. J. Cancer 2019, 121, 285–292. [Google Scholar] [CrossRef]
- Davey, C.; White, V.; Warne, C.; Kitchen, P.; Villanueva, E.; Erbas, B. Understanding a ductal carcinoma in situ diagnosis: Patient views and surgeon descriptions. Eur. J. Cancer Care 2011, 20, 776–784. [Google Scholar] [CrossRef]
- Ruddy, K.J.; Meyer, M.E.; Giobbie-Hurder, A.; Emmons, K.M.; Weeks, J.C.; Winer, E.P.; Partridge, A.H. Long-term risk perceptions of women with ductal carcinoma in situ. Oncologist 2013, 18, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pérez, M.; Schootman, M.; Aft, R.L.; Gillanders, W.E.; Jeffe, D.B. Correlates of fear of cancer recurrence in women with ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res. Treat. 2011, 130, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Rakovitch, E.; Franssen, E.; Kim, J.; Ackerman, I.; Pignol, J.P.; Paszat, L.; Pritchard, K.I.; Ho, C.; Redelmeier, D.A. A comparison of risk perception and psychological morbidity in women with ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res. Treat. 2003, 77, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.M.; Gierisch, J.M.; Revette, A.C.; Lowenstein, C.L.; Frank, E.S.; Collyar, D.E.; Lynch, T.; Thompson, A.M.; Partridge, A.H.; Hwang, E.S. “Is it cancer or not?” A qualitative exploration of survivor concerns surrounding the diagnosis and treatment of ductal carcinoma in situ. Cancer 2022, 128, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Pidduck, W.; Wan, B.A.; Zhang, L.; Rakovitch, E.; Chow, S.; Chan, S.; Yee, C.; Drost, L.; Sousa, P.; Lewis, D.; et al. Psychological morbidity in women diagnosed with ductal carcinoma in situ compared with women with early breast cancer receiving radiotherapy. Support. Care Cancer 2020, 28, 2247–2254. [Google Scholar] [CrossRef]
- Mannu, G.S.; Wang, Z.; Broggio, J.; Charman, J.; Cheung, S.; Kearins, O.; Dodwell, D.; Darby, S.C. Invasive breast cancer and breast cancer mortality after ductal carcinoma in situ in women attending for breast screening in England, 1988–2014: Population based observational cohort study. BMJ 2020, 369, m1570. [Google Scholar] [CrossRef]
- Habel, L.A.; Daling, J.R.; Newcomb, P.A.; Self, S.G.; Porter, P.L.; Stanford, J.L.; Seidel, K.; Weiss, N.S. Risk of recurrence after ductal carcinoma in situ of the breast. Cancer Epidemiol. Biomark. Prev. 1998, 7, 689–696. [Google Scholar]
- Maxwell, A.J.; Hilton, B.; Clements, K.; Dodwell, D.; Dulson-Cox, J.; Kearins, O.; Kirwan, C.; Litherland, J.; Mylvaganam, S.; Provenzano, E.; et al. Unresected screen-detected ductal carcinoma in situ: Outcomes of 311 women in the Forget-Me-Not 2 study. Breast 2022, 61, 145–155. [Google Scholar] [CrossRef]
- Elshof, L.E.; Schaapveld, M.; Schmidt, M.K.; Rutgers, E.J.; van Leeuwen, F.E.; Wesseling, J. Subsequent risk of ipsilateral and contralateral invasive breast cancer after treatment for ductal carcinoma in situ: Incidence and the effect of radiotherapy in a population-based cohort of 10,090 women. Breast Cancer Res. Treat. 2016, 159, 553–563. [Google Scholar] [CrossRef]
- Erbas, B.; Provenzano, E.; Armes, J.; Gertig, D. The natural history of ductal carcinoma in situ of the breast: A review. Breast Cancer Res. Treat. 2006, 97, 135–144. [Google Scholar] [CrossRef]
- Wen, H.Y.; Brogi, E. Lobular Carcinoma In Situ. Surg. Pathol. Clin. 2018, 11, 123–145. [Google Scholar] [CrossRef]
- Logan, G.J.; Dabbs, D.J.; Lucas, P.C.; Jankowitz, R.C.; Brown, D.D.; Clark, B.Z.; Oesterreich, S.; McAuliffe, P.F. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res. 2015, 17, 76. [Google Scholar] [CrossRef]
- King, T.A.; Pilewskie, M.; Muhsen, S.; Patil, S.; Mautner, S.K.; Park, A.; Oskar, S.; Guerini-Rocco, E.; Boafo, C.; Gooch, J.C.; et al. Lobular Carcinoma in Situ: A 29-Year Longitudinal Experience Evaluating Clinicopathologic Features and Breast Cancer Risk. J. Clin. Oncol. 2015, 33, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Chuba, P.J.; Hamre, M.R.; Yap, J.; Severson, R.K.; Lucas, D.; Shamsa, F.; Aref, A. Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: Analysis of surveillance, epidemiology, and end results data. J. Clin. Oncol. 2005, 23, 5534–5541. [Google Scholar] [CrossRef] [PubMed]
- van Maaren, M.C.; Ávila, A.O.; van Manen, J.G.; Menke-Pluijmers, M.B.E.; Veltman, J.; Bart, J.; Westenend, P.J.; Siesling, S. Trends in incidence, treatment, survival and subsequent breast cancer in lobular carcinoma in situ in the Netherlands: A population-based analysis. Breast 2021, 59, 376–382. [Google Scholar] [CrossRef]
- Li, C.I.; Malone, K.E.; Saltzman, B.S.; Daling, J.R. Risk of invasive breast carcinoma among women diagnosed with ductal carcinoma in situ and lobular carcinoma in situ, 1988–2001. Cancer 2006, 106, 2104–2112. [Google Scholar] [CrossRef]
- Claus, E.B.; Stowe, M.; Carter, D.; Holford, T. The risk of a contralateral breast cancer among women diagnosed with ductal and lobular breast carcinoma in situ: Data from the Connecticut Tumor Registry. Breast 2003, 12, 451–456. [Google Scholar] [CrossRef]
- Shelley Hwang, E.; Nyante, S.J.; Yi Chen, Y.; Moore, D.; DeVries, S.; Korkola, J.E.; Esserman, L.J.; Waldman, F.M. Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 2004, 100, 2562–2572. [Google Scholar] [CrossRef]
- Lee, J.Y.; Schizas, M.; Geyer, F.C.; Selenica, P.; Piscuoglio, S.; Sakr, R.A.; Ng, C.K.Y.; Carniello, J.V.S.; Towers, R.; Giri, D.D.; et al. Lobular Carcinomas In Situ Display Intralesion Genetic Heterogeneity and Clonal Evolution in the Progression to Invasive Lobular Carcinoma. Clin. Cancer Res. 2019, 25, 674–686. [Google Scholar] [CrossRef]
- Morrow, M.; Schnitt, S.J.; Norton, L. Current management of lesions associated with an increased risk of breast cancer. Nat. Rev. Clin. Oncol. 2015, 12, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Glover, J.A.; Bannon, F.J.; Hughes, C.M.; Cantwell, M.M.; Comber, H.; Gavin, A.; Deady, S.; Murray, L.J. Increased diagnosis and detection rates of carcinoma in situ of the breast. Breast Cancer Res. Treat. 2012, 133, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Black, W.C. Using Autopsy Series To Estimate the Disease “Reservoir” for Ductal Carcinoma in Situ of the Breast: How Much More Breast Cancer Can We Find? Ann. Intern. Med. 1997, 127, 1023–1028. [Google Scholar] [CrossRef]
- Brewer, H.R.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [CrossRef]
- Gapstur, S.M.; Morrow, M.; Sellers, T.A. Hormone replacement therapy and risk of breast cancer with a favorable histology: Results of the Iowa Women’s Health Study. JAMA 1999, 281, 2091–2097. [Google Scholar] [CrossRef]
- Weiss, H.A.; Brinton, L.A.; Brogan, D.; Coates, R.J.; Gammon, M.D.; Malone, K.E.; Schoenberg, J.B.; Swanson, C.A. Epidemiology of in situ and invasive breast cancer in women aged under 45. Br. J. Cancer 1996, 73, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Meeske, K.; Press, M.; Patel, A.; Bernstein, L. Impact of reproductive factors and lactation on breast carcinoma in situ risk. Int. J. Cancer 2004, 110, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Barclay, J.; Ernster, V.; Kerlikowske, K.; Grady, D.; Sickles, E.A. Comparison of Risk Factors for Ductal Carcinoma In Situ and Invasive Breast Cancer. J. Natl. Cancer Inst. 1997, 89, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Claus, E.B.; Stowe, M.; Carter, D. Breast carcinoma in situ: Risk factors and screening patterns. J. Natl. Cancer Inst. 2001, 93, 1811–1817. [Google Scholar] [CrossRef]
- Reinier, K.S.; Vacek, P.M.; Geller, B.M. Risk factors for breast carcinoma in situ versus invasive breast cancer in a prospective study of pre- and post-menopausal women. Breast Cancer Res. Treat. 2007, 103, 343–348. [Google Scholar] [CrossRef]
- Nichols, H.B.; Trentham-Dietz, A.; Egan, K.M.; Titus-Ernstoff, L.; Hampton, J.M.; Newcomb, P.A. Oral contraceptive use and risk of breast carcinoma in situ. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2262–2268. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Bethea, T.N.; Rosenberg, L.; Bandera, E.V.; Khoury, T.; Troester, M.A.; Ambrosone, C.B.; Palmer, J.R. Risk factors for estrogen receptor positive ductal carcinoma in situ of the breast in African American women. Breast 2020, 49, 108–114. [Google Scholar] [CrossRef]
- Trentham-Dietz, A.; Newcomb, P.A.; Storer, B.E.; Remington, P.L. Risk factors for carcinoma in situ of the breast. Cancer Epidemiol. Biomark. Prev. 2000, 9, 697–703. [Google Scholar]
- Mullooly, M.; Khodr, Z.G.; Dallal, C.M.; Nyante, S.J.; Sherman, M.E.; Falk, R.; Liao, L.M.; Love, J.; Brinton, L.A.; Gierach, G.L. Epidemiologic Risk Factors for In Situ and Invasive Breast Cancers Among Postmenopausal Women in the National Institutes of Health-AARP Diet and Health Study. Am. J. Epidemiol. 2017, 186, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Addendum to Clinical Guideline 164, Familial Breast Cancer; National Institute for Health and Care Excellence (NICE): London, UK, 2016. [Google Scholar]
- Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Seal, S.; Thompson, D.; Kelly, P.; Renwick, A.; Elliott, A.; Reid, S.; Spanova, K.; Barfoot, R.; Chagtai, T.; et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 2007, 39, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Lalloo, F.; Varley, J.; Moran, A.; Ellis, D.; O’Dair, L.; Pharoah, P.; Antoniou, A.; Hartley, R.; Shenton, A.; Seal, S.; et al. BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur. J. Cancer 2006, 42, 1143–1150. [Google Scholar] [CrossRef]
- Yadav, S.; Hu, C.; Nathanson, K.L.; Weitzel, J.N.; Goldgar, D.E.; Kraft, P.; Gnanaolivu, R.D.; Na, J.; Huang, H.; Boddicker, N.J.; et al. Germline Pathogenic Variants in Cancer Predisposition Genes Among Women With Invasive Lobular Carcinoma of the Breast. J. Clin. Oncol. 2021, 39, 3918–3926. [Google Scholar] [CrossRef]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomark. Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef]
- Petridis, C.; Brook, M.N.; Shah, V.; Kohut, K.; Gorman, P.; Caneppele, M.; Levi, D.; Papouli, E.; Orr, N.; Cox, A.; et al. Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Res. 2016, 18, 22. [Google Scholar] [CrossRef]
- Smith, K.L.; Adank, M.; Kauff, N.; Lafaro, K.; Boyd, J.; Lee, J.B.; Hudis, C.; Offit, K.; Robson, M. BRCA mutations in women with ductal carcinoma in situ. Clin. Cancer Res. 2007, 13, 4306–4310. [Google Scholar] [CrossRef]
- Frank, T.S.; Deffenbaugh, A.M.; Reid, J.E.; Hulick, M.; Ward, B.E.; Lingenfelter, B.; Gumpper, K.L.; Scholl, T.; Tavtigian, S.V.; Pruss, D.R.; et al. Clinical Characteristics of Individuals With Germline Mutations in BRCA1 and BRCA2: Analysis of 10,000 Individuals. J. Clin. Oncol. 2002, 20, 1480–1490. [Google Scholar] [CrossRef]
- Petridis, C.; Arora, I.; Shah, V.; Moss, C.L.; Mera, A.; Clifford, A.; Gillett, C.; Pinder, S.E.; Tomlinson, I.; Roylance, R.; et al. Frequency of Pathogenic Germline Variants in CDH1, BRCA2, CHEK2, PALB2, BRCA1, and TP53 in Sporadic Lobular Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1162–1168. [Google Scholar] [CrossRef]
- Buys, S.S.; Sandbach, J.F.; Gammon, A.; Patel, G.; Kidd, J.; Brown, K.L.; Sharma, L.; Saam, J.; Lancaster, J.; Daly, M.B. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017, 123, 1721–1730. [Google Scholar] [CrossRef]
- Petridis, C.; Shinomiya, I.; Kohut, K.; Gorman, P.; Caneppele, M.; Shah, V.; Troy, M.; Pinder, S.E.; Hanby, A.; Tomlinson, I.; et al. Germline CDH1 mutations in bilateral lobular carcinoma in situ. Br. J. Cancer 2014, 110, 1053–1057. [Google Scholar] [CrossRef]
- Easton, D.F.; Pooley, K.A.; Dunning, A.M.; Pharoah, P.D.; Thompson, D.; Ballinger, D.G.; Struewing, J.P.; Morrison, J.; Field, H.; Luben, R.; et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Pharoah, P.D.; Michailidou, K.; Tyrer, J.; Brook, M.N.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Shah, M.; et al. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst. 2015, 107, djv036. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.-H.; Wang, Q.; Bolla, M.K.; et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.H.T.; Munusamy, P.; Loke, S.Y.; Koh, G.L.; Yang, A.Z.Y.; Law, H.Y.; Yoon, C.S.; Wong, C.Y.; Yong, W.S.; Wong, N.S.; et al. Evaluation of three polygenic risk score models for the prediction of breast cancer risk in Singapore Chinese. Oncotarget 2018, 9, 12796–12804. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Campa, D.; Barrdahl, M.; Gaudet, M.M.; Black, A.; Chanock, S.J.; Diver, W.R.; Gapstur, S.M.; Haiman, C.; Hankinson, S.; Hazra, A.; et al. Genetic risk variants associated with in situ breast cancer. Breast Cancer Res. 2015, 17, 82. [Google Scholar] [CrossRef]
- Brinton, L.A.; Sherman, M.E.; Carreon, J.D.; Anderson, W.F. Recent trends in breast cancer among younger women in the United States. J. Natl. Cancer Inst. 2008, 100, 1643–1648. [Google Scholar] [CrossRef]
- Williams, L.A.; Casbas-Hernandez, P.; Nichols, H.B.; Tse, C.K.; Allott, E.H.; Carey, L.A.; Olshan, A.F.; Troester, M.A. Risk factors for Luminal A ductal carcinoma in situ (DCIS) and invasive breast cancer in the Carolina Breast Cancer Study. PLoS ONE 2019, 14, e0211488. [Google Scholar] [CrossRef] [PubMed]
- Calvocoressi, L.; Stowe, M.H.; Carter, D.; Claus, E.B. Postmenopausal hormone therapy and ductal carcinoma in situ: A population-based case-control study. Cancer Epidemiol. 2012, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Fortner, R.T.; Sisti, J.; Chai, B.; Collins, L.C.; Rosner, B.; Hankinson, S.E.; Tamimi, R.M.; Eliassen, A.H. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: Results from the Nurses’ Health Studies. Breast Cancer Res. 2019, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Lambe, M.; Hsieh, C.C.; Tsaih, S.W.; Ekbom, A.; Trichopoulos, D.; Adami, H.O. Parity, age at first birth and the risk of carcinoma in situ of the breast. Int. J. Cancer 1998, 77, 330–332. [Google Scholar] [CrossRef]
- Ewertz, M.; Duffy, S.W.; Adami, H.-O.; Kvåle, G.; Lund, E.; Meirik, O.; Mellemgaard, A.; Soini, I.; Tulinius, H. Age at first birth, parity and risk of breast cancer: A meta-analysis of 8 studies from the nordic countries. Int. J. Cancer 1990, 46, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Shenton, A.; Maher, E.R.; Watson, E.; Woodward, E.; Lalloo, F.; Easton, D.F.; Evans, D.G. Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Breast Cancer Res. 2006, 8, R72. [Google Scholar] [CrossRef]
- Phillips, L.S.; Millikan, R.C.; Schroeder, J.C.; Barnholtz-Sloan, J.S.; Levine, B.J. Reproductive and hormonal risk factors for ductal carcinoma in situ of the breast. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1507–1514. [Google Scholar] [CrossRef]
- Ma, H.; Henderson, K.D.; Sullivan-Halley, J.; Duan, L.; Marshall, S.F.; Ursin, G.; Horn-Ross, P.L.; Largent, J.; Deapen, D.M.; Lacey, J.V., Jr.; et al. Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort. Breast Cancer Res. 2010, 12, R35. [Google Scholar] [CrossRef]
- Kabat, G.C.; Kim, M.Y.; Woods, N.F.; Habel, L.A.; Messina, C.R.; Wactawski-Wende, J.; Stefanick, M.L.; Chlebowski, R.T.; Wassertheil-Smoller, S.; Rohan, T.E. Reproductive and menstrual factors and risk of ductal carcinoma in situ of the breast in a cohort of postmenopausal women. Cancer Causes Control 2011, 22, 1415–1424. [Google Scholar] [CrossRef]
- Reeves, G.K.; Pirie, K.; Green, J.; Bull, D.; Beral, V. Comparison of the effects of genetic and environmental risk factors on in situ and invasive ductal breast cancer. Int. J. Cancer 2012, 131, 930–937. [Google Scholar] [CrossRef]
- Wohlfahrt, J.; Melbye, M. Age at Any Birth Is Associated with Breast Cancer Risk. Epidemiology 2001, 12, 68–73. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, B.; Cole, P.; Lin, T.M.; Lowe, C.R.; Mirra, A.P.; Ravnihar, B.; Salber, E.J.; Valaoras, V.G.; Yuasa, S. Age at first birth and breast cancer risk. Bull. World Health Organ. 1970, 43, 209–221. [Google Scholar] [PubMed]
- Albrektsen, G.; Heuch, I.; Hansen, S.; Kvåle, G. Breast cancer risk by age at birth, time since birth and time intervals between births: Exploring interaction effects. Br. J. Cancer 2005, 92, 167–175. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 2002, 360, 187–195. [Google Scholar] [CrossRef]
- Ma, H.; Bernstein, L.; Pike, M.C.; Ursin, G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: A meta-analysis of epidemiological studies. Breast Cancer Res. 2006, 8, R43. [Google Scholar] [CrossRef] [PubMed]
- Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [CrossRef] [PubMed]
- O’Brien, K.M.; Sun, J.; Sandler, D.P.; DeRoo, L.A.; Weinberg, C.R. Risk factors for young-onset invasive and in situ breast cancer. Cancer Causes Control 2015, 26, 1771–1778. [Google Scholar] [CrossRef]
- Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Speizer, F.E. Moderate Alcohol Consumption and the Risk of Breast Cancer. N. Engl. J. Med. 1987, 316, 1174–1180. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Alcohol, tobacco and breast cancer—Collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br. J. Cancer 2002, 87, 1234–1245. [Google Scholar] [CrossRef]
- Chen, W.Y.; Rosner, B.; Hankinson, S.E.; Colditz, G.A.; Willett, W.C. Moderate Alcohol Consumption During Adult Life, Drinking Patterns, and Breast Cancer Risk. JAMA 2011, 306, 1884–1890. [Google Scholar] [CrossRef]
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Malone, K.E.; Tang, M.T.; Li, C.I. Active smoking and the risk of estrogen receptor-positive and triple-negative breast cancer among women ages 20 to 44 years. Cancer 2014, 120, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, L.; Boggs, D.A.; Bethea, T.N.; Wise, L.A.; Adams-Campbell, L.L.; Palmer, J.R. A prospective study of smoking and breast cancer risk among African-American women. Cancer Causes Control 2013, 24, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Macacu, A.; Autier, P.; Boniol, M.; Boyle, P. Active and passive smoking and risk of breast cancer: A meta-analysis. Breast Cancer Res. Treat. 2015, 154, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Peila, R.; Arthur, R.; Rohan, T.E. Risk factors for ductal carcinoma in situ of the breast in the UK Biobank cohort study. Cancer Epidemiol. 2020, 64, 101648. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.; Caan, B.J.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [Google Scholar] [CrossRef]
- Kabat, G.C.; Kim, M.; Wactawski-Wende, J.; Lane, D.; Adams-Campbell, L.L.; Gaudet, M.; Stefanick, M.L.; Vitolins, M.; Chlebowski, R.T.; Wassertheil-Smoller, S.; et al. Recreational physical activity, anthropometric factors, and risk of ductal carcinoma in situ of the breast in a cohort of postmenopausal women. Cancer Causes Control 2010, 21, 2173–2181. [Google Scholar] [CrossRef]
- Minami, C.A.; Zabor, E.C.; Gilbert, E.; Newman, A.; Park, A.; Jochelson, M.S.; King, T.A.; Pilewskie, M.L. Do Body Mass Index and Breast Density Impact Cancer Risk Among Women with Lobular Carcinoma In Situ? Ann. Surg. Oncol. 2020, 27, 1844–1851. [Google Scholar] [CrossRef]
- Gierisch, J.M.; Coeytaux, R.R.; Urrutia, R.P.; Havrilesky, L.J.; Moorman, P.G.; Lowery, W.J.; Dinan, M.; McBroom, A.J.; Hasselblad, V.; Sanders, G.D.; et al. Oral Contraceptive Use and Risk of Breast, Cervical, Colorectal, and Endometrial Cancers: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1931–1943. [Google Scholar] [CrossRef]
- Claus, E.B.; Stowe, M.; Carter, D. Oral contraceptives and the risk of ductal breast carcinoma in situ. Breast Cancer Res. Treat. 2003, 81, 129–136. [Google Scholar] [CrossRef]
- Siegelmann-Danieli, N.; Katzir, I.; Landes, J.V.; Segal, Y.; Bachar, R.; Rabinovich, H.R.; Bialik, M.; Azuri, J.; Porath, A.; Lomnicky, Y. Does levonorgestrel-releasing intrauterine system increase breast cancer risk in peri-menopausal women? An HMO perspective. Breast Cancer Res. Treat. 2018, 167, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Weiss, N.S.; Stanford, J.L.; Daling, J.R. Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. Cancer 2000, 88, 2570–2577. [Google Scholar] [CrossRef] [PubMed]
- Medicines and Healthcare Products Regulatory Agency. Hormone Replacement Therapy (HRT): Further Information on the Known Increased Risk of Breast Cancer with HRT and Its Persistence after Stopping. 30 August 2019. Available online: https://www.gov.uk/drug-safety-update/hormone-replacement-therapy-hrt-further-information-on-the-known-increased-risk-of-breast-cancer-with-hrt-and-its-persistence-after-stopping (accessed on 15 March 2023).
- Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003, 362, 419–427. [Google Scholar] [CrossRef]
- Guo, W.; Key, T.J.; Reeves, G.K. Adiposity and breast cancer risk in postmenopausal women: Results from the UK Biobank prospective cohort. Int. J. Cancer 2018, 143, 1037–1046. [Google Scholar] [CrossRef]
- Pasvol, T.J.; Macgregor, E.A.; Rait, G.; Horsfall, L. Time trends in contraceptive prescribing in UK primary care 2000–2018: A repeated cross-sectional study. BMJ Sex. Reprod. Health 2022, 48, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, Y.; Dening, T.; Hippisley-Cox, J.; Taylor, L.; Moore, M.; Coupland, C. Use of menopausal hormone therapy and risk of dementia: Nested case-control studies using QResearch and CPRD databases. BMJ 2021, 374, n2182. [Google Scholar] [CrossRef]
- Li, C.I.; Daling, J.R.; Haugen, K.L.; Tang, M.T.; Porter, P.L.; Malone, K.E. Use of menopausal hormone therapy and risk of ductal and lobular breast cancer among women 55–74 years of age. Breast Cancer Res. Treat. 2014, 145, 481–489. [Google Scholar] [CrossRef]
- Manjer, J.; Malina, J.; Berglund, G.; Bondeson, L.; Garne, J.P.; Janzon, L. Increased incidence of small and well-differentiated breast tumours in post-menopausal women following hormone-replacement therapy. Int. J. Cancer 2001, 92, 919–922. [Google Scholar] [CrossRef]
- Chen, C.-L.; Weiss, N.S.; Newcomb, P.; Barlow, W.; White, E. Hormone Replacement Therapy in Relation to Breast Cancer. JAMA 2002, 287, 734–741. [Google Scholar] [CrossRef]
- Clavel-Chapelon, F.; The E3N-EPIC Group. Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer. Results from a large cohort of French women. Br. J. Cancer 2002, 86, 723–727. [Google Scholar] [CrossRef]
- Claus, E.B.; Stowe, M.; Carter, D. Family History of Breast and Ovarian Cancer and the Risk of Breast Carcinoma in situ. Breast Cancer Res. Treat. 2003, 78, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gajalakshmi, V.; Mathew, A.; Brennan, P.; Rajan, B.; Kanimozhi, V.C.; Mathews, A.; Mathew, B.S.; Boffetta, P. Breastfeeding and breast cancer risk in India: A multicenter case-control study. Int. J. Cancer 2009, 125, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J. Association of lifestyle and other risk factors with breast cancer according to menopausal status: A case-control study in the Region of Western Pomerania (Poland). Asian Pac. J. Cancer Prev. 2007, 8, 513–524. [Google Scholar] [PubMed]
- Pedersen, D.C.; Jensen, B.W.; Tjønneland, A.; Andersen, Z.J.; Mellemkjaer, L.; Bjerregaard, L.G.; Aarestrup, J.; Baker, J.L. Birthweight, childhood body size, and timing of puberty and risks of breast cancer by menopausal status and tumor receptor subtypes. Breast Cancer Res. 2022, 24, 77. [Google Scholar] [CrossRef]
- Zhong, C.; Cockburn, M.; Cozen, W.; Voutsinas, J.; Lacey, J.V.; Luo, J.; Sullivan-Halley, J.; Bernstein, L.; Wang, S.S. Evaluating the use of friend or family controls in epidemiologic case-control studies. Cancer Epidemiol. 2017, 46, 9–13. [Google Scholar] [CrossRef]
- Bunin, G.R.; Vardhanabhuti, S.; Lin, A.; Anschuetz, G.L.; Mitra, N. Practical and analytical aspects of using friend controls in case-control studies: Experience from a case-control study of childhood cancer. Paediatr. Perinat. Epidemiol. 2011, 25, 402–412. [Google Scholar] [CrossRef]
Characteristic | Controls | DCIS | LCIS |
---|---|---|---|
n = 1584 | n = 3075 | n = 338 | |
Age at first diagnosis (median, range) 1 | 48 (35–60) | 52 (35–60) | 51 (35–60) |
Age at first diagnosis/study entry 1 (group) | |||
<50 | 888 (56.1%) | 479 (15.6%) | 71 (21%) |
≥50 | 696 (43.9%) | 2596 (84.4%) | 267 (79%) |
Inferred menopausal status | |||
Pre-menopausal Post-menopausal | 894 (56.4%) | 880 (28.6%) | 141 (41.7%) |
690 (43.6%) | 2195 (71.4%) | 197 (58.3%) | |
Ethnicity | |||
Asian | 22 (1.4%) | 74 (2.4%) | 3 (0.9%) |
Black | 8 (0.5%) | 55 (1.8%) | 1 (0.3%) |
Mixed | 9 (0.6%) | 15 (0.5%) | 5 (1.5%) |
Other | 5 (0.3%) | 9 (0.3%) | 0 (0%) |
Unknown White European | 60 (3.8%) | 35 (1.1%) | 7 (2.1%) |
1480 (93.4%) | 2887 (93.9%) | 322 (95.3%) | |
Time period of diagnosis 1 | |||
<2000 | 0 (0%) | 104 (3.4%) | 35 (10.4%) |
2000–2005 | 0 (0%) | 385 (12.5%) | 61 (18.1%) |
2005–2010 | 794 (50.1%) | 1581 (51.4%) | 174 (51.5%) |
2010–2015 | 790 (49.9%) | 1005 (32.7%) | 68 (20.1%) |
Year of birth (median, range) | 1962 (1947–1978) | 1954 (1932–1977) | 1955 (1929–1974) |
Age at study entry/interview (median, range) | 48 (35–60) | 56 (35–77) | 53 (37–79) |
Year at study entry/interview (median, range) | 2010 (2007–2013) | 2011 (2007–2013) | 2010 (2007–2012) |
Characteristic | Controls | DCIS | LCIS |
---|---|---|---|
n = 1584 | n = 3075 | n = 338 | |
Parity | |||
Nulliparous | 384 (24.2%) | 642 (20.9%) | 63 (18.6%) |
Parous | 1200 (75.8%) | 2433 (79.1%) | 275 (81.4%) |
Number of births (median-range) | 2 (0–4) | 2 (0–4) | 2 (0–4) |
Age at first birth 1 (median-range) | 26 (16–43) | 26 (13–49) | 25 (16–52) |
Age at first birth 1 | |||
≤25 | 512 (42.7%) | 1154 (47.4%) | 136 (49.5%) |
>25 | 658 (54.8%) | 1160 (47.7%) | 131 (47.6%) |
Unknown | 30 (2.5%) | 119 (4.9%) | 8 (2.9%) |
Breastfed 1 | |||
No | 222 (18.5%) | 656 (27%) | 72 (26.2%) |
Yes | 971 (80.9%) | 1760 (72.3%) | 202 (73.5%) |
Unknown | 7 (0.6%) | 17 (0.7%) | 1 (0.4%) |
Age at menarche | 13 (7–20) | 13 (7–20) | 13 (9–18) |
Age period stopped 2 | 49 (24–58) | 50 (17–64) | 50 (26–59) |
Contraceptive category | |||
No contraceptive | 185 (11.7%) | 519 (16.9%) | 56 (16.6%) |
Took OC pill | 1302 (82.2%) | 2493 (81.1%) | 277 (82%) |
Other contraceptive | 31 (2%) | 27 (0.9%) | 2 (0.6%) |
Unknown | 66 (4.2%) | 36 (1.2%) | 3 (0.9%) |
Years taking the pill 3 | |||
<5 years | 304 (23.4%) | 593 (23.8%) | 69 (24.9%) |
5–10 years | 255 (19.6%) | 516 (20.7%) | 44 (15.9%) |
10+ years | 492 (37.8%) | 893 (35.8%) | 91 (32.9%) |
Unknown | 251 (19.3%) | 491 (19.7%) | 73 (26.4%) |
Took HRT | |||
Did not take HRT | 1319 (83.3%) | 2183 (71%) | 241 (71.3%) |
Took HRT | 265 (16.7%) | 892 (29%) | 97 (28.7%) |
Years taking HRT 4 | |||
<5 years | 123 (46.4%) | 343 (38.5%) | 35 (36.1%) |
5–10 years | 52 (19.6%) | 204 (22.9%) | 20 (20.6%) |
10+ years | 24 (9.1%) | 179 (20.1%) | 26 (26.8%) |
Unknown | 66 (24.9%) | 166 (18.6%) | 16 (16.5%) |
Type of HRT 4 | |||
Combined oestrogen and progestogen | 78 (29.4%) | 177 (19.8%) | 26 (26.8%) |
Oestrogen only | 72 (27.2%) | 161 (18.1%) | 19 (19.6%) |
Progestogen only | 0 (0%) | 16 (1.8%) | 1 (1%) |
Unknown | 115 (43.4%) | 538 (60.3%) | 51 (52.6%) |
Family history of breast cancer | |||
No | 1584 (100%) | 2038 (66.3%) | 197 (58.3%) |
Yes | 0 (0%) | 1037 (33.7%) | 141 (41.7%) |
Characteristic | DCIS vs. Controls | LCIS vs. Controls |
---|---|---|
Breastfed | ||
Did not breastfeed | 1 ref | 1 ref |
Breastfed | 0.67 (0.55, 0.81) | 0.62 (0.45, 0.86) |
Unknown | 1.85 (0.74, 4.63) | 0.62 (0.07, 5.26) |
Years taking HRT | ||
Did not take HRT | 0.81 (0.64, 1.02) | 0.76 (0.50, 1.15) |
<5 years | 1 ref | 1 ref |
5–10 years | 1.22 (0.82, 1.80) | 1.40 (0.73, 2.68) |
10+ years | 2.54 (1.54, 4.20) | 4.29 (2.16, 8.54) |
Parity | ||
Nulliparous | 1 ref | 1 ref |
Parous | 1.47 (1.18, 1.83) | 1.94 (1.30, 2.87) |
Age period stopped | 1.02 (1.02, 1.02) | 1.02 (1.02, 1.03) |
Age at first diagnosis | 1.06 (1.04, 1.07) | 0.98 (0.96, 1.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timbres, J.; Kohut, K.; Caneppele, M.; Troy, M.; Schmidt, M.K.; Roylance, R.; Sawyer, E. DCIS and LCIS: Are the Risk Factors for Developing In Situ Breast Cancer Different? Cancers 2023, 15, 4397. https://doi.org/10.3390/cancers15174397
Timbres J, Kohut K, Caneppele M, Troy M, Schmidt MK, Roylance R, Sawyer E. DCIS and LCIS: Are the Risk Factors for Developing In Situ Breast Cancer Different? Cancers. 2023; 15(17):4397. https://doi.org/10.3390/cancers15174397
Chicago/Turabian StyleTimbres, Jasmine, Kelly Kohut, Michele Caneppele, Maria Troy, Marjanka K. Schmidt, Rebecca Roylance, and Elinor Sawyer. 2023. "DCIS and LCIS: Are the Risk Factors for Developing In Situ Breast Cancer Different?" Cancers 15, no. 17: 4397. https://doi.org/10.3390/cancers15174397
APA StyleTimbres, J., Kohut, K., Caneppele, M., Troy, M., Schmidt, M. K., Roylance, R., & Sawyer, E. (2023). DCIS and LCIS: Are the Risk Factors for Developing In Situ Breast Cancer Different? Cancers, 15(17), 4397. https://doi.org/10.3390/cancers15174397