Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Extraction—Inclusion and Exclusion Criteria
2.2. Strategy for Data Synthesis
2.3. Risk of Bias (Quality) Assessment
2.4. Population
2.5. Analysis of Subgroups or Subsets
2.6. Condition or Domain Being Studied
3. Results
3.1. Literature Search
3.2. Characteristics of the Included Study
3.3. Association between Methylenetetrahydrofolate Reductase SNPs and Bladder Cancer and Accuracy Test
3.4. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dobruch, J.; Oszczudłowski, M. Bladder cancer: Current challenges and future directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, L.; Guo, X.; Mo, N.; Zhang, J.; Li, C. Frontiers in bladder cancer genomic research. Front. Oncol. 2021, 11, 670729. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wolff, E.M.; Liang, G. Epigenetic alterations in bladder cancer and their potential clinical implications. Adv. Urol. 2012, 2012, 546917. [Google Scholar] [CrossRef]
- Lee, K.-H.; Song, C.G. Epigenetic regulation in bladder cancer: Development of new prognostic targets and therapeutic implications. Transl. Cancer Res. 2017, 6, S677–S688. [Google Scholar] [CrossRef]
- Yadav, S.; Longkumer, I.; Joshi, S.; Saraswathy, K.N. Methylenetetrahydrofolate reductase gene polymorphism, global DNA methylation and blood pressure: A population based study from North India. BMC Med. Genom. 2021, 14, 59. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y. Role of mammalian dna methyltransferases in development. Annu. Rev. Biochem. 2020, 89, 135–158. [Google Scholar] [CrossRef]
- Bommarito, P.A.; Fry, R.C. The role of DNA methylation in gene regulation. Toxicoepigenetics 2019, 127–151. [Google Scholar] [CrossRef]
- Ren, J.-C.; Wu, Y.-X.; Wu, Z.B.; Zhang, G.-H.; Wang, H.B.; Liu, H.B.; Cui, J.-P.B.; Chen, Q.; Liu, J.; Frank, A.; et al. MTHFR gene polymorphism is associated with DNA hypomethylation and genetic damage among benzene-exposed workers in southeast China. J. Occup. Environ. Med. 2018, 60, e188–e192. [Google Scholar] [CrossRef]
- Neves, M.; Ribeiro, J.; Medeiros, R.; Sousa, H. Genetic polymorphism in DNMTs and gastric cancer: A systematic review and meta-analysis. Porto Biomed. J. 2016, 1, 164–172. [Google Scholar] [CrossRef]
- Montgomery, K.G.; Liu, M.C.; Eccles, D.M.; Campbell, I.G. The DNMT3B C→T promoter polymorphism and risk of breast cancer in a British population: A case-control study. Breast Cancer Res. 2004, 6, R390. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.H.; Park, J.H.; Kim, E.J.; Lee, S.J.; Jeon, H.S.; Sohn, J.W.; Cha, S.I.; Kim, C.H.; Jung, T.H.; et al. DNMT3b 39179G> T polymorphism and risk of primary lung cancer in Koreans. Korean J. Med. 2004, 66, 601–608. [Google Scholar]
- Rodriguez, S.; Gaunt, T.R.; Day, I.N.M. Hardy-weinberg equilibrium testing of biological ascertainment for mendelian randomization studies. Am. J. Epidemiol. 2009, 169, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, W.; Liu, S.; Zong, S.; Wang, W.; Ren, J.; Li, Q.; Hou, F.; Shi, Q. DNMT1, DNMT3A and DNMT3B polymorphisms associated with gastric cancer risk: A systematic review and meta-analysis. EBioMedicine 2016, 13, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Martorell-Marugan, J.; Toro-Dominguez, D.; Alarcon-Riquelme, M.E.; Carmona-Saez, P. MetaGenyo: A web tool for meta-analysis of genetic association studies. BMC Bioinform. 2017, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Izmirli, M.; Inandiklioglu, N.; Abat, D.; Alptekin, D.; Demirhan, O.; Tansug, Z.; Bayazit, Y. MTHFR gene polymorphisms in bladder cancer in the Turkish population. Asian Pac. J. Cancer Prev. 2011, 12, 1833–1835. [Google Scholar]
- Cai, D.; Liu, X.; Bu, R.; Chen, X.; Ning, L.; Cheng, Y.; Wu, B. Genetic polymorphisms of MTHFR and aberrant promoter hypermethylation of the RASSF1A gene in bladder cancer risk in a chinese population. J. Int. Med. Res. 2009, 37, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R.; Shafiei, N.; Safarinejad, S. Genetic susceptibility of methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C, and G1793A polymorphisms with risk for bladder transitional cell carcinoma in men. Med. Oncol. 2010, 28, 398–412. [Google Scholar] [CrossRef]
- Chung, C.-J.; Pu, Y.-S.; Su, C.-T.; Chen, H.-W.; Huang, Y.-K.; Shiue, H.-S.; Hsueh, Y.-M. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control 2010, 21, 1605–1613. [Google Scholar] [CrossRef]
- Gautam, K.A.; Tripathi, P.; Sankhwar, P.L.; Sankhwar, S.N. MTHFR functional polymorphisms and haplotypes are a risk factor for urinary bladder cancer: A case-control study and meta-analysis. Polymorphism 2019, 2, 122–133. [Google Scholar]
- Wang, M.; Zhu, H.; Fu, G.; Wang, M.; Zhang, Z.; Lu, Q.; Wang, S.; Zhang, Z. Polymorphisms of methylenetetrahydrofolate reductase and methionine synthase genes and bladder cancer risk: A case–control study with meta-analysis. Clin. Exp. Med. 2009, 9, 9–19. [Google Scholar] [CrossRef]
- Ali, S.H. Single Nucleotide Polymorphism-Based Association Studies of Bladder Cancer Patients. Ph.D. Thesis, COMSATS Institute of Information Technology, Islamabad, Pakistan. Available online: http://173.208.131.244:9060/xmlui/handle/123456789/764 (accessed on 2 April 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Daryanto, B.; Purnomo, A.F. Cytotoxic T-lymphocyte associated-protein-4 +49A/G-allele (rs231775) single nucleotide polymorphisms are associated with acute allograft renal transplantation rejection: A multilevel modelling of meta-analysis. F1000Research 2022, 11, 904. [Google Scholar] [CrossRef]
- Lutfiana, N.; Purnomo, A.; Purnomo, A.; Purnomo, A.; Ginannafsi, A. Association of Retinal Microangiopathy with Albuminuria in Patient with Chronic Kidney Disease: A Meta-analysis Study. Med. Arch. 2023, 77, 34–39. [Google Scholar] [CrossRef]
- Purnomo, A.F.; Syaban, M.F.R.; Faratisha, I.F.D.; Ekasiwi, F.D.; Juwono, M.A.; Hudayana, N.; Kinesya, E.; Mannagalli, Y.; Pasaribu, E.A. Comparison of the Mortality and Bleeding Risk of Anticoagulant Doses in COVID-19 Patients: A Systematic Review and Meta-analysis. Indones. J. Pharm. 2022, 33, 186–192. [Google Scholar] [CrossRef]
- Purnomo, A.; Daryanto, B.; Nurhadi, P. Monosymptomatic Nocturnal Enuresis Treatment Using Alarm-Therapy and Desmopressin: A Meta-analysis Approach. Med. Arch. 2021, 75, 431–435. [Google Scholar] [CrossRef]
- Seputra, K.; Purnomo, B.; Susianti, H.; Kalim, H.; Purnomo, A. miRNA-21 as reliable serum diagnostic biomarker candidate for metastatic progressive prostate cancer: Meta-analysis approach. Med. Arch. 2021, 75, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, A.; Permana, K.; Daryanto, B. Acute Kidney Injury Following Mannitol Administration in Traumatic Brain Injury: A Meta-analysis. Acta Inform. Med. 2021, 29, 270–274. [Google Scholar] [CrossRef]
- Dogara, A.M.; Hama, H.A.; Ozdemir, M. Biological evaluation of Acacia nilotica (L.) Willd. ex Delile: A systematic review. Orient. Pharm. Exp. Med. 2023, 67, 1–39. [Google Scholar] [CrossRef]
- Liu, F.; Qin, G.; Tang, T.; Huang, Q.; Li, Z.; Huang, H.; Lu, X. Methylenetetrahydrofolate Reductase (MTHFR) Gene rs1801133 C>T Polymorphisms and Lung Cancer Susceptibility: An Updated Meta-analysis. Pteridines 2019, 30, 65–73. [Google Scholar] [CrossRef]
- Kumar, P.; Rai, V. MTHFR C677T polymorphism and risk of esophageal cancer: An updated meta-analysis. Egypt. J. Med. Hum. Genet. 2018, 19, 273–284. [Google Scholar] [CrossRef]
- Greenblatt, M.S.; Bennett, W.P.; Hollstein, M.; Harris, C.C. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994, 54, 4855–4878. [Google Scholar]
- Wu, G.; Wang, F.; Li, K.; Li, S.; Zhao, C.; Fan, C.; Wang, J. Significance of TP53 mutation in bladder cancer disease progression and drug selection. PeerJ 2019, 7, e8261. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Zhang, Z.; Sun, Z.; He, Y.; Li, R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl. Psychiatry 2018, 8, 242. [Google Scholar] [CrossRef]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.M.; Curtin, K.; Samowitz, W.; Bigler, J.; Potter, J.D.; Caan, B.; Slattery, M.L. MTHFR variants reduce the risk of G:C→A:T transition mutations within the p53 tumor suppressor gene in colon tumors. J. Nutr. 2005, 135, 2462–2467. [Google Scholar] [CrossRef] [PubMed]
- Ascione, C.M.; Napolitano, F.; Esposito, D.; Servetto, A.; Belli, S.; Santaniello, A.; Scagliarini, S.; Crocetto, F.; Bianco, R.; Formisano, L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat. Rev. 2023, 115, 102530. [Google Scholar] [CrossRef]
- Ferro, M.; Chiujdea, S.; Musi, G.; Lucarelli, G.; Del Giudice, F.; Hurle, R.; Damiano, R.; Cantiello, F.; Mari, A.; Minervini, A.; et al. Impact of age on outcomes of patients with pure carcinoma in situ of the bladder: Multi-institutional cohort analysis. Clin. Genitourin. Cancer 2021, 20, e166–e172. [Google Scholar] [CrossRef]
Author & Year | Country | SNP | Genotype | Case | Control | Total Samples | Quality Score |
---|---|---|---|---|---|---|---|
Ali, 2012 [22] | Pakistan | rs1801133 | PCR-RFLP | 200 | 200 | 400 | 10 |
Cai et al., 2009 [17] | China | rs1801133 | PCR-RFLP | 312 | 325 | 637 | 7 |
Chung et al., 2010 [19] | Taiwan | rs1801133 | PCR-RFLP | 150 | 300 | 450 | 8 |
Gautam et al., 2019 [20] | India | rs1801133 | PCR-RFLP | 232 | 250 | 482 | 7 |
Izmirli et al., 2011 [16] | Turkey | rs1801133 | PCR-RFLP | 54 | 50 | 104 | 7 |
Safarinejad et al., 2011 [18] | Iran | rs1801133 | PCR-RFLP | 158 | 316 | 474 | 9 |
Wang et al., 2009 [21] | China | rs1801133 | PCR-RFLP | 239 | 250 | 489 | 9 |
Author & Year | Case | Control | HWE Adjusted Value | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TT | TC | CC | N | T | C | n | TT | TC | CC | N | T | C | n | ||
Ali, 2012 [22] | 5 | 58 | 137 | 200 | 68 | 332 | 400 | 8 | 62 | 130 | 200 | 78 | 8 | 400 | 0.9125 |
Cai et al., 2009 [17] | 61 | 169 | 82 | 312 | 291 | 333 | 624 | 42 | 170 | 113 | 325 | 254 | 396 | 650 | 0.3808 |
Chung et al., 2010 [19] | 13 | 57 | 80 | 150 | 83 | 217 | 300 | 36 | 123 | 141 | 300 | 195 | 405 | 600 | 0.6226 |
Gautam et al., 2019 [20] | 2 | 43 | 187 | 232 | 47 | 417 | 464 | 1 | 44 | 205 | 250 | 46 | 454 | 500 | 0.7084 |
Izmirli et al., 2011 [16] | 4 | 22 | 28 | 54 | 30 | 78 | 108 | 0 | 14 | 36 | 50 | 14 | 86 | 100 | 0.6226 |
Safarinejad et al., 2011 [18] | 17 | 74 | 67 | 158 | 108 | 208 | 316 | 30 | 142 | 144 | 316 | 202 | 430 | 632 | 0.7258 |
Wang et al., 2009 [21] | 45 | 128 | 66 | 239 | 218 | 260 | 478 | 30 | 132 | 88 | 250 | 192 | 308 | 500 | 0.3808 |
Allele & Genotype | NS | Model | Sensitivity, % | Specificity, % | OR | 95%CI | Chi2 | I2 | p-Value | Egger’s Test p-Value |
---|---|---|---|---|---|---|---|---|---|---|
rs1801133 C677T | ||||||||||
C vs. T | 7 | Fixed | 68.59 | 29.01 | 0.69 | 0.50–0.96 | 16.24 | 60% | 0.02 * | 0.370 |
T vs. C | 7 | Random | 31.41 | 68.59 | 1.15 | 1.03–1.30 | 41.70 | 86% | 0.03 * | 0.630 |
TT vs. TC + CC | 7 | Fixed | 10.93 | 91.31 | 1.34 | 1.04–1.72 | 9.21 | 35% | 0.02 * | 0.916 |
TC vs. TT + CC | 7 | Fixed | 40.97 | 59.37 | 1.03 | 0.89–1.20 | 2.72 | 0% | 0.68 | 0.810 |
CC vs. TC + TT | 7 | Fixed | 48.10 | 49.32 | 0.86 | 0.74–1.01 | 12.41 | 52% | 0.07 | 0.397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purnomo, A.F.; Daryanto, B.; Seputra, K.P.; Budaya, T.N.; Lutfiana, N.C.; Nurkolis, F.; Chung, S.; Suh, J.Y.; Park, M.N.; Seo, B.-K.; et al. Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers 2023, 15, 4402. https://doi.org/10.3390/cancers15174402
Purnomo AF, Daryanto B, Seputra KP, Budaya TN, Lutfiana NC, Nurkolis F, Chung S, Suh JY, Park MN, Seo B-K, et al. Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers. 2023; 15(17):4402. https://doi.org/10.3390/cancers15174402
Chicago/Turabian StylePurnomo, Athaya Febriantyo, Besut Daryanto, Kurnia Penta Seputra, Taufiq Nur Budaya, Nurul Cholifah Lutfiana, Fahrul Nurkolis, Sanghyun Chung, Jin Young Suh, Moon Nyeo Park, Byung-Kwan Seo, and et al. 2023. "Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach" Cancers 15, no. 17: 4402. https://doi.org/10.3390/cancers15174402
APA StylePurnomo, A. F., Daryanto, B., Seputra, K. P., Budaya, T. N., Lutfiana, N. C., Nurkolis, F., Chung, S., Suh, J. Y., Park, M. N., Seo, B. -K., & Kim, B. (2023). Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers, 15(17), 4402. https://doi.org/10.3390/cancers15174402