Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ and Tissue Selection
2.2. RNAseq Transcriptome
2.3. CRC Tumor Classification
2.4. Bioinformatics Analyses
2.5. Immunohistochemestry Assay
2.6. Digital Image Analysis
2.7. TCGA CRC Firehose Cohort Validation
2.8. Xcell Immune Infiltration
2.9. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Differential Gene Expression between Primary Tumor Samples and Immunohistochemical Validation
3.3. Differential Pathways’ Activation between CRC Primary Tumors with Liver and Peritoneal Spread
3.4. Prognostic Implication of CRC-Peritoneum and CRC-Liver Signatures in TCGA Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Facts & Figures 2023; American Cancer Society, Inc.: Atlanta, GA, USA, 2022; Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2023/2023-cancer-facts-and-figures.pdf (accessed on 14 July 2023).
- Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, J.; Zhao, Y.; Luo, B.; Zhao, Y.; Deng, Y.; Sui, Q.; Gao, Y.; Zeng, Z.; Lu, Z.; et al. Early recurrence in patients undergoing curative resection of colorectal liver oligometastases: Identification of its clinical characteristics, risk factors, and prognosis. J. Cancer Res. Clin. Oncol. 2018, 144, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Baca, B.; Beart, R.W.; Etzioni, D.A. Surveillance after Colorectal Cancer Resection: A Systematic Review. Dis. Colon Rectum 2011, 54, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, Y.R.; de Hingh, I.H.; van Herk-Sukel, M.P.; van Erning, F.N.; Beerepoot, L.V.; Wijsman, J.H.; Slooter, G.D.; Rutten, H.J.; Creemers, G.-J.M.; Lemmens, V.E. Patterns of metachronous metastases after curative treatment of colorectal cancer. Cancer Epidemiol. 2014, 38, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, Y.; Thomassen, I.; Lemmens, V.; Pruijt, J.; van Herk-Sukel, M.; Rutten, H.; Creemers, G.; de Hingh, I. Metachronous peritoneal carcinomatosis after curative treatment of colorectal cancer. Eur. J. Surg. Oncol. (EJSO) 2014, 40, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, T.; Karapetis, C.S.; Roder, D.; Tie, J.; Padbury, R.; Price, T.; Wong, R.; Shapiro, J.; Nott, L.; Lee, M.; et al. The survival outcome of patients with metastatic colorectal cancer based on the site of metastases and the impact of molecular markers and site of primary cancer on metastatic pattern. Acta Oncol. 2018, 57, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Franko, J.; Shi, Q.; Meyers, J.P.; Maughan, T.S.; Adams, R.A.; Seymour, M.T.; Saltz, L.; Punt, C.J.A.; Koopman, M.; Tournigand, C.; et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: An analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016, 17, 1709–1719. [Google Scholar] [CrossRef]
- Elias, D.; Faron, M.; Iuga, B.S.; Honoré, C.; Dumont, F.; Bourgain, J.-L.; Dartigues, P.; Ducreux, M.; Goéré, D. Prognostic Similarities and Differences in Optimally Resected Liver Metastases and Peritoneal Metastases from Colorectal Cancers. Ann. Surg. 2015, 261, 157–163. [Google Scholar] [CrossRef]
- Primrose, J.N.; Perera, R.; Gray, A.; Rose, P.; Fuller, A.; Corkhill, A.; George, S.; Mant, D.; FACS Trial Investigators. Effect of 3 to 5 Years of Scheduled CEA and CT Follow-up to Detect Recurrence of Colorectal Cancer: The FACS Randomized Clinical Trial. JAMA 2014, 311, 263–270. [Google Scholar] [CrossRef]
- Wille-Jørgensen, P.; Syk, I.; Smedh, K.; Laurberg, S.; Nielsen, D.T.; Petersen, S.H.; Renehan, A.G.; Horváth-Puhó, E.; Påhlman, L.; Sørensen, H.T.; et al. Effect of More vs Less Frequent Follow-up Testing on Overall and Colorectal Cancer–Specific Mortality in Patients with Stage II or III Colorectal Cancer: The COLOFOL Randomized Clinical Trial. JAMA 2018, 319, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Klaver, C.E.L.; Wisselink, D.D.; Punt, C.J.A.; Snaebjornsson, P.; Crezee, J.; Aalbers, A.G.J.; Brandt, A.; Bremers, A.J.A.; Burger, J.W.A.; Fabry, H.F.J.; et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): A multicentre, open-label, randomised trial. Lancet Gastroenterol. Hepatol. 2019, 4, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Goéré, D.; Glehen, O.; Quenet, F.; Guilloit, J.-M.; Bereder, J.-M.; Lorimier, G.; Thibaudeau, E.; Ghouti, L.; Pinto, A.; Tuech, J.-J.; et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP–PRODIGE 15): A randomised, phase 3 study. Lancet Oncol. 2020, 21, 1147–1154. [Google Scholar] [CrossRef]
- Taniguchi, H.; Nakamura, Y.; Kotani, D.; Yukami, H.; Mishima, S.; Sawada, K.; Shirasu, H.; Ebi, H.; Yamanaka, T.; Aleshin, A.; et al. CIRCULATE-Japan: Circulating tumor DNA–guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. 2021, 112, 2915–2920. [Google Scholar] [CrossRef] [PubMed]
- Taïeb, J.; Benhaim, L.; Puig, P.L.; Le Malicot, K.; Emile, J.F.; Geillon, F.; Tougeron, D.; Manfredi, S.; Chauvenet, M.; Taly, V.; et al. Decision for adjuvant treatment in stage II colon cancer based on circulating tumor DNA: The CIRCULATE-PRODIGE 70 trial. Dig. Liver Dis. 2020, 52, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Erve, I.V.; Rovers, K.P.; Constantinides, A.; Bolhuis, K.; Wassenaar, E.C.; Lurvink, R.J.; Huysentruyt, C.J.; Snaebjornsson, P.; Boerma, D.; Broek, D.v.D.; et al. Detection of tumor-derived cell-free DNA from colorectal cancer peritoneal metastases in plasma and peritoneal fluid. J. Pathol. Clin. Res. 2021, 7, 203–208. [Google Scholar] [CrossRef]
- Pretzsch, E.; Bösch, F.; Neumann, J.; Ganschow, P.; Bazhin, A.; Guba, M.; Werner, J.; Angele, M. Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. J. Oncol. 2019, 2019, 7407190. [Google Scholar] [CrossRef]
- Jacob, S.; Bösch, F.; Schoenberg, M.B.; Pretzsch, E.; Lampert, C.; Haoyu, R.; Renz, B.W.; Michl, M.; Kumbrink, J.; Kirchner, T.; et al. Expression of CIB1 correlates with colorectal liver metastases but not with peritoneal carcinomatosis. BMC Cancer 2021, 21, 1243. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Ross, K.N.; Lander, E.S.; Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003, 33, 49–54. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Friederichs, J.; Rosenberg, R.; Mages, J.; Janssen, K.-P.; Maeckl, C.; Nekarda, H.; Holzmann, B.; Siewert, J.-R. Gene expression profiles of different clinical stages of colorectal carcinoma: Toward a molecular genetic understanding of tumor progression. Int. J. Color. Dis. 2005, 20, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Burness, M.; Xu, H.; Beresnev, T.; Pingpank, J.; Alexander, H.R. Site-Specific Gene Expression Profiles and Novel Molecular Prognostic Factors in Patients with Lower Gastrointestinal Adenocarcinoma Diffusely Metastatic to Liver or Peritoneum. Ann. Surg. Oncol. 2007, 14, 3460–3471. [Google Scholar] [CrossRef] [PubMed]
- Kleivi, K.; Lind, G.E.; Diep, C.B.; Meling, G.I.; Brandal, L.T.; Nesland, J.M.; Myklebost, O.; Rognum, T.O.; Giercksky, K.-E.; Skotheim, R.I.; et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol. Cancer 2007, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Heublein, S.; Albertsmeier, M.; Pfeifer, D.; Loehrs, L.; Bazhin, A.V.; Kirchner, T.; Werner, J.; Neumann, J.; Angele, M.K. Association of differential miRNA expression with hepatic vs. peritoneal metastatic spread in colorectal cancer. BMC Cancer 2018, 18, 201. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.-C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium; Campbell, P.J.; Getz, G. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef]
- Simkens, G.; Rovers, K.P.; Nienhuijs, S.W.; de Hingh, I.H. Patient selection for cytoreductive surgery and HIPEC for the treatment of peritoneal metastases from colorectal cancer. Cancer Manag. Res. 2017, 9, 259–266. [Google Scholar] [CrossRef]
- Adams, R.B.; Aloia, T.A.; Loyer, E.; Pawlik, T.M.; Taouli, B.; Vauthey, J.-N. Selection for hepatic resection of colorectal liver metastases: Expert consensus statement. HPB 2013, 15, 91–103. [Google Scholar] [CrossRef]
- Adam, R.; De Gramont, A.; Figueras, J.; Guthrie, A.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; et al. The Oncosurgery Approach to Managing Liver Metastases from Colorectal Cancer: A Multidisciplinary International Consensus. Oncologist 2012, 17, 1225–1239. [Google Scholar] [CrossRef]
- Nordlinger, B.; Sorbye, H.; Glimelius, B.; Poston, G.J.; Schlag, P.M.; Rougier, P.; Bechstein, W.O.; Primrose, J.N.; Walpole, E.T.; Finch-Jones, M.; et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): A randomised controlled trial. Lancet 2008, 371, 1007–1016. [Google Scholar] [CrossRef]
- Quénet, F.; Elias, D.; Roca, L.; Goéré, D.; Ghouti, L.; Pocard, M.; Facy, O.; Arvieux, C.; Lorimier, G.; Pezet, D.; et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 256–266. [Google Scholar] [CrossRef]
- Goéré, D.; Malka, D.; Tzanis, D.; Gava, V.; Boige, V.; Eveno, C.; Maggiori, L.; Dumont, F.; Ducreux, M.; Elias, D. Is There a Possibility of a Cure in Patients with Colorectal Peritoneal Carcinomatosis Amenable to Complete Cytoreductive Surgery and Intraperitoneal Chemotherapy? Ann. Surg. 2013, 257, 1065–1071. [Google Scholar] [CrossRef]
- Tomlinson, J.S.; Jarnagin, W.R.; DeMatteo, R.P.; Fong, Y.; Kornprat, P.; Gonen, M.; Kemeny, N.; Brennan, M.F.; Blumgart, L.H.; D’Angelica, M. Actual 10-Year Survival After Resection of Colorectal Liver Metastases Defines Cure. J. Clin. Oncol. 2007, 25, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Segelman, J.; Akre, O.; Gustafsson, U.O.; Bottai, M.; Martling, A. External validation of models predicting the individual risk of metachronous peritoneal carcinomatosis from colon and rectal cancer. Color. Dis. 2016, 18, 378–385. [Google Scholar] [CrossRef]
- Honoré, C.; Goéré, D.; Souadka, A.; Dumont, F.; Elias, D. Definition of Patients Presenting a High Risk of Developing Peritoneal Carcinomatosis after Curative Surgery for Colorectal Cancer: A Systematic Review. Ann. Surg. Oncol. 2013, 20, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Okita, A.; Takahashi, S.; Ouchi, K.; Inoue, M.; Watanabe, M.; Endo, M.; Honda, H.; Yamada, Y.; Ishioka, C. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 2018, 9, 18698–18711. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, S.; Wirapati, P.; Lenz, H.-J.; Neureiter, D.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.; Heintges, T.; et al. Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann. Oncol. 2019, 30, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Ubink, I.; van Eden, W.J.; Snaebjornsson, P.; Kok, N.F.M.; van Kuik, J.; van Grevenstein, W.M.U.; Laclé, M.M.; Sanders, J.; Fijneman, R.J.A.; Elias, S.G.; et al. Histopathological and molecular classification of colorectal cancer and corresponding peritoneal metastases. Br. J. Surg. 2018, 105, e204–e211. [Google Scholar] [CrossRef] [PubMed]
- Bong, J.-W.; Gim, J.-A.; Ju, Y.; Cheong, C.; Lee, S.-I.; Oh, S.-C.; Min, B.-W.; Kang, S. Prognosis and Sensitivity of Adjuvant Chemotherapy in Mucinous Colorectal Adenocarcinoma without Distant Metastasis. Cancers 2022, 14, 1297. [Google Scholar] [CrossRef]
- Marisa, L.; Blum, Y.; Taieb, J.; Ayadi, M.; Pilati, C.; Le Malicot, K.; Lepage, C.; Salazar, R.; Aust, D.; Duval, A.; et al. Intratumor CMS Heterogeneity Impacts Patient Prognosis in Localized Colon Cancer. Clin. Cancer Res. 2021, 27, 4768–4780. [Google Scholar] [CrossRef]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef]
- Albino, D.; Civenni, G.; Rossi, S.; Mitra, A.; Catapano, C.V.; Carbone, G.M. The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment. Oncotarget 2016, 7, 76756–76768. [Google Scholar] [CrossRef]
- Lee, S.O.; Yang, X.; Duan, S.; Tsai, Y.; Strojny, L.R.; Keng, P.; Chen, Y. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer. Oncotarget 2016, 7, 6626–6638. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, Y.; Kitamura, H.; Xiang, H.; Ohno, Y.; Homma, S.; Kawamura, H.; Takahashi, N.; Kamiyama, T.; Tanino, M.; Taketomi, A. IL6 Modulates the Immune Status of the Tumor Microenvironment to Facilitate Metastatic Colonization of Colorectal Cancer Cells. Cancer Immunol. Res. 2019, 7, 1944–1957. [Google Scholar] [CrossRef] [PubMed]
- Kryczek, I.; Lin, Y.; Nagarsheth, N.; Peng, D.; Zhao, L.; Zhao, E.; Vatan, L.; Szeliga, W.; Dou, Y.; Owens, S.; et al. IL-22(+)CD4(+) T Cells Promote Colorectal Cancer Stemness via STAT3 Transcription Factor Activation and Induction of the Methyltransferase DOT1L. Immunity 2014, 40, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Spitzner, M.; Ebner, R.; Wolff, H.A.; Ghadimi, B.M.; Wienands, J.; Grade, M. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy. Cancers 2014, 6, 1986–2011. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Wang, Y.; Zhong, Y.; Pan, X.; Si, L.; Lu, J. KRAS Codon 12 Mutation is Associated with More Aggressive Invasiveness in Synchronous Metastatic Colorectal Cancer (MCRC): Retrospective Research. OncoTargets Ther. 2020, 13, 12601–12613. [Google Scholar] [CrossRef] [PubMed]
- Enciu, A.-M.; Radu, E.; Popescu, I.D.; Hinescu, M.E.; Ceafalan, L.C. Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? BioMed Res. Int. 2018, 2018, 7801202. [Google Scholar] [CrossRef] [PubMed]
- Barriuso, J.; Nagaraju, R.T.; Belgamwar, S.; Chakrabarty, B.; Burghel, G.J.; Schlecht, H.; Foster, L.; Kilgour, E.; Wallace, A.J.; Braun, M.; et al. Early Adaptation of Colorectal Cancer Cells to the Peritoneal Cavity Is Associated with Activation of “Stemness” Programs and Local Inflammation. Clin. Cancer Res. 2021, 27, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Cheng, Q.; Zheng, H.; Liu, J.; Liu, L.; Chen, Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin. Cancer Biol. 2021, 82, 150–161. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Mark, M.T.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Reichert, M.; Bakir, B.; Moreira, L.; Pitarresi, J.R.; Feldmann, K.; Simon, L.; Suzuki, K.; Maddipati, R.; Rhim, A.D.; Schlitter, A.M.; et al. Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Dev. Cell 2018, 45, 696–711.e8. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, E.; Nieß, H.; Bösch, F.; Westphalen, C.; Jacob, S.; Neumann, J.; Werner, J.; Heinemann, V.; Angele, M. Age and metastasis—How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol. 2022, 77, 102112. [Google Scholar] [CrossRef] [PubMed]
- Perotti, V.; Fabiano, S.; Contiero, P.; Michiara, M.; Musolino, A.; Boschetti, L.; Cascone, G.; Castelli, M.; Tagliabue, G.; Cancer Registries Working Group. Influence of Sex and Age on Site of Onset, Morphology, and Site of Metastasis in Colorectal Cancer: A Population-Based Study on Data from Four Italian Cancer Registries. Cancers 2023, 15, 803. [Google Scholar] [CrossRef] [PubMed]
- Zajac, O.; Raingeaud, J.; Libanje, F.; Lefebvre, C.; Sabino, D.; Martins, I.; Roy, P.; Benatar, C.; Canet-Jourdan, C.; Azorin, P.; et al. Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat. Cell Biol. 2018, 20, 296–306. [Google Scholar] [CrossRef]
- Canet-Jourdan, C.; Pagès, D.-L.; Nguyen-Vigouroux, C.; Cartry, J.; Zajac, O.; Desterke, C.; Lopez, J.-B.; Gutierrez-Mateyron, E.; Signolle, N.; Adam, J.; et al. Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer. J. Cell Sci. 2022, 135, jcs259256. [Google Scholar] [CrossRef] [PubMed]
- Libanje, F.; Raingeaud, J.; Luan, R.; Thomas, Z.; Zajac, O.; Veiga, J.; Marisa, L.; Adam, J.; Boige, V.; Malka, D.; et al. ROCK 2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J. 2019, 38, e99299. [Google Scholar] [CrossRef] [PubMed]
- Pagès, D.-L.; Dornier, E.; de Seze, J.; Gontran, E.; Maitra, A.; Maciejewski, A.; Wang, L.; Luan, R.; Cartry, J.; Canet-Jourdan, C.; et al. Cell clusters adopt a collective amoeboid mode of migration in confined nonadhesive environments. Sci. Adv. 2022, 8, eabp8416. [Google Scholar] [CrossRef]
- Van’T Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef]
- Smith, J.J.; Deane, N.G.; Wu, F.; Merchant, N.B.; Zhang, B.; Jiang, A.; Lu, P.; Johnson, J.C.; Schmidt, C.; Bailey, C.E.; et al. Experimentally Derived Metastasis Gene Expression Profile Predicts Recurrence and Death in Patients with Colon Cancer. Gastroenterology 2010, 138, 958–968. [Google Scholar] [CrossRef]
- Jorissen, R.N.; Gibbs, P.; Christie, M.; Prakash, S.; Lipton, L.; Desai, J.; Kerr, D.; Aaltonen, L.A.; Arango, D.; Kruhøffer, M.; et al. Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer. Clin. Cancer Res. 2009, 15, 7642–7651. [Google Scholar] [CrossRef]
- Goryca, K.; Kulecka, M.; Paziewska, A.; Dabrowska, M.; Grzelak, M.; Skrzypczak, M.; Ginalski, K.; Mroz, A.; Rutkowski, A.; Paczkowska, K.; et al. Exome scale map of genetic alterations promoting metastasis in colorectal cancer. BMC Genet. 2018, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Jurinovic, V.; Lampert, C.; Pretzsch, E.; Kumbrink, J.; Neumann, J.; Haoyu, R.; Renz, B.W.; Kirchner, T.; Guba, M.O.; et al. The association of immunosurveillance and distant metastases in colorectal cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 3333–3341. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, P.; Mondal, A.K.; Ahluwalia, M.; Sahajpal, N.S.; Jones, K.; Jilani, Y.; Gahlay, G.K.; Barrett, A.; Kota, V.; Rojiani, A.M.; et al. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med. 2022, 11, 1573–1586. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.-Z.; Peng, R.-Y.; Xu, F.; Wang, F.; Zhao, Q. Metabolism-Associated Molecular Classification of Colorectal Cancer. Front. Oncol. 2020, 10, 602498. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Loree, J.M.; Advani, S.M.; Ning, J.; Li, W.; Pereira, A.A.; Lam, M.; Raghav, K.; Morris, V.K.; Broaddus, R.; et al. Prognostic Implications of Mucinous Differentiation in Metastatic Colorectal Carcinoma Can Be Explained by Distinct Molecular and Clinicopathologic Characteristics. Clin. Color. Cancer 2018, 17, e699–e709. [Google Scholar] [CrossRef]
- Jayne, D.G.; Fook, S.; Loi, C.; Seow-Choen, F. Peritoneal carcinomatosis from colorectal Cancer: Peritoneal Carcinomatosis from Colorectal Cancer. Br. J. Surg. 2002, 89, 1545–1550. [Google Scholar] [CrossRef]
- Yamasaki, M.; Takemasa, I.; Komori, T.; Watanabe, S.; Sekimoto, M.; Doki, Y.; Matsubara, K.; Monden, M. The gene expression profile represents the molecular nature of liver metastasis in colorectal cancer. Int. J. Oncol. 2007, 30, 129–138. [Google Scholar] [CrossRef]
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell 2017, 168, 670–691. [Google Scholar] [CrossRef]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Xing, B.; Luo, N.; Gao, R.; Yu, K.; Hu, X.; Bu, Z.; Peng, J.; Ren, X.; et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 2022, 40, 424–437.e5. [Google Scholar] [CrossRef]
- Zhu, D.; Xia, J.; Gu, Y.; Lin, J.; Ding, K.; Zhou, B.; Liang, F.; Liu, T.; Qin, C.; Wei, Y.; et al. Preoperative Hepatic and Regional Arterial Chemotherapy in Patients Who Underwent Curative Colorectal Cancer Resection: A Prospective, Multi-Center, Randomized Controlled Trial. Ann. Ann. Surg. 2010, 273, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hoffmann, A.D.; Liu, H.; Liu, X. Organotropism: New insights into molecular mechanisms of breast cancer metastasis. NPJ Precis. Oncol. 2018, 2, 4. [Google Scholar] [CrossRef] [PubMed]
ID | Cohort | Gender | Center | Sidedness | Primary Tumor Resection | T | N | Type | WHO Subtype (% muc) | RAS Status | BRAF Status | MMR Status | Regimen | Targeted Therapy | RECIST | Surg | DFS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1T | CRC-Liver | M | 1 | Left sided | Yes | T1/T2 | N1 | Sync | NOS (0%) | wt | NA | NA | None | None | - | Yes | 22.8 |
2T | CRC-Liver | F | 1 | Left sided | Yes | T3/T4 | N2 | Sync | NOS (0%) | wt | mut | MSS | None | None | - | Yes | 86.5 |
4T | CRC-Liver | F | 1 | Right sided | Yes | T3/T4 | N2 | Met | NOS (1–25%) | wt | NA | MSS | None | None | - | Yes | 3.0 |
5T | CRC-Liver | F | 1 | Right sided | Yes | T3/T4 | N1 | Sync | NOS (0%) | wt | mut | MSS | None | None | - | Yes | 8.8 |
6T | CRC-Liver | M | 1 | Left sided | Yes | T3/T4 | N1 | Met | NOS (0%) | wt | wt | MSS | Ir | anti-VEGF | SD | Yes | 136.0 |
7T | CRC-Liver | M | 1 | Left sided | Yes | T3/T4 | N2 | Sync | NOS (0%) | mut | wt | NA | Ox | anti-VEGF | PR | Yes | 7.5 |
8T | CRC-Peritoneum | M | 1 | Left sided | Yes | T3/T4 | N2 | Sync | NOS (1–25%) | mut | wt | MSI | Ox | anti-VEGF | PR | Yes | 6.7 |
9T | CRC-Liver | M | 1 | Left sided | Yes | T3/T4 | N0 | Sync | NOS (0%) | mut | wt | MSS | Ox | anti-VEGF | PR | Yes | 106.0 |
10T | CRC-Liver | F | 1 | Right sided | Yes | T3/T4 | N2 | Sync | NOS (0%) | mut | wt | NA | None | None | - | Yes | 4.1 |
12T | CRC-Liver | M | 1 | Right sided | Yes | T3/T4 | N1 | Sync | NOS (0%) | mut | wt | MSS | None | None | - | Yes | 5.8 |
13T | CRC-Peritoneum | F | 1 | Left sided | Yes | T3/T4 | N0 | Sync | NOS (26–50%) | wt | wt | MSS | Ox | None | - | Yes | 6.5 |
15T | CRC-Liver | M | 1 | Left sided | Yes | T3/T4 | N1 | Sync | NOS (0%) | mut | wt | MSS | Ox | anti-VEGF | PR | Yes | 4.3 |
16T | CRC-Peritoneum | F | 1 | Left sided | Yes | T3/T4 | N0 | Sync | Muc (>50%) | wt | wt | MSS | Ir | None | PR | Yes | 9.3 |
19T | CRC-Peritoneum | M | 1 | Left sided | Yes | T3/T4 | N0 | Sync | Muc (>50%) | mut | wt | MSS | Ox | anti-VEGF | SD | Yes | 7.6 |
20T | CRC-Peritoneum | F | 1 | Left sided | Yes | T3/T4 | N0 | Sync | Muc (>50%) | mut | wt | MSS | Ox | anti-VEGF | - | Yes | 13.3 |
21 | CRC-Peritoneum | M | 1 | Left sided | None | - | - | Sync | NOS (0%) | mut | wt | MSS | Ox | anti-VEGF | PR | None | NA |
62 | CRC-Liver | M | 2 | Left sided | Yes | T3/T4 | N0 | Sync | NOS (0%) | wt | wt | MSS | NA | NA | - | NA | NA |
63 | CRC-Liver | M | 2 | Left sided | Yes | T3/T4 | N2 | Sync | NOS (0%) | wt | mut | MSS | NA | NA | - | NA | NA |
Overall | CRC-Liver | CRC-Peritoneum | p Value | ||
---|---|---|---|---|---|
Age at diagnosis | Median (Q1, Q3) | 54.0 (43.25, 65.25) | 53.0 (43, 64.25) | 55.5 (6.25, 64) | 0.85 |
Gender | Female | 7 (38.89%) | 4 (33.3%) | 3 (50.0%) | 0.864 |
Male | 11 (61.11%) | 8 (66.7%) | 3 (50.0%) | ||
Center | GR | 16 (88.89%) | 10.0 (83.3%) | 6 (100%) | 0.791 |
HEGP | 2 (11.11%) | 2 (16.7%) | 0 (0%) | ||
Sidedness | Left-sided | 14 (77.78%) | 8 (66.7%) | 6 (100%) | 0.316 |
Right-sided | 4 (22.22%) | 4 (33.3%) | 0 (0%) | ||
T stage | T1/T2 | 1 (5.88%) | 1 (8.33%) | 0 (0%) | 1 |
T3/T4 | 16 (94.12%) | 11.0 (91.7%) | 5 (100%) | ||
N stage | N0 | 6 (35.29%) | 2 (16.7%) | 4 (80.0%) | 0.053 |
N1-2 | 11 (64.71%) | 10.0 (83.3%) | 1 (20.0%) | ||
Histological subtype | NOS | 15 (83.33%) | 12 (100%) | 3 (50.0%) | 0.044 |
Mucinous | 3 (16.67%) | 0 (0%) | 3 (50.0%) | ||
Intravascular emboli | None | 8 (61.54%) | 4 (44.4%) | 4 (100%) | 0.20 |
Yes | 5 (38.46%) | 5 (55.6%) | 0 (0%) | ||
Perineural invasion | None | 3 (50%) | 2 (50.0%) | 1 (50.0%) | 1 |
Yes | 3 (50%) | 2 (50.0%) | 1 (50.0%) | ||
RAS status | Mutated | 9 (50%) | 5 (41.7%) | 4 (66.7%) | 0.617 |
Non mutated | 9 (50%) | 7 (58.3%) | 2 (33.3%) | ||
BRAF status | Mutated | 3 (18.75%) | 3 (30.0%) | 0 (0%) | 0.408 |
Non mutated | 13 (81.25%) | 7 (70.0%) | 6 (100%) | ||
TP53 status | Mutated | 7 (50%) | 5 (55.6%) | 2 (40.0%) | 1 |
Non mutated | 7 (50%) | 4 (44.4%) | 3 (60.0%) | ||
Mismatch repair system | MSI | 1 (7.14%) | 0 (0%) | 1 (20.0%) | 0.76 |
MSS | 13 (92.86%) | 9 (100%) | 4 (80.0%) | ||
Chemotherapy before sampling | None | 6 (37.50%) | 6 (60.0%) | 0 (0%) | 0.06 |
Yes | 10 (62.50%) | 4 (40.0%) | 6 (100%) | ||
Number of line before sampling | 0 | 6 (37.50%) | 6 (60.0%) | 0 (0%) | 0.034 |
1 | 7 (43.75%) | 4 (40.0%) | 3 (50.0%) | ||
2 | 2 (12.50%) | 0 (0%) | 2 (33.3%) | ||
3 or more | 1 (6.25%) | 0 (0%) | 1 (16.7%) | ||
Chemotherapy protocol Line 1 | None | 6 (37.50%) | 6 (60.0%) | 0 (0%) | 0.058 |
Oxaliplatin IV | 6 (37.50%) | 2 (20.0%) | 4 (66.7%) | ||
Irinotecan IV | 3 (18.75%) | 1 (10.0%) | 2 (33.3%) | ||
Oxaliplatin IA | 1 (6.25%) | 1 (10.0%) | 0 (0%) | ||
Targeted therapy Line 1 | None | 8 (50%) | 6 (60.0%) | 2 (33.3%) | 0.607 |
Bevacizumab | 8 (50%) | 4 (40.0%) | 4 (66.7%) | ||
Number of cures | 0 | 6 (37.50%) | 6 (60.0%) | 0 (0%) | 0.019 |
1 to 4 | 1 (6.25%) | 0 (0%) | 1 (16.7%) | ||
5 to 7 | 7 (43.75%) | 2 (20.0%) | 5 (83.3%) | ||
8 or more | 2 (12.50%) | 2 (20.0%) | 0 (0%) | ||
Response Line 1 | Objective response | 6 (75%) | 3 (75.0%) | 3 (75.0%) | 1 |
Stable | 2 (25%) | 1 (25.0%) | 1 (25.0%) | ||
Curative R0 surgery | None | 1 (6.25%) | 0 (0%) | 1.00 (16.7%) | 0.792 |
Yes | 15 (93.75%) | 10.0 (100%) | 5.00 (83.3%) | ||
Recurrence | None | 4 (30.77%) | 4 (40.0%) | 0 (0%) | 0.546 |
Yes | 9 (69.23%) | 6 (60.0%) | 3 (100%) | ||
Death | None | 8 (44.44%) | 5 (41.7%) | 3 (50.0%) | 0.502 |
Yes | 10 (55.56%) | 7 (58.3%) | 3 (50.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelli, M.; Desterke, C.; Bani, M.A.; Boige, V.; Ferté, C.; Dartigues, P.; Job, B.; Perkins, G.; Laurent-Puig, P.; Goéré, D.; et al. Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases. Cancers 2023, 15, 4418. https://doi.org/10.3390/cancers15174418
Gelli M, Desterke C, Bani MA, Boige V, Ferté C, Dartigues P, Job B, Perkins G, Laurent-Puig P, Goéré D, et al. Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases. Cancers. 2023; 15(17):4418. https://doi.org/10.3390/cancers15174418
Chicago/Turabian StyleGelli, Maximiliano, Christophe Desterke, Mohamed Amine Bani, Valérie Boige, Charles Ferté, Peggy Dartigues, Bastien Job, Geraldine Perkins, Pierre Laurent-Puig, Diane Goéré, and et al. 2023. "Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases" Cancers 15, no. 17: 4418. https://doi.org/10.3390/cancers15174418
APA StyleGelli, M., Desterke, C., Bani, M. A., Boige, V., Ferté, C., Dartigues, P., Job, B., Perkins, G., Laurent-Puig, P., Goéré, D., Mathieu, J. R. R., Cartry, J., Ducreux, M., & Jaulin, F. (2023). Primary Colorectal Tumor Displays Differential Genomic Expression Profiles Associated with Hepatic and Peritoneal Metastases. Cancers, 15(17), 4418. https://doi.org/10.3390/cancers15174418