Cost-Effectiveness Analysis of Risk Factor-Based Lung Cancer Screening Program by Low-Dose Computer Tomography in Current Smokers in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Model Structure
2.2. Screening Strategies
2.3. Clinical and Epidemiological Data
2.4. Screening Parameters and Effectiveness
2.5. Cost Input (Screening, Diagnosis and Treatment)
2.6. Quality of Life
Parameter | Baseline | Minimum | Maximum | Distribution | Reference |
---|---|---|---|---|---|
Smoking prevalence in in the Chinese population | |||||
Male | 74.1% | 71.8% | 76.0% | Beta | [36] |
Female | 5.40% | 4.00% | 7.00% | Beta | [36] |
Proportion of smoking amount in smokers | |||||
20–29 pack-years in male | 30.36% | 24.29% * | 36.43% * | Beta | [37] |
20–29 pack-years in female | 10.87% | 8.70% * | 13.04% * | Beta | [37] |
≥30 pack-years in male | 34.68% | 27.74% * | 41.62% * | Beta | [37] |
≥30 pack-years in female | 6.51% | 5.21% * | 7.81% * | Beta | [37] |
Data about Transition probabilities | |||||
Age-specific lung cancer incidence in China, years | |||||
40–44 | 0.0001414 | — | — | — | [4] |
45–49 | 0.0002867 | — | — | — | [4] |
50–54 | 0.0005538 | — | — | — | [4] |
55–59 | 0.0010131 | — | — | — | [4] |
60–64 | 0.0016089 | — | — | — | [4] |
65–69 | 0.0022856 | — | — | — | [4] |
70–74 | 0.0029973 | — | — | — | [4] |
75–79 | 0.0036277 | — | — | — | [4] |
80–84 | 0.0040047 | — | — | — | [4] |
85+ | 0.0032795 | — | — | — | [4] |
RRfor high-risk population | |||||
Smoking 20–29 pack-years | 2.70 | 2.16 * | 3.24 * | Gamma | [37] |
Smoking ≥ 30 pack-years | 6.10 | 4.88 * | 7.32 * | Gamma | [37] |
Progression rate, per cycle | |||||
No lung cancer to death | Time dependent | — | — | — | [38] |
Stage I to Stage II | 0.3558 | — | — | Beta | [24] |
Stage I to Stage IIIA | 0.0328 | — | — | Beta | [24] |
Stage I to Stage IIIB | 0.00000001 | — | — | Beta | [24] |
Stage I to Stage IV | 0.0869 | — | — | Beta | [24] |
Stage I to diagnosis | 0.0246 | — | — | Beta | [24] |
Stage I to death | 0.1544 | — | — | Beta | [24] |
Stage II to Stage IIIA | 0.2480 | — | — | Beta | [24] |
Stage II to Stage IIIB | 0.0060 | — | — | Beta | [24] |
Stage II to Stage IV | 0.1290 | — | — | Beta | [24] |
Stage II to diagnosis | 0.0270 | — | — | Beta | [24] |
Stage II to death | 0.1231 | — | — | Beta | [24] |
Stage IIIA to Stage IIIB | 0.2246 | — | — | Beta | [24] |
Stage IIIA to Stage IV | 0.1455 | — | — | Beta | [24] |
Stage IIIA to diagnosis | 0.0811 | — | — | Beta | [24] |
Stage IIIA to death | 0.1527 | — | — | Beta | [24] |
Stage IIIB to Stage IV | 0.0336 | — | — | Beta | [24] |
Stage IIIB to diagnosis | 0.5177 | — | — | Beta | [24] |
Stage IIIB to death | 0.1853 | — | — | Beta | [24] |
Stage IV to diagnosis | 0.6584 | — | — | Beta | [24] |
Stage IV to death | 0.2978 | — | — | Beta | [24] |
Fatality rate after treatment, per cycle | |||||
Stage I | 0.0121 | 0.0097 * | 0.0145 * | Beta | [39,40] |
Stage II | 0.0445 | 0.0356 * | 0.0534 * | Beta | [39,40] |
Stage IIIA | 0.0720 | 0.0576 * | 0.0864 * | Beta | [39,40] |
Stage IIIB | 0.1262 | 0.1010 * | 0.1514 * | Beta | [39,40] |
Stage IV | 0.1986 | 0.1589 * | 0.2383 * | Beta | [39,40] |
Screen Parameters | |||||
Sensitivity | 0.8913 | 0.7696 | 0.9527 | Beta | [42] |
Specificity | 0.9436 | 0.9388 | 0.9481 | Beta | [42] |
Baseline screening | |||||
Early recalls (40 y) | 0.1442 | 0.1154 * | 0.1730 * | Beta | — |
Immediate referrals (40 y) | 0.0134 | 0.0107 * | 0.0161 * | Beta | — |
Early recalls (45 y) | 0.1587 | 0.1270 * | 0.1904 * | Beta | — |
Immediate referrals (45 y) | 0.0088 | 0.0070 * | 0.0106 * | Beta | — |
Early recalls (50 y) | 0.1534 | 0.1227 * | 0.1841 * | Beta | — |
Immediate referrals (50 y) | 0.0122 | 0.0098 * | 0.0146 * | Beta | — |
Early recalls (55 y) | 0.1513 | 0.1210 * | 0.1816 * | Beta | — |
Immediate referrals (55 y) | 0.0173 | 0.0138 * | 0.0208 * | Beta | — |
Early recalls (60 y) | 0.1511 | 0.1209 * | 0.1813 * | Beta | — |
Immediate referrals (60 y) | 0.0284 | 0.0227 * | 0.0341 * | Beta | — |
Early recalls (65 y) | 0.1664 | 0.1331 * | 0.1997 * | Beta | — |
Immediate referrals (65 y) | 0.0306 | 0.0245 * | 0.0367 * | Beta | — |
Annual screening | |||||
Early recalls | 0.0442 | 0.0354 * | 0.0530 * | Beta | — |
Immediate referrals | 0.0237 | 0.0190 * | 0.0284 * | Beta | — |
Utilities | |||||
Without clinical lung cancer | 0.933 | 0.929 | 0.951 | Beta | [44,45] |
Stage I | 0.840 | 0.756 * | 0.924 * | Beta | [32] |
Stage II | 0.790 | 0.711 * | 0.869 * | Beta | [32] |
Stage III | 0.790 | 0.711 * | 0.869 * | Beta | [32] |
Stage IV | 0.770 | 0.693 * | 0.847 * | Beta | [32] |
Disutility (false-positive) | 0.063 | 0.057 * | 0.069 * | Beta | [33,46] |
Cost (USD) | |||||
LDCT screening | 53.94 | 43.15 * | 64.73 * | Gamma | [43] |
Lung biopsy and diagnosis | 333.89 | 267.11 * | 400.67 * | Gamma | [30,31] |
Treatment costs per cycle | |||||
Clinical stage I | 2258.33 | 1806.66 * | 2710.00 * | Gamma | [30,31] |
Clinical stage II | 3739.69 | 2991.75 * | 4487.63 * | Gamma | [30,31] |
Clinical stage III | 4066.14 | 3252.91 * | 4879.37 * | Gamma | [30,31] |
Clinical stage IV | 5224.76 | 4179.81 * | 6269.71 * | Gamma | [30,31] |
2.7. Analysis
3. Result
3.1. Base-Case Analysis
3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef]
- Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zheng, R.; Zeng, H.; Zhang, S.; Zou, X.; Gu, X.; Xia, C.; Yang, Z.; Li, H.; Chen, W.; et al. The incidence and mortality of lung cancer in China, 2014. Chin. J. Oncol. 2018, 40, 805–811. [Google Scholar]
- Zheng, R.; Zhang, S.; Sun, K.; Chen, R.; Wang, S.; Li, L.; Zeng, H.; Wei, W.; He, J. Cancer statistics in China, 2016. Chin. J. Oncol. 2023, 45, 212–220. [Google Scholar]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J.; Wu, Y.-L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, W.; Zheng, R.; Zhang, S.; Ji, J.S.; Zou, X.; Xia, C.; Sun, K.; Yang, Z.; Li, H.; et al. Changing cancer survival in China during 2003–15: A pooled analysis of 17 population-based cancer registries. Lancet Glob. Health 2018, 6, e555–e567. [Google Scholar] [CrossRef]
- Cui, X.; Zhu, J.; Xu, W.; Xing, X.; Chen, Y.; Wu, D. Analysis of smoking behaviors and its influencing factors among adults of Anhui Province in 2015. Chin. J. Prev. Control Chronic Dis. 2022, 30, 602–605. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, Y.; Feng, H.; Jin, Q.; Ding, S.; Dong, Y. Prevalence of smoking among adults in Ningbo City from 2018 to 2021. Prev. Med. 2022, 34, 461–465. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- Zhang, E.W.; Shepard, J.O.; Kuo, A.; Chintanapakdee, W.; Keane, F.; Gainor, J.F.; Mino-Kenudson, M.; Lanuti, M.; Lennes, I.T.; Digumarthy, S.R. Characteristics and Outcomes of Lung Cancers Detected on Low-Dose Lung Cancer Screening CT. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2021, 30, 1472–1479. [Google Scholar] [CrossRef]
- Lung Cancer Screening, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1441 (accessed on 20 May 2023).
- Sandler, K.L.; Henry, T.S.; Amini, A.; Elojeimy, S.; Kelly, A.M.; Kuzniewski, C.T.; Lee, E.; Martin, M.D.; Morris, M.F.; Peterson, N.B.; et al. ACR Appropriateness Criteria® Lung Cancer Screening: 2022 Update. J. Am. Coll. Radiol. 2023, 20, S94–S101. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 325, 962–970. [Google Scholar] [CrossRef]
- Lewin, G.; Morissette, K.; Dickinson, J.; Bell, N.; Bacchus, M.; Singh, H.; Tonelli, M.; Garcia, A.J. Recommendations on screening for lung cancer. Can. Med. Assoc. J. J. L’assoc. Medicale Can. 2016, 188, 425–432. [Google Scholar] [CrossRef]
- Koegelenberg, C.F.N.; Dorfman, S.; Schewitz, I.; Richards, G.A.; Maasdorp, S.; Smith, C.; Dheda, K.; on behalf of the South African Thoracic Society. Recommendations for lung cancer screening in Southern Africa. J. Thorac. Dis. 2019, 11, 3696–3703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Fan, Y.; Wang, Y.; Qiao, Y.; Wang, G.; Huang, Y.; Wang, X.; Wu, N.; Zhang, G.; Zheng, X.; et al. China National Lung Cancer Screening Guideline with Low-dose Computed Tomography (2018 version). Chin. J. Lung Cancer 2018, 21, 67–75. [Google Scholar]
- He, J.; Li, N.; Chen, W.; Wu, N.; Shen, H.; Jiang, Y.; Li, J.; Wang, F.; Tian, J. China Guideline for the Screening and Early Detection of Lung Cancer (2021, Beijing). China Cancer 2021, 30, 81–111. [Google Scholar]
- Oncology Society of Chinese Medical Association; Chinese Medical Association Publishing House. Chinese Medical Association guidelines for clinical diagnosis and treatment of lung cancer (2022 edition). Chin. J. Oncol. 2022, 44, 457–490. [Google Scholar]
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef]
- Li, C.; Liang, H.; Zhong, N.; He, J.; Liang, W. Optimal Starting Age for Lung Cancer Screening With Low-Dose Computed Tomography: A Population Level Analysis. J. Thorac. Oncol. 2019, 14, e82–e84. [Google Scholar] [CrossRef]
- Gao, W.; Wen, C.P.; Wu, A.; Welch, H.G. Association of Computed Tomographic Screening Promotion With Lung Cancer Overdiagnosis Among Asian Women. JAMA Intern. Med. 2022, 182, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Black, W.C.; Gareen, I.F.; Soneji, S.S.; Sicks, J.D.; Keeler, E.B.; Aberle, D.R.; Naeim, A.; Church, T.R.; Silvestri, G.A.; Gorelick, J.; et al. Cost-Effectiveness of CT Screening in the National Lung Screening Trial. N. Engl. J. Med. 2014, 371, 1793–1802. [Google Scholar] [CrossRef] [PubMed]
- Hofer, F.; Kauczor, H.-U.; Stargardt, T. Cost-utility analysis of a potential lung cancer screening program for a high-risk population in Germany: A modelling approach. Lung Cancer 2018, 124, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Toumazis, I.; de Nijs, K.; Cao, P.; Bastani, M.; Munshi, V.; ten Haaf, K.; Jeon, J.; Gazelle, G.S.; Feuer, E.J.; de Koning, H.J.; et al. Cost-effectiveness Evaluation of the 2021 US Preventive Services Task Force Recommendation for Lung Cancer Screening. JAMA Oncol. 2021, 7, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, B.; Kim, S.-H.; Choi, C.-M.; Kim, Y.; Jo, M.-W. Cost Utility Analysis of a Pilot Study for the Korean Lung Cancer Screening Project. Cancer Res. Treat. 2022, 54, 728–736. [Google Scholar] [CrossRef]
- Esmaeili, M.H.; Seyednejad, F.; Mahboub-Ahari, A.; Ameri, H.; Abdollahzad, H.; Safaei, N.; Alinezhad, F.; Yousefi, M. Cost-effectiveness analysis of lung cancer screening with low-dose computed tomography in an Iranian high-risk population. J. Med. Screen. 2021, 28, 494–501. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, X.; Guo, S.; Liu, Y.; Zhou, L.; Shi, J.; Wu, N.; Zhai, Z.; Liu, G. Determining cost-effectiveness of lung cancer screening in urban Chinese populations using a state-transition Markov model. BMJ Open 2021, 11, e046742. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, Y.; Wang, K.; Wang, Z.; Li, D.; Fan, M.; Bu, X.; Chen, M.; Ren, H. Cost Effectiveness of Lung Cancer Screening With Low-Dose CT in Heavy Smokers in China. Cancer Prev. Res. 2022, 15, 37–44. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Wu, W.; Yang, Y.; Du, L.; Dong, H. Cost-effectiveness of Low-Dose Computed Tomography With a Plasma-Based Biomarker for Lung Cancer Screening in China. JAMA Netw. Open 2022, 5, e2213634. [Google Scholar] [CrossRef]
- Zhao, Z.; Du, L.; Li, Y.; Wang, L.; Wang, Y.; Yang, Y.; Dong, H. Cost-Effectiveness of Lung Cancer Screening Using Low-Dose Computed Tomography Based on Start Age and Interval in China: Modeling Study. JMIR Public Health Surveill. 2022, 8, e36425. [Google Scholar] [CrossRef]
- Yang, S.-C.; Lai, W.-W.; Lin, C.-C.; Su, W.-C.; Ku, L.-J.; Hwang, J.-S.; Wang, J.-D. Cost-effectiveness of implementing computed tomography screening for lung cancer in Taiwan. Lung Cancer 2017, 108, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Griffin, E.; Hyde, C.; Long, L.; Varley-Campbell, J.; Coelho, H.; Robinson, S.; Snowsill, T. Lung cancer screening by low-dose computed tomography: A cost-effectiveness analysis of alternative programmes in the UK using a newly developed natural history-based economic model. Diagn. Progn. Res. 2020, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhou, Z.; Luo, X.; Liu, Q. Lung cancer screening with low-dose computed tomography: National expenditures and cost-effectiveness. Front. Public Health 2022, 10, 977550. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Li, C.C.; Li, J.; Xiong, S.; Cheng, B.; Liang, H.; Zhong, N.; He, J. LBA48 Community-based mass screening with low-dose CT for lung cancer in Guangzhou. Ann. Oncol. 2022, 33, S1414. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Bao, H.; Cong, S.; Fan, J.; Wang, B.; Wang, L.; Fang, L. Survey of smoking prevalence in adults aged 40 years and older in China, 2014. Chin. J. Epidemiol. 2018, 39, 551–556. [Google Scholar] [CrossRef]
- Park, B.; Kim, Y.; Lee, J.; Lee, N.; Jang, S.H. Sex Difference and Smoking Effect of Lung Cancer Incidence in Asian Population. Cancers 2021, 13, 113. [Google Scholar] [CrossRef]
- Office of the Leading Group of the State Council for the Seventh National Population Census. China Population Census Yearbook 2020; China Statistics Press: Beijing, China, 2022; pp. 503–505. [Google Scholar]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- He, M.; Li, B.; Du, J.; Zhang, Y.; Zhao, Y.; Wang, Y.; Lei, H.; Zhang, W.; Wu, Y.; Zhou, H. Clinical Characteristics and Survival of Lung Cancer Patients in Chongqing, 2001—2018. China Cancer 2020, 29, 865–870. [Google Scholar]
- Fan, Y.; Zhou, Q.; Qiao, Y.; Zhang, G. China National Lung Cancer Screening Guideline with Low-dose Computed Tomography (2023 Version). Chin. J. Lung Cancer 2023, 26, 1–9. [Google Scholar]
- Qiao, L.; Zhou, P.; Li, B.; Liu, X.-X.; Li, L.-N.; Chen, Y.-Y.; Ma, J.; Zhao, Y.-Q.; Li, T.-Y.; Li, Q. Performance of low-dose computed tomography on lung cancer screening in high-risk populations: The experience over five screening rounds in Sichuan, China. Cancer Epidemiol. 2020, 69, 101801. [Google Scholar] [CrossRef]
- The Price of Medical Service in Public Hospitals in Guangzhou (2021 version). Available online: https://www.gz.gov.cn/zfjg/gzsylbzj/tzgg/content/post_7623884.html (accessed on 9 August 2021).
- Zhang, T.; Wu, H.; Cai, Y.; Xiao, Y.; Wu, J.; Li, M.; Lin, X.; Huang, Y.; Xie, Z. Researches on The Status of Life Quality of Chinese Population and Its Influencing Factors Based on EQ-5D-5L and SF-6D Scales. Chin. Health Serv. Manag. 2020, 37, 631–634. [Google Scholar]
- Guan, H.; Liu, G. Comparison Analysis on Health Related Quality of Life among Urban and Rural Residents in 4 Cities of China. Chin. Health Econ. 2015, 34, 5–12. [Google Scholar]
- Mazzone, P.J.; Obuchowski, N.; Fu, A.Z.; Phillips, M.; Meziane, M. Quality of Life and Healthcare Use in a Randomized Controlled Lung Cancer Screening Study. Ann. Am. Thorac. Soc. 2013, 10, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Patz, E.F., Jr.; Pinsky, P.; Gatsonis, C.; Sicks, J.D.; Kramer, B.S.; Tammemägi, M.C.; Chiles, C.; Black, W.C.; Aberle, D.R.; The NLST Overdiagnosis Manuscript Writing Team. Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer. JAMA Intern. Med. 2014, 174, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Tan, F.; Chen, W.; Dai, M.; Wang, F.; Shen, S.; Tang, W.; Li, J.; Yu, Y.; Cao, W.; et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir. Med. 2022, 10, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Xie, S.; Chen, M.; Zhao, J.; Chen, W. Analysis on incidence and mortality of lung cancer, Zhuhai city, 2010–2016. Prev. Med. Trib. 2020, 26, 266–271. [Google Scholar] [CrossRef]
- Du, D.; Liu, X.; Yang, Y.; You, D. Analysis on incidence and mortality trensd of lung cancer, Lishui, Zhejiang province, 2014–2018. Pract. Prev. Med. 2021, 28, 212–215. [Google Scholar]
- Wang, W.; Sun, H.; Zhang, M.; Jia, H.; Song, B. Incidence and Mortality of Lung Cancer in Heilongjiang Cancer Registries, 2013–2017. Cancer Res. Prev. Treat. 2021, 48, 1017–1022. [Google Scholar]
- Ren, S.; Chen, Y.; Shi, Q.; Zhu, Y.; Wen, H. Characteristics of lung cancer incidence and mortality from 2011 to 2016 in the cancer registration areas of Yunnan province and its time trend. Pract. Oncol. J. 2021, 35, 332–338. [Google Scholar]
- Husereau, D.; Drummond, M.; Augustovski, F.; de Bekker-Grob, E.; Briggs, A.H.; Carswell, C.; Caulley, L.; Chaiyakunapruk, N.; Greenberg, D.; Loder, E.; et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) Statement: Updated Reporting Guidance for Health Economic Evaluations. Value Health 2022, 25, 3–9. [Google Scholar] [CrossRef]
- ten Haaf, K.; Tammemägi, M.C.; Bondy, S.J.; van der Aalst, C.M.; Gu, S.; McGregor, S.E.; Nicholas, G.; de Koning, H.J.; Paszat, L.F. Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada. PLOS Med. 2017, 14, e1002225. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, Y.; ten Haaf, K.; Frauenfelder, T.; Kohler, M.; Kouyos, R.D.; Shilaih, M.; Lorez, M.; de Koning, H.J.; Schwenkglenks, M.; Puhan, M.A. Cost-effectiveness of low-dose CT screening for lung cancer in a European country with high prevalence of smoking—A modelling study. Lung Cancer 2018, 121, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhang, H.; Pu, Q.; Liu, L. Clinical epidemiology and histological characteristics of patients with lung cancer in West China Hospital of Sichuan University. J. Sichuan Univ. (Med. Sci.) 2014, 45, 309–315. [Google Scholar]
- Peng, Y.; Cui, H.; Xu, Y.; Liu, D.; Song, Y.; Duan, H. Morbidity situation of lung cancer in China-Japan Friendship Hospital from 2005 to 2014. Chin. Gen. Pract. 2016, 19, 565–569. [Google Scholar]
- Wang, C.; Chen, B.; Song, L.; Shao, J.; Liu, D.; Li, W. Epidemiological and pathological distribution characteristics in 23,228 lung cancer patients. West China Med. J. 2020, 35, 813–820. [Google Scholar]
- Ji, G.; Bao, T.; Li, Z.; Tang, H.; Liu, D.; Yang, P.; Li, W.; Huang, Y. Current lung cancer screening guidelines may miss high-risk population: A real-world study. BMC Cancer 2021, 21, 50. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.-F.; Zhen, Y.; Xiang, J.; Wu, C.; Bao, P.; Luketich, J.; Hu, H.; Zhou, X.; Zhang, J.; et al. Multicenter analysis of lung cancer patients younger than 45 years in Shanghai. Cancer 2010, 116, 3656–3662. [Google Scholar] [CrossRef]
- Zhao, S.; Li, L.; Qiu, Z.; Cheng, Y.; Jing, Y.; Zhou, Y.; Li, W. Clinical Epidemiology and Histological Characteristics of 3,663 Lung Cancer Patients in Sichuan Province from 2008 to 2013. Chin. J. Lung Cancer 2016, 19, 70–76. [Google Scholar]
- Xiang, D. The lung cancer incidence of Chinese women is far higher than that in western country: Cooking oil fume and second-hand smoke are the chief culprits. China Women’s News, 17 June 2013. p. B01.
- Kumar, V.; Cohen, J.T.; van Klaveren, D.; Soeteman, D.I.; Wong, J.B.; Neumann, P.J.; Kent, D.M. Risk-Targeted Lung Cancer Screening: A Cost-Effectiveness Analysis. Ann. Intern. Med. 2018, 168, 161–169. [Google Scholar] [CrossRef]
- Allen, B.D.; Schiebler, M.L.; Sommer, G.; Kauczor, H.-U.; Biederer, J.; Kruser, T.J.; Carr, J.C.; Hazen, G. Cost-effectiveness of lung MRI in lung cancer screening. Eur. Radiol. 2020, 30, 1738–1746. [Google Scholar] [CrossRef]
- Neumann, P.J.; Cohen, J.T.; Weinstein, M.C. Updating Cost-Effectiveness—The Curious Resilience of the $50,000-per-QALY Threshold. N. Engl. J. Med. 2014, 371, 796–797. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Sidorenkov, G.; Heuvelmans, M.A.; Groen, H.J.M.; Vermeulen, K.M.; Greuter, M.J.W.; de Bock, G.H. Cost-effectiveness of lung cancer screening with low-dose computed tomography in heavy smokers: A microsimulation modelling study. Eur. J. Cancer 2020, 135, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Snowsill, T.M.; Griffin, E.; Robinson, S.; Hyde, C.J. Variation in Model-Based Economic Evaluations of Low-Dose Computed Tomography Screening for Lung Cancer: A Methodological Review. Value Health 2022, 25, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.P.; Petranovic, M.; Som, A.; Wu, M.Y.; Park, E.Y.; Zhang, E.W.; Archer, J.M.; McDermott, S.; Khandekar, M.; Lanuti, M.; et al. Lung-RADS Category 3 and 4 Nodules on Lung Cancer Screening in Clinical Practice. AJR. Am. J. Roentgenol. 2022, 219, 55–65. [Google Scholar] [CrossRef]
- McMahon, P.M.; Kong, C.Y.; Bouzan, C.; Weinstein, M.C.; Cipriano, L.E.; Tramontano, A.C.; Johnson, B.E.; Weeks, J.C.; Gazelle, G.S. Cost-Effectiveness of Computed Tomography Screening for Lung Cancer in the United States. J. Thorac. Oncol. 2011, 6, 1841–1848. [Google Scholar] [CrossRef]
- Chinese Medical Association; Oncology Society of Chinese Medical Association; Chinese Medical Association Publishing House. Chinese Medical Association guidelines for clinical diagnosis and treatment of lung cancer (2019 edition). Chin. J. Oncol. 2020, 42, 257–287. [Google Scholar]
- Meza, R.; Jeon, J.; Toumazis, I.; Haaf, K.T.; Cao, P.; Bastani, M.; Han, S.S.; Blom, E.F.; Jonas, D.E.; Feuer, E.J.; et al. Evaluation of the Benefits and Harms of Lung Cancer Screening With Low-Dose Computed Tomography: Modeling Study for the US Preventive Services Task Force. JAMA 2021, 325, 988–997. [Google Scholar] [CrossRef]
- Guo, L.-W.; Lyu, Z.-Y.; Meng, Q.-C.; Zheng, L.-Y.; Chen, Q.; Liu, Y.; Xu, H.-F.; Kang, R.-H.; Zhang, L.-Y.; Cao, X.-Q.; et al. A risk prediction model for selecting high-risk population for computed tomography lung cancer screening in China. Lung Cancer 2022, 163, 27–34. [Google Scholar] [CrossRef]
Scenario Chracteraistic | Considered Values |
---|---|
Age to start screening | 40, 45, 50, 55, 60, 65 |
Age to end screening | 69, 74, 79 |
Screening interval | Annual |
Minimum cumulative smoking criteria | 20 pack-years, 30 pack-years |
Strategy | Starting Age of Screening | Stopping Age of Screening | Cumulative Smoking Criteria | Costs (USD) | QALYs | ICER Compared to No Screening | ICER Compared to Previous Efficient Scenarios |
---|---|---|---|---|---|---|---|
No screening | —— | —— | —— | 552.87 | 15.64662 | —— | —— |
1 | 65 | 74 | 30 pack-years | 600.45 | 15.64870 | 22,875.00 | 22,875.00 |
2 | 65 | 79 | 30 pack-years | 614.10 | 15.64928 | 23,018.80 | 23,534.48 |
3 | 65 | 74 | 20 pack-years | 639.36 | 15.65034 | 23,250.00 | 23,830.19 |
* 4 | 65 | 79 | 20 pack-years | 664.10 | 15.65136 | 23,466.24 | 24,254.90 |
5 | 60 | 79 | 20 pack-years | 718.69 | 15.65341 | 24,421.21 | 26,629.27 |
# 6 | 55 | 79 | 20 pack-years | 775.74 | 15.65504 | 26,469.12 | 35,000.00 |
7 | 50 | 79 | 20 pack-years | 834.48 | 15.65598 | 30,086.54 | 62,489.36 |
8 | 45 | 79 | 20 pack-years | 898.24 | 15.65627 | 35,789.64 | 219,862.07 |
9 | 40 | 79 | 20 pack-years | 986.37 | 15.65663 | 43,306.69 | 244,805.56 |
2018 guideline | 50 | 74 | 20 pack-years | 809.74 | 15.65496 | 30,799.76 | Abs. dominated |
2021 guideline | 50 | 74 | 30 pack-years | 693.13 | 15.65132 | 29,842.55 | Abs. dominated |
2022 guideline | 45 | 74 | 20 pack-years | 873.51 | 15.65525 | 37,154.11 | Abs. dominated |
Scenario | Optimal Strategy When The WTP Threshold Was 1× GDP per Capita (Screening Starting Age-Stopping Age-Smoking Criteria) | Optimal Strategy When The WTP Threshold Was 2× GDP per capita (Screening Starting Age-Stopping Age-Smoking Criteria) | Optimal Strategy When The WTP Threshold Was 3× GDP per Capita (Screening Starting Age-Stopping Age-Smoking Criteria) |
---|---|---|---|
Nationwide | |||
Overdiagnosis was considered | None | None | None |
Participation rate was considered | None | 65-79-20 pack-years | 55-79-20 pack-years |
South China | None | 60-79-20 pack-years | 55-79-20 pack-years |
East China | None | 60-79-20 pack-years | 50-79-20 pack-years |
West China | None | None | 65-74-20 pack-years |
North China | None | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Chen, X.; Li, C.; Wen, X.; Lin, T.; Huang, J.; He, J.; Zhong, N.; Jiang, J.; Liang, W. Cost-Effectiveness Analysis of Risk Factor-Based Lung Cancer Screening Program by Low-Dose Computer Tomography in Current Smokers in China. Cancers 2023, 15, 4445. https://doi.org/10.3390/cancers15184445
Zhang T, Chen X, Li C, Wen X, Lin T, Huang J, He J, Zhong N, Jiang J, Liang W. Cost-Effectiveness Analysis of Risk Factor-Based Lung Cancer Screening Program by Low-Dose Computer Tomography in Current Smokers in China. Cancers. 2023; 15(18):4445. https://doi.org/10.3390/cancers15184445
Chicago/Turabian StyleZhang, Tiantian, Xudong Chen, Caichen Li, Xiaoqin Wen, Tengfei Lin, Jiaxing Huang, Jianxing He, Nanshan Zhong, Jie Jiang, and Wenhua Liang. 2023. "Cost-Effectiveness Analysis of Risk Factor-Based Lung Cancer Screening Program by Low-Dose Computer Tomography in Current Smokers in China" Cancers 15, no. 18: 4445. https://doi.org/10.3390/cancers15184445
APA StyleZhang, T., Chen, X., Li, C., Wen, X., Lin, T., Huang, J., He, J., Zhong, N., Jiang, J., & Liang, W. (2023). Cost-Effectiveness Analysis of Risk Factor-Based Lung Cancer Screening Program by Low-Dose Computer Tomography in Current Smokers in China. Cancers, 15(18), 4445. https://doi.org/10.3390/cancers15184445