Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Signaling and Metabolic Pathways in the Regulation of NAFLD/NASH Progression, Hepatocarcinogenesis, and Associated Biomarkers
2.1. mTOR Pathway as a Multifunctional Driver of Metabolic Syndrome-Associated Hepatocarcinogenesis
2.2. Disturbances of Metabolism in NAFLD/NASH-HCC
2.3. Formation of Oxidative Stress and Resistance Mechanisms
2.4. Glycoproteins-Related Pathways in NASH HCC and Potential Biomarkers
2.5. Immune Dysregulation and Activation of Liver Fibrogenesis with the Central Role for TGF-β/SMAD Pathway
2.6. The Role of NRIP1 in NAFLD/NASH and Associated HCC
3. ER Stress, Mitochondrial Dysfunction, and Inhibition of Autophagy in NAFLD/NASH and Potential Biomarkers
3.1. Endoplasmic Reticulum (ER) Stress and Inhibition of Autophagy
3.2. Biomarkers and Potential Molecular Targets Associated with ER Stress and Autophagy in NAFLD/NASH
3.2.1. p62
3.2.2. CNPY2
3.2.3. CACHD1
3.3. Methylation and Epigenetic Changes
4. New Therapeutic Approaches and Molecular Targets in NAFLD/NASH and HCC
4.1. AMPK/mTOR Pathway-Associated Targets and Therapeutic Agents
4.2. Lysosome Targetting
4.3. Natural Killer T (NKT) Cells as New NAFLD/NASH Targets
4.4. Non-Coding RNAs as Biomarkers and Therapeutic Agents
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdelhamed, W.; El-Kassas, M. Hepatocellular carcinoma and hepatitis C virus treatments: The bold and the beautiful. J. Viral Hepat. 2023, 30, 148–159. [Google Scholar] [CrossRef]
- Araujo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018, 38 (Suppl. S1), 47–51. [Google Scholar] [CrossRef] [PubMed]
- Armandi, A.; Schattenberg, J.M. NAFLD and NASH: The Metabolically Diseased Liver. Handb. Exp. Pharmacol. 2022, 274, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Nguyen, M.H. Perspectives on the Underlying Etiology of HCC and Its Effects on Treatment Outcomes. J. Hepatocell. Carcinoma 2023, 10, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A. The influence of diabetes in the pathogenesis and the clinical course of hepatocellular carcinoma: Recent findings and new perspectives. Curr. Diabetes Rev. 2013, 9, 382–386. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism 2015, 64, 60–78. [Google Scholar] [CrossRef]
- Loo, T.M.; Kamachi, F.; Watanabe, Y.; Yoshimoto, S.; Kanda, H.; Arai, Y.; Nakajima-Takagi, Y.; Iwama, A.; Koga, T.; Sugimoto, Y.; et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer Discov. 2017, 7, 522–538. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499, 97–101. [Google Scholar] [CrossRef]
- Nakagawa, H.; Umemura, A.; Taniguchi, K.; Font-Burgada, J.; Dhar, D.; Ogata, H.; Zhong, Z.; Valasek, M.A.; Seki, E.; Hidalgo, J.; et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014, 26, 331–343. [Google Scholar] [CrossRef]
- Vachher, M.; Bansal, S.; Kumar, B.; Yadav, S.; Arora, T.; Wali, N.M.; Burman, A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J. Cell Biochem. 2022, 123, 1553–1584. [Google Scholar] [CrossRef]
- Dhamija, E.; Paul, S.B.; Kedia, S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian. J. Med. Res. 2019, 149, 9–17. [Google Scholar] [CrossRef]
- Ahmed, E.A.; El-Derany, M.O.; Anwar, A.M.; Saied, E.M.; Magdeldin, S. Metabolomics and Lipidomics Screening Reveal Reprogrammed Signaling Pathways toward Cancer Development in Non-Alcoholic Steatohepatitis. Int. J. Mol. Sci. 2022, 24, 210. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, A.; Stefanov, V.E.; Ishii, N.; Okuno, T.; Fujii, H.; Kawai, K.; Kawada, N.; Wanibuchi, H. Proteome Characteristics of Non-Alcoholic Steatohepatitis Liver Tissue and Associated Hepatocellular Carcinomas. Int. J. Mol. Sci. 2017, 18, 434. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, A.; Suzuki, S.; Ishii, N.; Okuno, T.; Kuwae, Y.; Fujioka, M.; Gi, M.; Stefanov, V.; Wanibuchi, H. Accumulation of 8-hydroxydeoxyguanosine, L-arginine and Glucose Metabolites by Liver Tumor Cells Are the Important Characteristic Features of Metabolic Syndrome and Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Int. J. Mol. Sci. 2020, 21, 7746. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Kakehashi, A.; Ishii, N.; Fujioka, M.; Gi, M.; Wanibuchi, H. mTOR Activation in Liver Tumors Is Associated with Metabolic Syndrome and Non-Alcoholic Steatohepatitis in Both Mouse Models and Humans. Cancers 2018, 10, 465. [Google Scholar] [CrossRef]
- Ramachandran, P.; Xu, G.; Huang, H.H.; Rice, R.; Zhou, B.; Lindpaintner, K.; Serie, D. Serum Glycoprotein Markers in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. J. Proteome Res. 2022, 21, 1083–1094. [Google Scholar] [CrossRef]
- Jiao, J.; Gonzalez, A.; Stevenson, H.L.; Gagea, M.; Sugimoto, H.; Kalluri, R.; Beretta, L. Depletion of S100A4+ stromal cells does not prevent HCC development but reduces the stem cell-like phenotype of the tumors. Exp. Mol. Med. 2018, 50, e422. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Fu, H.; Xu, H.; Wei, J.; Wang, T.; Wang, X. Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease. Mol. Med. Rep. 2010, 3, 909–915. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Mani, A. Complex regulation of fatty liver disease. Science 2022, 376, 247–248. [Google Scholar] [CrossRef]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef]
- Alshehade, S.; Alshawsh, M.A.; Murugaiyah, V.; Asif, M.; Alshehade, O.; Almoustafa, H.; Al Zarzour, R.H. The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci. 2022, 305, 120732. [Google Scholar] [CrossRef]
- Feng, J.; Qiu, S.; Zhou, S.; Tan, Y.; Bai, Y.; Cao, H.; Guo, J.; Su, Z. mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 9196. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Liang, H.; Sun, W.; Zhang, S.; Feng, Y.; Liang, P.; Chen, S.; Liu, X.; Pan, W.; Zhang, F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front. Pharmacol. 2022, 13, 1016745. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Yokota, K.; Watanabe, K.; Tsuda, H.; Matsumoto, A.; Mizukami, H.; Iwamoto, S. Lack of GPR180 ameliorates hepatic lipid depot via downregulation of mTORC1 signaling. Sci. Rep. 2023, 13, 1843. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Qiu, D.; Liang, X.; Huang, Y.; Wang, Y.; Jia, X.; Li, K.; Zhao, J.; Du, C.; Qiu, X.; et al. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy 2022, 18, 860–876. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Zhou, Z.; Song, C.; Jin, W.; Zhang, H.; Wu, W.; Yi, Y.; Cui, H.; Zhang, P.; et al. Sphingosine 1-phosphate receptor 2 promotes the onset and progression of non-alcoholic fatty liver disease-related hepatocellular carcinoma through the PI3K/AKT/mTOR pathway. Discov. Oncol. 2023, 14, 4. [Google Scholar] [CrossRef]
- Lee, S.J.; Kang, J.H.; Iqbal, W.; Kwon, O.S. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis. PLoS ONE 2015, 10, e0120577. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, G.; Kuang, Z.; Xu, Q.; Ye, T.; Li, X.; Qu, N.; Han, F.; Kan, C.; Sun, X. Empagliflozin activates Sestrin2-mediated AMPK/mTOR pathway and ameliorates lipid accumulation in obesity-related nonalcoholic fatty liver disease. Front. Pharmacol. 2022, 13, 944886. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Luo, D.; Feng, X.; Liu, Y.; Liu, Y. Glycosylation change of alpha-1-acid glycoprotein as a serum biomarker for hepatocellular carcinoma and cirrhosis. Biomark. Med. 2017, 11, 423–430. [Google Scholar] [CrossRef]
- Kamada, Y.; Ono, M.; Hyogo, H.; Fujii, H.; Sumida, Y.; Mori, K.; Tanaka, S.; Yamada, M.; Akita, M.; Mizutani, K.; et al. A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology 2015, 62, 1433–1443. [Google Scholar] [CrossRef]
- Ji, E.S.; Hwang, H.; Park, G.W.; Lee, J.Y.; Lee, H.K.; Choi, N.Y.; Jeong, H.K.; Kim, K.H.; Kim, J.Y.; Lee, S.; et al. Analysis of fucosylation in liver-secreted N-glycoproteins from human hepatocellular carcinoma plasma using liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 7761–7774. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Wieckowska, A.; Lopez, A.R.; Liu, Y.C.; Zein, N.N.; McCullough, A.J. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study. Hepatology 2009, 50, 1072–1078. [Google Scholar] [CrossRef]
- Min-DeBartolo, J.; Schlerman, F.; Akare, S.; Wang, J.; McMahon, J.; Zhan, Y.; Syed, J.; He, W.; Zhang, B.; Martinez, R.V. Thrombospondin-I is a critical modulator in non-alcoholic steatohepatitis (NASH). PLoS ONE 2019, 14, e0226854. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, P.B. Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells. Cells 2022, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, M.; Hashimoto, K.; Ishikawa, T.; Miyamoto, Y. Vitronectin deficiency attenuates hepatic fibrosis in a non-alcoholic steatohepatitis-induced mouse model. Int. J. Exp. Pathol. 2019, 100, 72–82. [Google Scholar] [CrossRef]
- Cheng, D.; Zinker, B.A.; Luo, Y.; Shipkova, P.; De Oliveira, C.H.; Krishna, G.; Brown, E.A.; Boehm, S.L.; Tirucherai, G.S.; Gu, H.; et al. MGAT2 inhibitor decreases liver fibrosis and inflammation in murine NASH models and reduces body weight in human adults with obesity. Cell Metab. 2022, 34, 1732–1748.e5. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, S.; Sakuraba, H.; Horiuchi, M.; Ding, J.; Matsumiya, T.; Seya, K.; Iino, C.; Endo, T.; Kikuchi, H.; Yoshida, S.; et al. Hepatic Macrophages Express Melanoma Differentiation-Associated Gene 5 in Nonalcoholic Steatohepatitis. Inflammation 2022, 45, 343–355. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Han, J.; Oh, D.; Kim, M.; Jeong, H.; Kim, T.J.; Kim, S.W.; Kim, J.N.; Seo, Y.S.; et al. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat. Commun. 2022, 13, 578. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, B.H.; Park, J.W. Preventive strategy for nonalcoholic fatty liver disease-related hepatocellular carcinoma. Clin. Mol. Hepatol. 2023, 29, S220–S227. [Google Scholar] [CrossRef]
- Lan, Y.; Qian, B.; Huang, H.Y.; Wang, P.; Li, T.; Yuan, Q.; Zhang, H.Y.; Lin, Y.C.; Lin, Z.N. Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2022, 23, 11660. [Google Scholar] [CrossRef]
- Feng, L.; Riaz, F.; Lu, K.; Cheng, X.; Chen, Y.; Zhao, R.; Wu, L.; Lu, S.; Li, D. Leucine aminopeptidase 3:a promising serum biomarker candidate for nonalcoholic steatohepatitis diagnosis. Int. Immunopharmacol. 2023, 119, 110152. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, M.; Fan, M.; Pan, S.; Li, S.; Chen, M.; Wang, H. Metabolomic-proteomic combination analysis reveals the targets and molecular pathways associated with hydrogen sulfide alleviating NAFLD. Life Sci. 2021, 264, 118629. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhou, P.; Qin, Y.Y.; Wang, L.; Yao, D.F. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J. Gastroenterol. 2023, 29, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; et al. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell 2016, 29, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.T.; Soh, N.J.H.; Chang, H.C.; Yu, V.C. p62/SQSTM1 in liver diseases: The usual suspect with multifarious identities. FEBS J. 2023, 290, 892–912. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Chu, E.S.H.; Chen, X.; Kang, W.; Wu, F.; To, K.F.; Wong, V.W.S.; Chan, H.L.Y.; Chan, M.T.V.; et al. Defective lysosomal clearance of autophagosomes and its clinical implications in nonalcoholic steatohepatitis. FASEB J. 2018, 32, 37–51. [Google Scholar] [CrossRef]
- Hong, F.; Liu, B.; Wu, B.X.; Morreall, J.; Roth, B.; Davies, C.; Sun, S.; Diehl, J.A.; Li, Z. CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. Nat. Struct. Mol. Biol. 2017, 24, 834–839. [Google Scholar] [CrossRef]
- Kakehashi, A.; Suzuki, S.; Shiota, M.; Raymo, N.; Gi, M.; Tachibana, T.; Stefanov, V.; Wanibuchi, H. Canopy Homolog 2 as a Novel Molecular Target in Hepatocarcinogenesis. Cancers 2021, 13, 3613. [Google Scholar] [CrossRef]
- Chen, K.Q.; Zhang, Y.Q.; Wang, Z.B.; Wang, S.Z. Progress in Research on CNPY2 in Diseases. Mini Rev. Med. Chem. 2023. [Google Scholar] [CrossRef]
- Kakehashi, A.; Chariyakornkul, A.; Suzuki, S.; Khuanphram, N.; Tatsumi, K.; Yamano, S.; Fujioka, M.; Gi, M.; Wongpoomchai, R.; Wanibuchi, H. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers 2021, 13, 1216. [Google Scholar] [CrossRef]
- Ramani, K.; Robinson, A.E.; Berlind, J.; Fan, W.; Abeynayake, A.; Binek, A.; Barbier-Torres, L.; Noureddin, M.; Nissen, N.N.; Yildirim, Z.; et al. S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology 2022, 75, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Masarone, M.; Troisi, J.; Aglitti, A.; Torre, P.; Colucci, A.; Dallio, M.; Federico, A.; Balsano, C.; Persico, M. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics 2021, 17, 12. [Google Scholar] [CrossRef]
- Sugiyama, K.; Yu, L.; Nagasue, N. Direct effect of branched-chain amino acids on the growth and metabolism of cultured human hepatocellular carcinoma cells. Nutr. Cancer 1998, 31, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, A.; Nishiyama, M.; Ishizaki, S. Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. J. Cell Physiol. 2012, 227, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, J.P.; Osei-Hyiaman, D.; Wiland, H.; Abdelmegeed, M.A.; Song, B.J. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res. 2009, 2009, 952734. [Google Scholar] [CrossRef]
- Seki, S.; Kitada, T.; Sakaguchi, H. Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol. Res. 2005, 33, 132–134. [Google Scholar] [CrossRef]
- Kakehashi, A.; Wei, M.; Fukushima, S.; Wanibuchi, H. Oxidative stress in the carcinogenicity of chemical carcinogens. Cancers 2013, 5, 1332–1354. [Google Scholar] [CrossRef]
- Iwai, S.; Murai, T.; Makino, S.; Min, W.; Morimura, K.; Mori, S.; Hagihara, A.; Seki, S.; Fukushima, S. High sensitivity of fatty liver Shionogi (FLS) mice to diethylnitrosamine hepatocarcinogenesis: Comparison to C3H and C57 mice. Cancer Lett. 2007, 246, 115–121. [Google Scholar] [CrossRef]
- Jiao, L.; Wei, J.; Ye, J.; Zhang, C. Prognostic Value of Peroxiredoxin-1 Expression in Patients with Solid Tumors: A Meta-Analysis of Cohort Study. Dis. Markers 2021, 2021, 9508702. [Google Scholar] [CrossRef]
- Lopez-Grueso, M.J.; Lagal, D.J.; Garcia-Jimenez, A.F.; Tarradas, R.M.; Carmona-Hidalgo, B.; Peinado, J.; Requejo-Aguilar, R.; Barcena, J.A.; Padilla, C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol. 2020, 37, 101737. [Google Scholar] [CrossRef]
- van Son, K.C.; Verschuren, L.; Hanemaaijer, R.; Reeves, H.; Takkenberg, R.B.; Drenth, J.P.H.; Tushuizen, M.E.; Holleboom, A.G. Non-Parenchymal Cells and the Extracellular Matrix in Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease. Cancers 2023, 15, 1308. [Google Scholar] [CrossRef]
- Filliol, A.; Saito, Y.; Nair, A.; Dapito, D.H.; Yu, L.X.; Ravichandra, A.; Bhattacharjee, S.; Affo, S.; Fujiwara, N.; Su, H.; et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022, 610, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Saile, B.; Matthes, N.; Knittel, T.; Ramadori, G. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 1999, 30, 196–202. [Google Scholar] [CrossRef]
- Rokugawa, T.; Konishi, H.; Ito, M.; Iimori, H.; Nagai, R.; Shimosegawa, E.; Hatazawa, J.; Abe, K. Evaluation of hepatic integrin alphavbeta3 expression in non-alcoholic steatohepatitis (NASH) model mouse by 18F-FPP-RGD2 PET. EJNMMI Res. 2018, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef] [PubMed]
- Ogunwobi, O.O.; Harricharran, T.; Huaman, J.; Galuza, A.; Odumuwagun, O.; Tan, Y.; Ma, G.X.; Nguyen, M.T. Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol. 2019, 25, 2279–2293. [Google Scholar] [CrossRef]
- Du, D.; Liu, C.; Qin, M.; Zhang, X.; Xi, T.; Yuan, S.; Hao, H.; Xiong, J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B 2022, 12, 558–580. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 978–1991. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Wang, W.X.; Jiang, W.L.; Fei, J.; Li, C.Y. Novel Strategy for Validating the Existence and Mechanism of the “Gut-Liver Axis” in Vivo by a Hypoxia-Sensitive NIR Fluorescent Probe. Anal. Chem. 2020, 92, 4244–4250. [Google Scholar] [CrossRef]
- Albhaisi, S.A.M.; Bajaj, J.S.; Sanyal, A.J. Role of gut microbiota in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G84–G98. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Kemuriyama, N.; Abe, A.; Nakane, S.; Uno, K.; Ogawa, S.; Watanabe, A.; Sano, R.; Yuki, M.; Miyajima, K.; Nakae, D. Nonobese mice with nonalcoholic steatohepatitis fed on a choline-deficient, l-amino acid-defined, high-fat diet exhibit alterations in signaling pathways. FEBS Open Bio 2021, 11, 2950–2965. [Google Scholar] [CrossRef] [PubMed]
- Sugasawa, T.; Ono, S.; Yonamine, M.; Fujita, S.I.; Matsumoto, Y.; Aoki, K.; Nakano, T.; Tamai, S.; Yoshida, Y.; Kawakami, Y.; et al. One Week of CDAHFD Induces Steatohepatitis and Mitochondrial Dysfunction with Oxidative Stress in Liver. Int. J. Mol. Sci. 2021, 22, 5851. [Google Scholar] [CrossRef] [PubMed]
- Fritah, A.; Christian, M.; Parker, M.G. The metabolic coregulator RIP140: An update. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E335–E340. [Google Scholar] [CrossRef] [PubMed]
- Harnish, D.C.; Evans, M.J.; Scicchitano, M.S.; Bhat, R.A.; Karathanasis, S.K. Estrogen regulation of the apolipoprotein AI gene promoter through transcription cofactor sharing. J. Biol. Chem. 1998, 273, 9270–9278. [Google Scholar] [CrossRef]
- Jakobsson, T.; Osman, W.; Gustafsson, J.A.; Zilliacus, J.; Warnmark, A. Molecular basis for repression of liver X receptor-mediated gene transcription by receptor-interacting protein 140. Biochem. J. 2007, 405, 31–39. [Google Scholar] [CrossRef]
- Miyata, K.S.; McCaw, S.E.; Meertens, L.M.; Patel, H.V.; Rachubinski, R.A.; Capone, J.P. Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor alpha and liver-X-receptor α. Mol. Cell Endocrinol. 1998, 146, 69–76. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Dai, Y.; Wang, J.; Suo, T.; Pan, H.; Liu, H.; Shen, S. Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells. Tumour Biol. 2015, 36, 2077–2085. [Google Scholar] [CrossRef]
- Lapierre, M.; Docquier, A.; Castet-Nicolas, A.; Gitenay, D.; Jalaguier, S.; Teyssier, C.; Cavailles, V. The emerging role of the transcriptional coregulator RIP140 in solid tumors. Biochim. Biophys. Acta 2015, 1856, 144–150. [Google Scholar] [CrossRef]
- Nautiyal, J.; Christian, M.; Parker, M.G. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol. Metab. 2013, 24, 451–459. [Google Scholar] [CrossRef]
- Leonardsson, G.; Steel, J.H.; Christian, M.; Pocock, V.; Milligan, S.; Bell, J.; So, P.W.; Medina-Gomez, G.; Vidal-Puig, A.; White, R.; et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl. Acad. Sci. USA 2004, 101, 8437–8442. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Li, Z.; Gao, H.; Yue, Z.; Liu, Z.; Liu, X.; Feng, X.; Liu, P. RIP140 triggers foam-cell formation by repressing ABCA1/G1 expression and cholesterol efflux via liver X receptor. FEBS Lett. 2015, 589, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Xue, X.; Zhu, X.; Li, X. Downregulation of RIP140 in triple-negative breast cancer inhibits the growth and proliferation of cancer cells. Oncol. Lett. 2018, 15, 8784–8788. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Yi, Z.J.; Zhou, Y.; Li, P.Z.; Liu, Z.J.; Duan, S.G.; Gong, J.P. Overexpression of RIP140 suppresses the malignant potential of hepatocellular carcinoma by inhibiting NF-κB-mediated alternative polarization of macrophages. Oncol. Rep. 2017, 37, 2971–2979. [Google Scholar] [CrossRef]
- Takata, A.; Otsuka, M.; Kojima, K.; Yoshikawa, T.; Kishikawa, T.; Yoshida, H.; Koike, K. MicroRNA-22 and microRNA-140 suppress NF-κB activity by regulating the expression of NF-κB coactivators. Biochem. Biophys. Res. Commun. 2011, 411, 826–831. [Google Scholar] [CrossRef]
- Ranea-Robles, P.; Galino, J.; Espinosa, L.; Schluter, A.; Ruiz, M.; Calingasan, N.Y.; Villarroya, F.; Naudi, A.; Pamplona, R.; Ferrer, I.; et al. Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model. Neuropathol. Appl. Neurobiol. 2022, 48, e12747. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Xiong, W.; Qian, Y.; Song, M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochem. Biophys. Res. Commun. 2022, 603, 35–40. [Google Scholar] [CrossRef]
- Rutkowski, D.T.; Wu, J.; Back, S.H.; Callaghan, M.U.; Ferris, S.P.; Iqbal, J.; Clark, R.; Miao, H.; Hassler, J.R.; Fornek, J.; et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell 2008, 15, 829–840. [Google Scholar] [CrossRef]
- Lee, J.S.; Zheng, Z.; Mendez, R.; Ha, S.W.; Xie, Y.; Zhang, K. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol. Lett. 2012, 211, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Teske, B.F.; Wek, S.A.; Bunpo, P.; Cundiff, J.K.; McClintick, J.N.; Anthony, T.G.; Wek, R.C. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell 2011, 22, 4390–4405. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yoshida, H.; Kokame, K.; Kaufman, R.J.; Mori, K. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem. 2004, 136, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, J.; Hou, J.; Hui, M.; Qi, H.; Lei, T.; Zhang, X.; Zhao, L.; Du, H. Induction of autophagy via the PI3K/Akt/mTOR signaling pathway by Pueraria flavonoids improves non-alcoholic fatty liver disease in obese mice. Biomed. Pharmacother. 2023, 157, 114005. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Kroemer, G. Autophagy in metabolism and quality control: Opposing, complementary or interlinked functions? Autophagy 2022, 18, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Werling, K. Role of autophagy in the pathogenesis of liver diseases. Orv. Hetil. 2011, 152, 1955–1961. [Google Scholar] [CrossRef]
- Tao, Z.; Aslam, H.; Parke, J.; Sanchez, M.; Cheng, Z. Mechanisms of autophagic responses to altered nutritional status. J. Nutr. Biochem. 2022, 103, 108955. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, D.; Xu, Y.; Dong, R.; Yang, Y.; Lv, Q.; Chen, X.; Zhang, Z. The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases. Cells 2019, 8, 1597. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Wang, L.; Shi, R.; Chu, C.; Shi, Z.; Liu, P.; Li, Y.; Liu, X.; Liu, Z. Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice. J. Nutr. Biochem. 2022, 110, 109146. [Google Scholar] [CrossRef]
- Liu, P.; Anandhan, A.; Chen, J.; Shakya, A.; Dodson, M.; Ooi, A.; Chapman, E.; White, E.; Garcia, J.G.; Zhang, D.D. Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of non-alcoholic fatty liver disease. Redox Biol. 2023, 59, 102570. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef]
- Duran, A.; Linares, J.F.; Galvez, A.S.; Wikenheiser, K.; Flores, J.M.; Diaz-Meco, M.T.; Moscat, J. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 2008, 13, 343–354. [Google Scholar] [CrossRef]
- Green, C.D.; Weigel, C.; Brown, R.D.R.; Bedossa, P.; Dozmorov, M.; Sanyal, A.J.; Spiegel, S. A new preclinical model of western diet-induced progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. FASEB J. 2022, 36, e22372. [Google Scholar] [CrossRef] [PubMed]
- Hatta, K.; Guo, J.; Ludke, A.; Dhingra, S.; Singh, K.; Huang, M.L.; Weisel, R.D.; Li, R.K. Expression of CNPY2 in mouse tissues: Quantification and localization. PLoS ONE 2014, 9, e111370. [Google Scholar] [CrossRef] [PubMed]
- Bornhauser, B.C.; Olsson, P.A.; Lindholm, D. MSAP is a novel MIR-interacting protein that enhances neurite outgrowth and increases myosin regulatory light chain. J. Biol. Chem. 2003, 278, 35412–35420. [Google Scholar] [CrossRef] [PubMed]
- Lo, L.H.; Lam, C.Y.; To, J.C.; Chiu, C.H.; Keng, V.W. Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression. Biochem. Biophys. Res. Commun. 2021, 541, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Muramatsu, M.; Ishii, Y.; Saigo, Y.; Konuma, T.; Toriniwa, Y.; Miyajima, K.; Ohta, T. Pathophysiological analysis of the progression of hepatic lesions in STAM mice. Physiol. Res. 2017, 66, 791–799. [Google Scholar] [CrossRef]
- Cottrell, G.S.; Soubrane, C.H.; Hounshell, J.A.; Lin, H.; Owenson, V.; Rigby, M.; Cox, P.J.; Barker, B.S.; Ottolini, M.; Ince, S.; et al. CACHD1 is an α2δ-like Protein That Modulates CaV3 Voltage-Gated Calcium Channel Activity. J. Neurosci. 2018, 38, 9186–9201. [Google Scholar] [CrossRef]
- Powell, S.K. Forgetting: The New Normal. Prof. Case Manag. 2022, 27, 105–106. [Google Scholar] [CrossRef]
- Dahimene, S.; Page, K.M.; Kadurin, I.; Ferron, L.; Ho, D.Y.; Powell, G.T.; Pratt, W.S.; Wilson, S.W.; Dolphin, A.C. The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1. Cell Rep. 2018, 25, 1610–1621.e5. [Google Scholar] [CrossRef]
- Stephens, G.J.; Cottrell, G.S. CACHD1: A new activity-modifying protein for voltage-gated calcium channels. Channels 2019, 13, 120–123. [Google Scholar] [CrossRef]
- Kawai, K.; Li, Y.S.; Song, M.F.; Kasai, H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg Med. Chem. Lett. 2010, 20, 260–265. [Google Scholar] [CrossRef]
- Mato, J.M.; Martinez-Chantar, M.L.; Lu, S.C. S-adenosylmethionine metabolism and liver disease. Ann. Hepatol. 2013, 12, 183–189. [Google Scholar] [CrossRef]
- Kwak, M.; Mehaffey, J.H.; Hawkins, R.B.; Hsu, A.; Schirmer, B.; Hallowell, P.T. Bariatric surgery is associated with reduction in non-alcoholic steatohepatitis and hepatocellular carcinoma: A propensity matched analysis. Am. J. Surg. 2020, 219, 504–507. [Google Scholar] [CrossRef]
- Ramai, D.; Singh, J.; Lester, J.; Khan, S.R.; Chandan, S.; Tartaglia, N.; Ambrosi, A.; Serviddio, G.; Facciorusso, A. Systematic review with meta-analysis: Bariatric surgery reduces the incidence of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2021, 53, 977–984. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Su, Y.; Duan, C.; Wang, S.; He, W.; Zhang, Y.; An, X.; He, M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res. Rev. 2023, 84, 101833. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W.; Zeng, L.Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.Y.; Fang, C.W.; Wang, F.; Qin, X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020, 36, 101635. [Google Scholar] [CrossRef] [PubMed]
- Nassir, F. NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules 2022, 12, 824. [Google Scholar] [CrossRef]
- Guo, C.; Huang, Q.; Wang, Y.; Yao, Y.; Li, J.; Chen, J.; Wu, M.; Zhang, Z.; E, M.; Qi, H.; et al. Therapeutic application of natural products: NAD+ metabolism as potential target. Phytomedicine 2023, 114, 154768. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Wang, Z.; Lei, L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1-dependent pathway in nonalcoholic fatty liver disease. Phytother. Res. 2023, 37, 781–797. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, U.A.; Viswanathan, P.; Venkataraman, A.C. AMPK activation by AICAR reduces diet induced fatty liver in C57BL/6 mice. Tissue Cell 2023, 82, 102054. [Google Scholar] [CrossRef]
- Marcondes-de-Castro, I.A.; Oliveira, T.F.; Spezani, R.; Marinho, T.S.; Cardoso, L.E.M.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Cotadutide effect in liver and adipose tissue in obese mice. J. Mol. Endocrinol. 2023, 70, e220168. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Y.; Cheng, J.; Peng, Y.; Zhang, Q.; Li, Z.; Zhao, L.; Deng, X.; Feng, H. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine 2023, 109, 154561. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, Y.; Cao, X.; Peng, Y.; Huang, J.; Chen, L.; Pang, J.; Jiang, Z.; Qian, S.; Liu, Y.; et al. Targeting mTOR/YY1 signaling pathway by quercetin through CYP7A1-mediated cholesterol-to-bile acids conversion alleviated type 2 diabetes mellitus induced hepatic lipid accumulation. Phytomedicine 2023, 113, 154703. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kumar, S.; Miachin, K.; Bean, N.L.; Halawi, O.; Lee, S.; Park, J.; Pierre, T.H.; Hor, J.H.; Ng, S.Y.; et al. A dual MTOR/NAD+ acting gerotherapy. bioRxiv 2023. [Google Scholar] [CrossRef]
- Yan, L.S.; Zhang, S.F.; Luo, G.; Cheng, B.C.; Zhang, C.; Wang, Y.W.; Qiu, X.Y.; Zhou, X.H.; Wang, Q.G.; Song, X.L.; et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022, 131, 155200. [Google Scholar] [CrossRef]
- Wu, S.Y.; Chen, W.M.; Chen, Y.C.; Chiang, M.F.; Lee, M.C.; Soong, R.S. Effects of H1-Antihistamines on hepatocellular carcinoma risk in patients with type 2 diabetes mellitus. Diabetes Metab. 2023, 49, 101393. [Google Scholar] [CrossRef]
- Li, H.; Hu, P.; Zou, Y.; Yuan, L.; Xu, Y.; Zhang, X.; Luo, X.; Zhang, Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front. Oncol. 2023, 13, 1071415. [Google Scholar] [CrossRef]
- Fan, L.; Niu, H.; Zhao, L.; Yao, R.; He, X.; Lu, B.; Pang, Z. Purendan alleviates non-alcoholic fatty liver disease in aged type 2 diabetic rats via regulating mTOR/S6K1/SREBP-1c signaling pathway. Biomed. Pharmacother. 2022, 148, 112697. [Google Scholar] [CrossRef]
- Oriquat, G.; Masoud, I.M.; Kamel, M.A.; Aboudeya, H.M.; Bakir, M.B.; Shaker, S.A. The Anti-Obesity and Anti-Steatotic Effects of Chrysin in a Rat Model of Obesity Mediated through Modulating the Hepatic AMPK/mTOR/lipogenesis Pathways. Molecules 2023, 28, 1734. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, H.J.; You, M.; Kim, H.A. Red Pepper Seeds Inhibit Hepatic Lipid Accumulation by Inducing Autophagy via AMPK Activation. Nutrients 2022, 14, 4247. [Google Scholar] [CrossRef]
- Lee, K.P.; Kim, K.; Yoon, E.; Baek, S.; Ahn, S.H. Pharmacological systemic analysis of gardenia fructus against non-alcoholic fatty liver disease and validation of animal models. Phys. Act. Nutr. 2022, 26, 39–45. [Google Scholar] [CrossRef]
- Shan, D.; Wang, J.; Di, Q.; Jiang, Q.; Xu, Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct. 2022, 13, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, S.; Zou, B.; Xie, J.; Li, J.; Zeng, Y. Magnesium Supplementation Stimulates Autophagy to Reduce Lipid Accumulation in Hepatocytes via the AMPK/mTOR Pathway. Biol. Trace Elem. Res. 2023, 201, 3311–3322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Tan, X.H.; Yang, H.H.; Jin, L.; Hong, J.R.; Zhou, Y.; Huang, X.T. COX-2/sEH Dual Inhibitor Alleviates Hepatocyte Senescence in NAFLD Mice by Restoring Autophagy through Sirt1/PI3K/AKT/mTOR. Int. J. Mol. Sci. 2022, 23, 8267. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Guo, Y.; Jiang, Y.; Xing, Z.; Zhang, H.; Wang, H. Intracerebroventricular injection of ghrelin receptor antagonist alleviated NAFLD via improving hypothalamic insulin resistance. Iran. J. Basic. Med. Sci. 2022, 25, 1117–1122. [Google Scholar] [CrossRef]
- Ferguson, D.; Eichler, S.J.; Yiew, N.K.H.; Colca, J.R.; Cho, K.; Patti, G.J.; Shew, T.M.; Lutkewitte, A.J.; Mukherjee, S.; McCommis, K.S.; et al. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol. Metab. 2023, 70, 101694. [Google Scholar] [CrossRef]
- Yano, K.; Yamaguchi, K.; Seko, Y.; Okishio, S.; Ishiba, H.; Tochiki, N.; Takahashi, A.; Kataoka, S.; Okuda, K.; Liu, Y.; et al. Hepatocyte-specific fibroblast growth factor 21 overexpression ameliorates high-fat diet-induced obesity and liver steatosis in mice. Lab. Invest. 2022, 102, 281–289. [Google Scholar] [CrossRef]
- Tong, J.; Cong, L.; Jia, Y.; He, B.L.; Guo, Y.; He, J.; Li, D.; Zou, B.; Li, J. Follistatin Alleviates Hepatic Steatosis in NAFLD via the mTOR Dependent Pathway. Diabetes Metab. Syndr. Obes. 2022, 15, 3285–3301. [Google Scholar] [CrossRef]
- Chen, F.; Sheng, L.; Zhou, T.; Yan, L.; Loveless, R.; Li, H.; Teng, Y.; Cai, Y. Loss of Ufl1/Ufbp1 in hepatocytes promotes liver pathological damage and carcinogenesis through activating mTOR signaling. J. Exp. Clin. Cancer Res. 2023, 42, 110. [Google Scholar] [CrossRef]
- Lynch, E.C.; Liu, Z.; Liu, L.; Wang, X.; Zhang, K.K.; Xie, L. Disrupting Osr1 expression promoted hepatic steatosis and inflammation induced by high-fat diet in the mouse model. PLoS ONE 2022, 17, e0268344. [Google Scholar] [CrossRef]
- Pu, J. Targeting the lysosome: Mechanisms and treatments for nonalcoholic fatty liver disease. J. Cell Biochem. 2022, 123, 1624–1633. [Google Scholar] [CrossRef]
- Yan, S. Role of TFEB in Autophagy and the Pathogenesis of Liver Diseases. Biomolecules 2022, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Zhang, X.; Sun, Y.; Shen, J.; Li, X.; Xue, C.; Liu, Z. Transcription factor EB inhibits non-alcoholic fatty liver disease through fibroblast growth factor 21. J. Mol. Med. 2022, 100, 1587–1597. [Google Scholar] [CrossRef]
- Paquette, M.; Yan, M.; Ramirez-Reyes, J.M.J.; El-Houjeiri, L.; Biondini, M.; Dufour, C.R.; Jeong, H.; Pacis, A.; Giguere, V.; Estall, J.L.; et al. Loss of hepatic Flcn protects against fibrosis and inflammation by activating autophagy pathways. Sci. Rep. 2021, 11, 21268. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhou, J.; Yang, W.; Feng, Y.; Wu, H.; Mok, M.T.S.; Zhang, L.; Liang, Z.; Liu, X.; Xiong, Z.; et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol. Immunol. 2022, 19, 834–847. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Wang, B.; Yang, M.; Liu, Z.L.; Sun, J.; Wang, Y.; Sun, H.; Xie, L.J. Suppression of miR-30a-3p Attenuates Hepatic Steatosis in Non-alcoholic Fatty Liver Disease. Biochem. Genet. 2020, 58, 691–704. [Google Scholar] [CrossRef] [PubMed]
- El Sobky, S.A.; Aboud, N.K.; El Assaly, N.M.; Fawzy, I.O.; El-Ekiaby, N.; Abdelaziz, A.I. Regulation of lipid droplet (LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs. Front. Med. 2022, 9, 903856. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Peng, X.; Du, G.; Zhang, Z.; Zhai, Y.; Xiong, X.; Luo, X. MicroRNA-122-5p Inhibition Improves Inflammation and Oxidative Stress Damage in Dietary-Induced Non-alcoholic Fatty Liver Disease Through Targeting FOXO3. Front. Physiol. 2022, 13, 803445. [Google Scholar] [CrossRef]
- Liu, F.; Tian, T.; Zhang, Z.; Xie, S.; Yang, J.; Zhu, L.; Wang, W.; Shi, C.; Sang, L.; Guo, K.; et al. Long non-coding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma. Nat. Metab. 2022, 4, 1022–1040. [Google Scholar] [CrossRef]
- Sui, J.; Pan, D.; Yu, J.; Wang, Y.; Sun, G.; Xia, H. Identification and Evaluation of Hub Long Noncoding RNAs and mRNAs in High Fat Diet Induced Liver Steatosis. Nutrients 2023, 15, 948. [Google Scholar] [CrossRef]
- Chu, K.; Zhao, N.; Hu, X.; Feng, R.; Zhang, L.; Wang, G.; Li, W.; Liu, L. LncNONMMUG027912 alleviates lipid accumulation through AMPKalpha/mTOR/SREBP1C axis in nonalcoholic fatty liver. Biochem. Biophys. Res. Commun. 2022, 618, 8–14. [Google Scholar] [CrossRef]
- Xu, Z.X.; Li, J.Z.; Li, Q.; Xu, M.Y.; Li, H.Y. CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem. Biophys. Res. Commun. 2022, 610, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Yang, L.; Liu, P.; Zhang, Y.; Wang, X. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway. Immunol. Lett. 2020, 222, 40–48. [Google Scholar] [CrossRef] [PubMed]
Gene/Protein/Metabolite | Altered Pathway | Model, Function, Type | Paper |
---|---|---|---|
G protein-coupled receptor 180 (Gpr180) | mTORC1, TGF-β, SREBP1, SREBP2 | NAFLD diagnosis, therapeutic target. HFD-treated Gpr180KO mice. Huh7 cells. Impact lipid metabolism and cholesterol homeostasis. | [24] |
Stimulator of interferon response cGAMP interactor 1 (STING1) | MTORC1, NF-kB | NAFLD/NASH diagnosis, therapeutic target. Biopsy-proven NAFLD patient’s liver, HEK293T (GNHu17), and Hep3B cells. Palmitic acid-induced MTORC1 activation. Increased STING expression was observed in Kupffer cells in patients with NASH. | [25] |
Sphingosine 1-phosphate receptor 2 (S1PR2) | PI3K/AKT/mTOR, JAK/STAT, NF-kB, ERK | Prognostic biomarker for human NAFLD/NASH-HCC. Regulates key cellular processes, including the G1/G2 phase of the cell cycle, proliferation, invasion, migration, and apoptosis in Huh 7 and HepG2 cells. Responsible for progression from NAFLD to NASH. | [26] |
Arginase 1 (ARG1) | mTOR | Prognostic marker of human metabolic syndrome/T2DM-associated HCC (downregulated). Arginine metabolism (urea cycle) shifts to phosphocreatine. | [14] |
Leucine (Leu) | mTOR | Non-invasive diagnosis of NASH HCC. NASH-HCC patients (depletion). Apoptosis of liver cancer cells. | [12] |
Arginine (Arg) | mTOR | T2DM-associated NASH-HCC diagnosis. TSOD mice HCC (elevation) | [14] |
Peroxiredoxin 1 (Prdx1) Peroxiredoxin 6 (Prdx6) | Akt/mTOR, AMPK/mTOR, PI3K/Akt, FoxO, p53, TGFβ1, TNFα | The early stage of NAFLD diagnosis. Cellular defense against oxidative stress, oxidative DNA damage, inflammation, and steatohepatitis. Ubiquitin-mediated proteolysis. | [27] |
Sestrin 2 (SESN2) | AMPK-mTOR | The early stage of NAFLD/NASH diagnosis. NAFLD in vitro model (HepG2 cells) treated with palmitic acid; C57BL/6 mice fed HFD. | [28] |
Alpha-1-acid glycoprotein 1 (AGP-1) glycan | JAK2-STAT3 | NASH and NASH-HCC diagnosis (human). Can be aided by monitoring changes in sialylation and fucosylation of AGP in the serum may serve as new biomarkers for HCC and cirrhosis. | [29] |
Haptoglobin (HP) | IL6, CEBPB, TLR4 | NAFLD/NASH diagnosis. Helps to distinguish NASH and NAFLD patients. Fucosylation abnormalities of HP are closely related to HCC. Antioxidant and iron metabolism pathways. | [30] |
Apolipoprotein C3 (APOC3) | TLR2/NF-κB | NASH-HCC diagnosis (downregulation). Glycosylated protein marker. Raises plasma TG through inhibition of LPL and stimulation of VLDL secretion and is a novel factor in modulating intestinal triglyceride trafficking. Polymorphism in APOC3 gene might be a risk factor for NAFLD among Asians. | [31] |
Cytokeratin 18 (CK18) fragment | TGF-β1, TNF | Increase in CK18 fragments in the blood indicates NASH and the severity of NAFLD in patients with uncontrolled hepatocyte apoptosis, necrosis, and caspase cleavage. Strongly downregulated in human NASH biopsies and HCCs. | [32] |
Thrombospondin-I (TSP-1) | TGF-β1, PPARα | Potential therapeutic antifibrotic target in NAFLD/NASH. CDAHFD-fed TSP-1 deficient mice. The critical modulator in NASH. | [33] |
Indole-3-propionic acid | AhR, PXR | NASH-HCC diagnosis. Gut bacteria-produced tryptophan metabolite and potential serum biomarker and a metabolite maintaining intestinal homeostasis in NASH-HCC patients. | [34] |
Vitronectin (VN) | TGF-β1 | NASH and associated HCC diagnosis. CDAHFD-treated VNKO mice. EMT component protein promotes fibrosis and NASH (to distinguish from simple steatosis). | [35] |
Monoacylglycerol acyltransferase 2 (MGAT2) | SIRT1, XBP1 | NASH and HCC diagnosis, therapeutic target. Murine NASH models and NASH-HCC patients. Highly expressed in the human small intestine and liver. Regulates TG absorption and homeostasis. Modulates inflammatory reaction and contributes to the development of fibrosis. | [36] |
Retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) | NFkB | NAFLD/NASH diagnosis and potential therapeutic target. Modulates the inflammatory reaction and contributes to the development of fibrosis via activation of HSCs. Promotes fibrosis and NASH. | [37] |
Formyl peptide receptor 2 (FPR2) | TNF | NAFLD/NASH diagnosis and potential therapeutic target. Modulates the inflammatory reaction and contributes to the development of fibrosis via activation of HSCs. | [38] |
Nuclear receptor-interacting protein (NRIP1) | TNF, LXR/Fas, PPARs, Wnt/β-catenin/TCF | NAFLD/NASH/HCC diagnosis and molecular therapeutic target. Regulates energy expenditure, lipid, and glucose metabolism, inflammatory response, intestinal homeostasis, ovulation, mammary gland development, behavior, and cognition functions. | [13] |
Gremlin-1 (GR1) | mTOR | NAFLD/NASH predictive diagnostic marker and a potential therapeutic target. Cultured primary mouse hepatocytes, HFD-fed mice. GR1 was suggested to promote ER stress in the liver due to the impairment of autophagy. | [39] |
NPC1/oxysterol-binding protein-related protein 5 (ORP5) | mTOR | NASH diagnosis and potential target in hepatitis B virus x protein (HBx)-associated patients. Cholesterol transport from the lysosome to the ER. | [40] |
Leucine aminopeptidase 3 (LAP3) | p38, ERK, autophagy pathways | NASH diagnosis (serum biomarker). Chronic hepatitis B (CHB) patients combined with NASH (CHB + NASH). | [41] |
Perilipin 2 (PLIN2) | Insulin, PPARγ, TNF | NAFLD diagnosis, molecular target. Regulation of lipid droplet degradation. | [42] |
Carnitine palmitoyltransferase-2 (CPT-2) | Wnt/β-catenin, INSR, PPARα, TNF | NAFLD/NASH potential target. Regulates long-chain fatty acid β-oxidation on the inner mitochondrial membrane (IMM). Liver lipid accumulation. | [43] |
Sequestosome 1 (SQSTM1, p62) | mTOR, Nrf2, NF-kB | Predictive biomarker of NAFLD, NASH and HCC recurrence/therapeutic target. Human, HFD-SW-treated mice. Autophagy, antioxidant defense. | [44,45,46] |
Canopy homolog 2 (CNPY2) | PERK–CHOP | NASH HCC diagnosis, and potential therapeutic target. HCC patients, HepG2 and Huh7 cells. CNPY2 plays a role in ER stress and UPR-related diseases (e.g., metabolic disorders, NAFLD, inflammation, and cancer). | [47,48,49] |
Cache domain-containing 1 (CACHD1) | PERK, Wnt, Notch | NASH-HCC diagnosis. STAM mice NASH model, Huh7, and HepG2. CACHD1 is involved in the regulation of protein folding, unfolded protein response, autophagy, apoptosis, and cytoskeleton organization | [50] |
La-related protein 1 (LARP1) | SAM-sensitive mechanism | NASH-HCC diagnosis. LARP1 expression was increased in human NASH and HCC. | [51] |
Marker | Diagnosis (D)/ Prognosis (P)/Target (T) | Function/Role in Cell | Subcellular Localization |
---|---|---|---|
Gpr180 | NAFLD (D) | Regulation of vascular remodeling, lipid metabolism, and cholesterol homeostasis. | C |
STING1 | NAFLD/NASH (D) | Transmembrane protein that functions as a major regulator of the innate immune response, activation of MTORC1, detection of cytosolic nucleic acids. | AV, ER, GA, M, P, N |
S1PR2 | NAFLD/ NASH-HCC (P) | Biologically active lysophospholipid, actin cytoskeleton reorganization, G-protein coupled receptor signaling pathway, positive regulation of cell proliferation. | CSF, CM, C, PM |
ARG1 | NASH-HCC (P) | Arginine catabolism, adaptive immune response, aging, cellular response to hydrogen peroxide, transforming growth factor beta stimulus. | AG, C, ES, MOM |
SESN2 | NAFLD/NASH (D) | Regulation of macroautophagy, gluconeogenesis, growth, apoptosis, signaling, mitochondrial cell death, oxidative stress resistance. | C, N |
TSP-1 | NAFLD/NASH (T) | Migration, proliferation, chemotaxis, apoptosis, adhesion, cell spreading. | CSF, C, ER, Exo, EM, ES, N, PM, SG |
VN | NASH/NASH-HCC (D) | Fibrogenesis, migration, adhesion, cell spreading, proliferation, invasion. | CSF, C, DRLRF, ER, EM, ES, GA |
MGAT2 | NASH/NASH-HCC (D) | ER stress response, differentiation, quantity, number, storage in, dipeptide repeat protein sensitivity. | C, GA, R |
RLR | NAFLD/NASH (D, T) | Modulation of inflammatory reaction and development of fibrosis, L-12 Signaling and production in macrophages, enzyme regulator activity, elongation. | C |
FPR2 | NAFLD/NASH (D, T) | Modulation of inflammatory reaction and development of fibrosis, chemotaxis, cellular infiltration by, adhesion, migration, signaling receptor activity. | CSF, CM, C, PM, SG |
GR1 | NAFLD/NASH (D, T) | ER stress, autophagy, proliferation, differentiation, growth, morphogenesis, apoptosis, migration, chemotaxis. | CSF, C, ES |
ORP5 | NASH (D, T) | ER stress, autophagy, cholesterol metabolic process, cholesterol transport, Golgi to plasma membrane transport, lipid transport, phospholipid transport, lipid transporter. | C, ER, IMBO |
LAP3 | NASH (D) | Autophagy, proliferation, degradation of proteins, metabolism of peptides by removing the amino acid leucine. | C, M, Exo, N, GA |
PLIN2 | NASH (D, T) | Lipid droplet degradation, cellular response to glucose starvation, lipid storage, long-chain fatty acid transport, positive regulation of sequestering of triglyceride. | CSF, CM, C, ER, Exo, ES, LD, MSF, N, PM |
CPT-2 | NAFLD/NASH (T) | Lipotoxicity, regulation of long fatty acid β-oxidation on IMM. | C, Exo, M, N |
p62 | NAFLD/NASH/NASH-HCC (D) | Autophagy, Ferroptosis, Microautophagy, Nrf2-mediated oxidative stress response, senescence pathway, brown fat cell proliferation. | AL, AV, N, C, ER IMBO, L, M |
CNPY2 | NASH HCC (D) | Cell death, outgrowth of neuritis, obesity, regulation of low-density lipoprotein particle clearance. | C, PM, N |
CACHD1 | NASH-HCC (D) | Potential calcium channel and chemotaxis receptor, interacts with Wnt-receptors, participates in protein folding, unfolded protein response, autophagy, apoptosis, cytoskeleton organization, neurogenesis. | C |
LARP1 | NASH-HCC (D) | Proliferation, positive regulation of macroautophagy, regulation of translation, TOR signaling cascade (negative regulator of autophagy). | C, N |
Arginine | NASH-HCC (D) | Urea cycle, proliferation, cell viability, cell signaling, exocytosis, cytotoxicity, macrophage classical activation signaling pathway, phagosome maturation. | |
Leucine | NASH HCC (D) | Phosphorylation, signaling, proliferation, premature senescence, cell death, inhibition of cell growth, angiogenesis. | |
Indole-3- propionic acid | NASH-HCC (D) | Cell death, deamination metabolite of tryptophan maintaining intestinal homeostasis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakehashi, A.; Suzuki, S.; Wanibuchi, H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers 2023, 15, 4566. https://doi.org/10.3390/cancers15184566
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers. 2023; 15(18):4566. https://doi.org/10.3390/cancers15184566
Chicago/Turabian StyleKakehashi, Anna, Shugo Suzuki, and Hideki Wanibuchi. 2023. "Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis" Cancers 15, no. 18: 4566. https://doi.org/10.3390/cancers15184566
APA StyleKakehashi, A., Suzuki, S., & Wanibuchi, H. (2023). Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers, 15(18), 4566. https://doi.org/10.3390/cancers15184566