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Simple Summary: Estrogens, belonging to a group of steroid compounds, play an important role
in both physiological and disease processes, mainly by interacting with estrogen receptors (ERs).
Abnormal ER signaling may result in various cancers, including breast cancer (BC), one of the most
often diagnosed cancers in women globally, and a second cause of female cancer-related death. In
the present review, we discuss the current knowledge of the estrogen receptor-dependent signaling
pathways in breast cancer. The significance of clinical implications of ER signaling in BC, including
the potential therapies, is also summarized.

Abstract: Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation,
and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore
the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth
factors necessary for cancer invasion and dissemination. The significance of the clinical implications
of ER signaling in BC, including the potential of endocrine therapies that target estrogens’ synthesis
and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor
modulators, is discussed. As a consequence, the challenges associated with the resistance to these
therapies resulting from acquired ER mutations and potential strategies to overcome them are the
critical point for the new treatment strategies’ development.

Keywords: estrogen receptor; ER; breast cancer; ER signaling; ER coregulators; post-translational
modifications; therapeutic targeting

1. Introduction

One of the most often diagnosed malignancies in women globally is breast cancer
(BC), being now the second cause of death because of cancer [1,2]. The biological activity
and treatment response of BC are influenced by a variety of histological and molecular
abnormalities [3]. Despite improvements in the development of diagnostic methods and
treatments, the incidence and mortality rate of breast cancer-bearing patients are rising
internationally [4]. Age, family history, histological differentiation and grading, and the
local and systemic advancement of the disease have all been studied to evaluate the patient
risk and choose the best course of action [5,6]. The three main types of breast cancer are
classified based on the hormone receptors’ status. The first group consists of tumors that
have either tested positive for the estrogen receptor (ER) or the progesterone receptor
(PR). The second group consists of tumors that have either tested positive for the human
epidermal growth factor receptor 2 (HER2) with or without ER and PR positivity, whereas
the third one is called triple-negative breast cancer (TNBC), since these types of tumors
lack expression of all three receptors (ER, PR, HER2) [7]. Receptor status, among other
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variables, has been demonstrated as the one of most important factors in estimating the
prognosis and therapeutic response [8]. Furthermore, breast cancer classification based on
intrinsic molecular subtypes as a result of the microarray expression profiling has been
distinguished [9,10]. These are termed luminal A (ER+PR+ tumors, expressing luminal
genes such as ESR1, GATA3, XBP1, and FOXA1; characterized by the low expression of
Ki-67), luminal B (ER+ with lower expression of luminal genes, e.g., PGR and FOX1 and
a high expression of Ki-67, >20%), HER2-enriched (characterized by the HER2 positivity;
however, not all clinically classified HER+ tumors are of these molecular subtype and
intermediate expression of luminal genes), basal-like (increased expression of EGFR and
basal cytokeratins with low expression of the luminal A-type genes), and claudin-low
(ER-, PR-, and HER- tumors are also negative for claudin 3/4/7 and E-cadherin (reviewed
in: [11–13]).

ERs are activated by estrogens and play important roles in the development of several
cancers; in particular, breast [14], endometrial [15], and ovarian cancers [16]. Estrogens are
a group of low molecular weight lipophilic molecules that occur in three forms: estrone
(E1), estradiol (E2; the term estrogen is used in relation to E2, due to its predominant role
in physiology), and estriol (E3) [17]; the fourth form produced during pregnancy, namely
estetrol (E4), is a fetal estrogen with selective tissue actions [18]. These hormones contain in
their structure a steroid skeleton made of four aromatic rings. One of them is the phenolic A
ring, which is responsible for binding to the ER [19]. Estrogens, like other steroid hormones,
are synthesized at the rough endoplasmic reticulum from its precursor—cholesterol, which
is described in detail by Fuentes and Silvera (2019) [20]. Briefly, they are synthesized from
androstenedione in the presence of oxygen and NADPH. The crucial enzyme involved
in this process is aromatase (CYP19A1), an enzyme that participates in the final stage of
E1 and E2 synthesis. The synthesis of estrogens takes place in the gonads (predominantly
in the ovaries—granulosa cells), adrenal cortex, and adipose tissue, in smaller amounts
also in other tissues, including breast and placenta [21], or fetal liver, in the case of E4 [18].
E1 and E2 can arise from testosterone in peripheral tissues (mainly adipose tissue) in the
enzymatic reaction catalyzed via aromatase, which has a significant impact on the level of
estrogen synthesis in postmenopausal women [22].

Estrogens, including E2(the predominant circulating estrogen in humans) are trans-
ported in the blood along with specific proteins. They sequentially cross biological mem-
branes by diffusing to the target sites, where they primarily act by attaching to specific
nuclear ER. Receptor–ligand complexes can directly silence/activate gene expression or
act indirectly by interacting with intracellular signaling molecules. The mechanism of
action of estrogens is very diverse, and the nature of the response depends on both the
genetic and physiological predisposition of the target cells. Estrogens are synthesized in
both sexes; however, at different concentrations and with different functions [23]. These
hormones play a significant role in the proliferation and growth of cells associated with
reproduction and have a myriad of other cellular functions; for instance, carbohydrate and
lipid metabolism, and the regulation of energy homeostasis [17,24]. Importantly, estrogens
affect the cardiovascular [25] and central nervous system [26]. The effect of estrogens on
the cardiovascular system may be protective, as shown by several studies, including large-
scale clinical trials [27–29], but have also been associated with the risk of coronary heart
disease [30]. Furthermore, estrogen-related malfunctions result in several autoimmune,
metabolic, or degenerative pathologies and cancers, including the development of breast
cancer [17].

The ER plays a key role in the development, progression, and invasion of ER-expressing
BC [31]. ER-positive tumors have a more favorable prognosis compared to other BC types
and are usually responsive to hormonal treatment. In the absence of ERα expression, BC
exhibits more aggressive phenotypes [32]. Here, we discuss the current knowledge of the
ER-dependent signaling in breast cancer. The review highlights the molecular traits of
estrogen receptors and presents the ERs’ coregulators. Post-translational regulation via
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various modifications of ER is also presented. Finally, the challenges related to the current
therapies and the potential strategies to overcome them are summarized.

2. Estrogen Receptors

The ER family includes the nuclear ER (nER) and G protein-coupled estrogen re-
ceptor 1 (GPER1) [33]. nER is characterized by conserved domain structures, such as
the DNA-binding domain (DBD) and the ligand-binding domain (LBD) [34]. Two major
nER isoforms, ERα and Erβ, are responsible for the regulation of the female reproductive
system development, the preservation of bone mass, and the protection of the central
nervous system, among other physiologically important processes [35]. The evolutionary
origin of the estrogen-signaling system remains unclear; however, the research on inver-
tebrates provided insight into the vertebrate pathway. Interestingly, the ER homologs
have been identified in amphioxus [36,37], mollusks [38,39], and annelids [40]. Regarding
the functional insights, the ERs from amphioxus and mollusks are not activated by estro-
gens [38,41,42], while in two annelid species, transcription is activated in response to the
low doses of estrogens upon ER binding [40]. Based on the phylogenetic context, it was
hypothesized the ER possibly originated in the bilateralian lineage [43]. In humans, the
nERs are encoded by two different genes (ESR1 for ERα [44] and ESR2 for ERβ [45]) as a
result of gene duplication in the early vertebrate lineage [46] that are located on different
chromosomes—ESR1 is located on chromosome 6 and ESR2 on chromosome 14.

The nER is composed of six homologous A-F domains (Figure 1) representing the
receptors’ structural regions and having unique functional characteristics. Domains A and B
are located at the amino terminus (N-terminal domain) and contain the so-called activation
of function domain 1 (AF-1), whose function is to activate the transcription of target
genes [20]. Domain C possesses a zinc-finger motif and corresponds to the DBD domain,
namely the DNA-binding domain. This domain is responsible for receptor dimerization and
binding to the estrogen-dependent genes promoters’ sequences, called estrogen-response
elements (ERE) [47]. The D domain is characterized by the presence of a nuclear localization
signal (NLS), which, after the binding of a specific ligand, followed by the conformational
change caused by this interaction, is exposed, and it is necessary for translocation to the
nucleus. Domain D is the so-called hinge region (H), which is responsible for the functional
synergy between fragments AF-1 and the second transcriptional activation domain—the
AF-2 fragment located at the carboxyl terminus (C-terminus) [48]. The E domain is the
ligand-binding domain (LBD), which contains the ligand-binding site (L). The F domain
located at the end of the C-terminus probably acts as a modulator of transcriptional activity
and is involved in the interaction with the coactivators [49,50].

ERα and ERβ show high homology in the LBD and DBDs, while they differ in the
transcription-activating domain (AF-1) [20]. Due to alternative splicing, both receptor
subtypes occur in isoforms [20,51–54]; five shorter isoforms for ERα, and three shorter
isoforms and one longer isoform for ERβ [20]. They are also differentially expressed
throughout the body [55,56]: ERα predominance is shown by the endometrial cells, ovary,
hypothalamus. and outgoing ducts’ testicles, while ERβ is expressed mainly in the kidney
cells, brain, heart, bones, lungs, intestinal mucosa, prostate, and vascular endothelium.
The deregulation of ERα expression and function is closely related to the carcinogenesis
process in ovarian, uterine, and breast cancer epithelial cells. On the other hand, ERβ
inhibits ERα-mediated transcription and estradiol-induced cell proliferation, which is
probably the reason why it is associated with benign forms of breast cancer [57–59]. The
ERα/ERβ cellular ratio plays a key role in regulating E2 activity; for instance, in human
T47D BC cells [60]. However, approximately 75% of breast tumors are ER-positive [61] and
aberrations in the function are associated with ERα. Hence, ERα is one of the main clinical
drug targets [62]. The primary function of both receptors is the downstream regulation
of gene transcription upon E2 binding to control the cell proliferation and differentiation
activated by the ER-dependent signal transduction [63].
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Figure 1. Scheme of the structural and functional regions of the estrogen receptor (ER). (A) Com-
parison of the domain topology of ERα and ERβ. The homology of the ERα and ERβ recep-
tors was determined based on the amino acid sequence retrieved from the UniProt database
(https://www.uniprot.org/; accessed on 12 March 2023; ESR1 ID: P03372, ESR2 ID: Q92731).
AF1—the activation of function domain 1; DBD—the DNA-binding domain; H—hinge region;
LBD—ligand-binding domain; AF2—the activation of function domain 2; A/B—the domains located
at the N-terminus (N); C—the domain containing zinc-finger; D—the domain with nuclear localiza-
tion signal; E/F—the domains located at the C-terminus (C). (B) Diagram of the estrogen receptor
dimer binding to DNA in the estrogen-response elements (ERE). A-F as explained in the description
of A; Lig—ligand.

GPER1 (also known as GPR30), is the second type of estrogen-dependent receptor and
is a member of the transmembrane metabotropic receptors family, which was originally de-
tected in breast cancer tissue [64]. The GPER1 coding gene is located on chromosome 7 [65].
It is created via a single polypeptide with an α-helical structure strongly folded and im-
mersed in the cell membrane, through which the polypeptide chain passes seven times,
forming a hydrophobic transmembrane domain [66]. The GPER1 is present in many cells
and tissues. mRNA expression was confirmed, e.g., in the ovaries, prostate, thymus,
bone marrow, skeletal muscles, liver, lungs, heart, kidney, pancreas, small intestine, and
brain [67]. In response to the extracellular signal by its predominant ligand—E2, the
GPER1 regulates many cellular processes via a rapid non-genomic dependent mechanism.
Compared to normal tissues, GPER1 is detected with a higher expression in breast cancer
cells [68].

3. Estrogen Signaling
3.1. Genomic Action of ER

The ER-dependent signaling can be classified as genomic and non-genomic with
different activities and pathways involved, respectively (Figure 2). Genomic signaling
(Figure 2; bottom panel) depends on the transcriptional activities via the gene expression,
while non-genomic (Figure 2; top panel) depends on the activation of various signaling
cascades, as reviewed in: [20,69].

In the genomic ER signaling, the complexes of estrogen and the estrogen receptor
(ER) are translocated to the nucleus. There, they can indirectly bind to the DNA-binding
transcription factors (TFs) via the TF response elements, using protein–protein interactions.
By interactions with the coactivator proteins, ER can control the activation of TFs [70].
Nuclear ER can, for example, interact with specificity protein 1 (Sp1) and nuclear factor
kappa B (NF-κB) via the so-called “non-classical” activity [71]. The target genes to be
modified by the indirect action of ER do not contain the estrogen-response elements (EREs)
in their promoters’ regions.

https://www.uniprot.org/
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Figure 2. Genomic and non-genomic action of estrogen receptor (ER). Abbreviations: A/B—the
domains of ER located at the N-terminus of estrogen receptor (N); C—the domain containing zinc-
finger; E/F—the domains located at the C-terminus; GPER—G protein-coupled estrogen receptor 1;
PI3K—phosphatidylinositide 3-kinase; AKT—serine/threonine kinase; mTOR—the mammalian
target of rapamycin; cAMP—cyclic adenosine monophosphate; PLC—phospholipase C; IP3—inositol
trisphosphate; IP3R—inositol trisphosphate receptor; HSP90—heat shock protein 90; ERE—estrogen-
response element; TF—transcription factor.
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The expression of genes that contain EREs can be changed via the direct genomic
action of ER. The receptor undergoes a ligand-specific conformational shift after ligand
attachment to the ER, enabling the receptor to be released from the heat shock protein
complex (HSP90) [72,73]. HSP90 is a molecular chaperone, which protects unbound ER
from degradation [74]. Eckert and colleagues have shown nearly 40 years ago [75] that
ERα without a ligand is a constantly degraded, short-lived protein (a half-life of 4–5 h).
The ERα synthesis and turnover rates were determined in the MCF-7 breast cancer cells.
For complete ER-mediated transcriptional activation, histone acetyltransferases (HATs)
are necessary. HATs activities enable nucleosome repositioning, chromatin opening, and
engagement with the general transcription machinery centered on RNA polymerase II.
For example, the p300/CBP acetylates elements of the basal transcription machinery and
interacts with other HATs, such as PCAF [76–78].

Importantly, there is functional crosstalk between the estrogen receptor and other
steroid hormone receptors, such as the progesterone receptor (PR), glucocorticoid receptor
(GR), and androgen receptor (AR) in breast cancer cells [79–85], as well as other cancer cell
types, like endometrial [86,87]. These hormones have similar DNA-binding preferences and
their genomic binding orchestrates the recruitment of other TFs and chromatin remodeling
complexes [88–90]. Clearly, ER does not function on its own, and its action can be altered
by other receptors. For instance, while co-expressed in BC cells, PR is not only an ERα-
induced target gene but also an ERα-associated protein, which redirects ERα-associated
chromatin binding events [81,84]. This, in turn, results in a unique gene expression in
BC cells and is associated with patients’ outcome [81]; however, the mechanistic insight
into ER modulation via PR for better BC management needs to be elucidated [84]. AR
has also been shown to play a role in ER genomic binding in breast cancer [82] and its
function and targeted therapies across BC subtypes have recently been reviewed in [91].
Additionally, in breast cancer cells, the liganded glucocorticoid receptor represses an ERα-
regulated transcriptional program [92]. Tonsing-Carter and colleagues [93] have shown
that GR modulation decreases ER-positive BC cells’ proliferation and suppresses ER (both
wild-type and mutant) chromatin association.

3.2. Non-Genomic Action of ER

In the non-genomic ER signaling (Figure 2; top panel), estrogen binds to the receptor
(mbER, i.e., the ER that is situated at the plasma membrane [94] or GPER1, the G-protein-
coupled estrogen receptor 1 [95]). This mechanism starts outside of the nucleus and is
unrelated to the transcription. The estrogen and ER complexes predominantly activate
the kinase pathways. These include MAPK (mitogen-activated protein kinase) via the
so-called Ras-Raf-MEK-MAPK pathway and PI3K (phosphatidylinositide 3-kinase)/AKT
(serine/threonine kinase) via the PI3K-AKT-mammalian target of rapamycin (mTOR)
pathway. The activation of the MAPK signaling pathway by estrogen has been studied in
various cell types, including breast cancer [96], neuroblastoma [97], and endothelial [98]
cells. Upon estrogen binding to the receptor, the small guanine nucleotide-binding protein—
Ras (GTPase) is activated. Next, another protein kinase—Raf is activated, which then
phosphorylates the MEK protein. This in turn leads to the phosphorylation and activation
of MAPK. As a consequence, several TFs of the activating protein 1 family, e.g., c-Jun and
c-Fos, are activated. These then regulate the transcription of the target genes [99–101].

An alternate pathway—the PI3K-AKT-mTOR, activated by mbER, relies on the direct
contact of ER with different proteins; first, the tyrosine kinase Src, then the phosphatidyli-
nositol 3-kinase (PI3K), and the AKT proteins that regulate the mTOR pathway. The
AKT-dependent mechanisms of mTOR regulation is a key intracellular system that signals
cellular growth and survival, and the hyperactivation of it is involved in the carcinogenesis
of the ER-positive BC as well as the resistance to endocrine therapy [102].
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The activation of receptors connected to G-proteins is another well-known non-
genomic effect of sex hormones. GPER1 is a transmembrane receptor, which, once ac-
tivated by estrogen or its derivatives, triggers the downstream signaling pathways that
can affect a variety of physiological processes [95], such as cell proliferation, angiogenesis,
and inflammation. The action of GPER1 generates cyclic adenosine monophosphate from
the activation of the adenylate cyclase enzyme. Moreover, upon activation of a receptor
by estrogen, the PLC (phospholipase C) enzyme is activated. The activated PLC cleaves
phosphatidylinositol 4,5-bisphosphate (PIP2) into two secondary messengers, inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). IP3 diffuses into the cytoplasm and binds
to the IP3 receptors on the endoplasmic reticulum, leading to the release of Ca2+ from the
endoplasmic reticulum into the cytoplasm. This results in a rapid increase in intracellular
Ca2+ concentration, which can trigger a variety of downstream signaling events. DAG, on
the other hand, remains in the plasma membrane and activates protein kinase C (PKC),
another downstream signaling molecule that can regulate various cellular processes [103].

4. Coactivators and Corepressors of ER in Breast Cancer

The activity of estrogen receptors is closely coordinated by its coregulators—coactivators
and corepressors. The coregulators’ complexes are recruited by the ER via a characteristic,
conserved LxxLL motif [104] (L, leucine; x, any amino acid) that acts on the LBD. Coregula-
tors are often associated with enzymes such as methyltransferases, acetylases/deacetylases,
phosphokinases, ubiquitin ligases, and ATPases. They regulate chromatin remodeling,
and thus, gene expression [78,105]. The interaction between coactivators and corepressors
shapes the transcriptional landscape, which is cell type- and context-dependent. Corepres-
sors interact with histone deacetylases (HDAC) by attaching to the target chromatin of the
ERα-encoding gene. This results in chromatin condensation and the inhibition of ERα gene
expression. Corepressors are designated to balance the activity of coactivators and inhibit
the excessive expression of the nuclear receptor-encoding gene [105]. Aberrations in the nu-
clear receptor coregulators’ expression or activity is closely related to carcinogenesis, tumor
invasion, and metastasis, as observed in breast, colorectal, and other cancer types [106]. The
main nER coregulators, including coactivators and corepressors, are described in Table 1.

Table 1. Nuclear estrogen receptors’ coregulators.

Coactivators Influence on ERα

AIB1

The AIB1 coactivator is one of the transcription factors that react with ERα in a ligand-dependent manner, and
its coactivator activity is enhanced by the CIB1δ and PKCε-mediated phosphorylation of AIB1. This action
results in an increased expression of target genes, e.g., those responsible for cell migration, such as PEA3 (the
polyomavirus enhancer activator 3), MMP2 (metalloproteinase 2), and MMP9 (metalloproteinase 9), and it is
therefore directly related to tumorigenesis and metastasis [107,108]. The AIB1 coactivator activates
ERα-dependent transcription by recruiting HAT to the chromatin of the ESR1 gene. In addition, the AIB1
protein is involved in the regulation of the degradation of the ERα via the ubiquitin–proteasome system
(UPS) [109].

BCAS3
The highly conserved BCAS3 (breast cancer-amplified sequence 3) coactivator, like AIB1, interacts with ERα’s
transcriptional complex, in conjunction with PELP1’s (proline-, glutamic acid-, and leucine-rich protein 1)
coactivator, causing the activation of ERα-encoding gene transcription [110].

DBC1

It has been demonstrated that the DBC1 (deleted in breast cancer 1) protein, a negative regulator of deacetylase
SIRT1, functions as a nER coactivator, and it is essential for the formation of the ER transcription complex and
the proliferation of estrogen-dependent breast cancer cells. The deletion of DBC1 from ER-negative breast
cancer cells was shown to decrease cell proliferation in vivo and in vitro, and increased DBC1 expression
resulted in a negative prognosis and shortened recurrence-free survival in the ER-negative patients [111]. In
addition, DBC1 overexpression is observed in prostate, gastric, esophageal, and colorectal cancers and has led
to a worsening of the predicted poor prognosis [112].
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Table 1. Cont.

Coactivators Influence on ERα

PELP1

PELP1 regulates the genomic and non-genomic ERα signaling. It interacts with many transcription factors,
and its activity is observed in the cell nucleus, cytosol, and plasma membrane [113,114]. It has an important
role in the remodeling of chromatin by interacting with histones and histone-modifying enzymes [115]. PELP1
causes the activation of tyrosine kinase SRC, resulting in the reorganization of the cell cytoskeleton [116,117].
Increased PELP1 expression has been observed as a result of enhanced tumor cell invasion [118]. The effect of
PELP1 is an epigenetic modification, leading to ERα activation [113]. PELP1 has been proposed as a biomarker
of hormone-dependent cancers, i.e., ovarian and breast cancer [115,119].

CIZ1

CIZ1 (Cip1-interacting zinc-finger protein), a DNA-binding protein, is implicated (as an ER coactivator) in the
ER transactivation due to the cooperation of the ER to the chromatin target gene. In addition, the
overexpression of CIZ1 causes an increase in sensitivity to estrogen, accelerating the growth rate of breast
cancer cells [120]. The increased expression of CIZ1 is observable not only in breast cancer but also in cancers
like colon, lung, gallbladder, prostate, and other diseases, e.g., rheumatoid arthritis [121].

Corepressors Influence on ERα

NCOR1

NCOR1 (nuclear receptor corepressor 1) inhibits ERα expression, suppressing transcription through the
ligand-binding domain of ERα [122]. NCOR1 regulates the availability of chromatin by activating histone
deacetylase 3 (HDAC3) [123–125]. In addition, it acts antagonistic on histone acetyltransferase (HAT) and the
HAT-activating enzyme, causing the inhibition of its expression, which promotes the formation of compact,
inactive heterochromatin [126]. The loss of NCOR1 results in accelerating the development of breast cancer,
and a decrease in its expression may be the result of acquiring resistance to tamoxifen [127,128]. Additionally,
it has been shown that the association of NCOR1 with other corepressors such as SAFB1 (scaffold attachment
factor B 1) and SAFB2 (scaffold attachment factor B 2) reduces the expression of ERα [129,130]. Recently, Aylon
and colleagues reported [131] that NCOR1 repressive activity is enhanced by LAST1 (large tumor suppressor
1) and proposed that this axis may restrict breast cancer progression.

BRCA1

BRCA1 is the corepressor of ERα that works by binding to the AF-2 ERα domain, thanks to which it leads to
the monoubiquitylation of the ER together with BARD1 influencing ER activity [132]. In non-immortalized
fibroblasts and breast cancer cells, BRCA1 deficiency has been shown to activate the PI3K/AKT pathway by
accumulating AKT. This effect is reinforced by the fact that estrogen also activates the PI3K/AKT pathway in
the ER-dependent and independent manner. Therefore, it has been shown that in the BRCA1-deficient breast
cancer cells, estrogen causes the initiation of the carcinogenesis process by stimulating cell division via the
AKT pathway and activating the epithelial–mesenchymal transition (EMT) [133].

DACH1

DACH1 (Dachshund 1) is one of the ER corepressors, which works by blocking its action [134]. It regulates
gene expression by binding to DNA-binding transcription factors and by blocking DNA strands [135]. The
downregulation of the transcription of MMP9 by DACH1 inhibits breast cancer tumor cells’ invasion and
metastasis [136]. DACH1 also inhibits the growth of cancer stem cells (CSCs), resulting in the inhibition of
metastasis [137,138]. Moreover, it was shown that DACH1 suppresses breast cancer via a negative regulation
of CD44 (cluster of differentiation-44) [139]. DACH1 interacts with the ER by blocking the interaction between
ESR1 and the activator, resulting in an increased activity of HDAC and reduced ER transcription [134].
DACH1 expression is upregulated in individuals who show longer disease-free survival, ER-positive breast
cancer-free survival, and reduced metastasis [140].

5. Post-Translational Modifications of Estrogen Receptors

ERs undergo various post-translational modifications (PTMs) that regulate their ac-
tivity and contribute to the development and progression of breast cancer. The PTMs of
ERs are versatile with a large spectrum of functional diversity influencing the subcellu-
lar localization of ERs, with their expression and stability or sensitivity to the hormonal
response [73,141]. The modifications include phosphorylation, acetylation, methylation,
ubiquitylation, sumoylation, and several more, with usually many sites distributed over
the ER. Some PTMs of estrogen receptors, including those occurring particularly in breast
tumors, are listed in Table 2.

Phosphorylation, first described as the PTM of ER, can activate or repress ER function,
depending on, e.g., the site of modification [142]. For instance, the phosphorylation of
serine 118 (S118; the most-studied modification) in ERα by MAPK kinases enhances its
transcriptional activity, while the phosphorylation of serine 167 (S167) in ERα by AKT
inhibits its DNA binding and transcriptional activity [143,144]. Chromatin immunoprecipi-
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tation experiments have shown that S118 phosphorylation localizes to several promoters
of target genes, which demonstrates its role in transcription [145]. The other phospho-
rylated serines may also regulate the properties of ERα. For example, serine 236 (S236),
phosphorylated by PKA (protein kinase A), plays a role in receptor dimerization [146].
The phosphorylation of threonine 311 (T311) by p38-MAPK inhibits the nuclear export of
ERα [147]. Other studies have shown that calcineurin, a Ca2+-dependent serine/threonine
phosphatase, stabilizes and activates ER. This is due to the suppressive effects of PP2A
and PP5 (serine/threonine protein phosphatases) on the ER. The ubiquitin ligase E6AP
was stimulated to the polyubiquitylate-phosphorylated estrogen receptor (ER S294) and,
as a consequence, led to its proteasomal degradation. By directly dephosphorylating ER
S294 and releasing E6AP, calcineurin stabilized the ER. Moreover, calcineurin could lead to
the phosphorylation of ER S118 via activating the Akt-mTOR pathway. In patients with
ER-positive breast cancer receiving endocrine therapy, higher calcineurin expression was
linked to shorter recurrence-free survival [148]. Importantly, multifunctional enzymes
with a primary role in phosphorylation, namely CDK4/6 (cyclin-dependent kinases 4 and
6) have been shown to improve the progression-free (PF) and overall survival (OS) of
ER-positive breast cancer patients [149]. However, the success of these treatments is still
limited due to the acquired patients’ resistance to these inhibitors [150].

ERs can also be acetylated by histone acetyltransferases (HATs) such as p300/CBP
and PCAF. The acetylation of ERα at lysine 302 and 303 (K302 and K303) enhances its
DNA binding and transcriptional activity. The acetylation in the hinge (H) domain of ERα
through its coregulatory protein p300 but not PCAF, changes the ligand sensitivity and
causes a subsequent histone deacetylation effect [151]. p300 also acetylates K266 and K268,
stimulating the binding of the receptor to DNA and consequently enhancing its transcrip-
tional activity [152]. Interestingly, the acetylation of a lysine residue in histone protein H3
at position 27 (H3K27) has recently been shown to signal transcriptional elongation for
ERα. The so-called super elongation complex (SEC) interacts with an acetylated H3 on the
ESR1 transcription start site (TSS) via the scaffold protein AFF4. This protein functions as a
key molecule in the transcriptional elongation machinery [153]. Enhanced ER coregulator’s
interactions via an acetylation-dependent activation of ERα have potential implications in
breast cancers, e.g., SRC-3/AIB1 gene amplifications and ERα gain-of-function mutations
in endocrine-resistant metastatic tumors, such as Y537S and D538G [154]. It has recently
been reported that the pharmacological inhibition of p300/CBP HATs through inhibitors
A-485 and GNE-049 downregulates ERα via suppressing H3K27 acetylation in ER-positive
breast cancer [155].

Methylation is another modification that controls ER gene transcription and correlates
with resistance to hormone therapy [156]. The promoters of genes implicated in particular
biochemical pathways are methylated in a number of cancers, including breast cancer
(reviewed in: [157]). Several studies reported differential promoter methylation statuses for
ER/PR-negative versus ER/PR-positive tumors [158–162]. Therefore, DNA methylation
markers have the potential to provide predictive value in the treatment of breast cancer.
While lysine (K) methylation is often associated with histones, non-histone proteins, such as
p53 or DNA methyltransferases, have been shown to undergo methylation. Lysine can be
mono-, di-, or trimethylated [163]. For example, the SET7 lysine methyltransferase catalyzes
the monomethylation of ERα at K302, which affects ERα stability. This modification thus
facilitates the ERα binding to target genes for transactivation [164].

Another PTM that may affect the ER is ubiquitylation. This process relies on a small,
highly conserved protein ubiquitin (Ub) to be attached to the K residues of a substrate
protein (reviewed in: [165]), having either proteolytic (proteasomal degradation) [166] or
non-proteolytic fates for the target substrate [167,168]. The ubiquitylation process is a
complex mechanism with several structurally-related enzymes involved, namely ubiquitin-
activating enzymes, ubiquitin-conjugating enzymes and ubiquitin ligases, and Ub itself
having the ability to form ubiquitin chains with different linkages [169]. The aberrations
in any stage of this process are associated with various pathologies, including breast can-
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cer [170] and many other cancer types. It was not until 2008 that two ERα lysines, located
at the H region of the receptor, namely K302 and K303, were identified as ubiquitylated,
regulating the stability of ERα. The polyubiquitylation of ERα on these lysines plays a
role in activating the transcriptional activity of estrogen-dependent ERα. The receptor
degradation is regulated by the proteasome [171]. Several ubiquitin ligases and deubiq-
uitylating enzymes (DUBs; as the process is reversible) are associated with the control of
ER transcriptional activity and stability [172,173]. Tang and colleagues [174] described
the novel TRIM11 ubiquitin ligase function in ER signaling. The level of TRIM11 highly
correlates with ERα and the depletion of this ligase in BC cells decreases cell proliferation
and migration. The ERα stability is increased via monoubiquitylation [174]. Moreover,
studies by Xiao and colleagues [175] have shown that the inhibition of transcriptional re-
pressor, ZBTB7A, which promotes the progression of breast cancer, can upregulate E3 ligase
TRIM25. As a consequence, this leads to an increased level of ERα ubiquitylation and its
proteasomal degradation [175]. Importantly, a new therapy targeting ER degradation, such
as proteolysis-targeting chimeric (PROTAC) technology, is being developed. It targets the
regulation of ER stability via ubiquitylation, a therapeutic target for breast cancer [176,177].

A post-translational modification called sumoylation controls the activity and localiza-
tion of the ER. Similarly, as for ubiquitylation, the term sumoylation refers to the covalent
attachment of a tiny protein known as the small ubiquitin-like modifier (SUMO) to the
substrate protein (reviewed in: [178]). The sumoylation of the ER has generally been proven
to increase its nuclear localization and suppress its transcriptional activity [179]. Although
ERα lacks consensus sumoylation sites, Sentis and colleagues have shown that the receptor
was sumoylated in the H region on K266, K268, K299, K302 and K303. The sumoylation
of ERα is estrogen-dependent and involves the sumo ligase PIAS1 (protein inhibitor of
activated STAT1) and PIAS3 (protein inhibitor of activated STAT3). The sumoylation of
ERα increases its transcriptional activity [179]. Recent studies have also shown that several
antiestrogens (estrogen blockers/inhibitors), used to treat ER-positive breast cancer induce
the sumoylation of ERα, but not ERβ [180].

Table 2. The selected post-translational modifications of ERs.

Site of Modification Type of Modification Enzymes Functions Reference

Y52 phosphorylation c-Abl transcription activation,
stability maintenance [181]

Y219 phosphorylation c-Abl DNA binding and
dimerization [181]

S102 phosphorylation GSK3 transcription activation [182]

S104/106 phosphorylation cyclin A-Cdk2, MAPK transcription activation,
dimerization [182]

S118 phosphorylation ND, Cdk7, IKKα RNA splicing, dimerization,
transcription activation [182,183]

S167 phosphorylation Akt, p90 RSK, S6K1 stability maintenance [184]
S236 phosphorylation PKA dimerization inhibition [146]
R260 methylation PRMT1 non-genomic signaling [185]

K266 acetylation p300 transcription activation, DNA
binding [146]

K266
K268 sumoylation Ubc9, PIAS1, PIAS3 transcription activation, DNA

binding [179]

S282
S559 phosphorylation CK2 transcription inhibition [186]

K302
K303 ubiquitylation CHIP proteasomal degradation [171]

K302 acetylation p300 transcription inhibition [151]
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Table 2. Cont.

Site of Modification Type of Modification Enzymes Functions Reference

K302 methylation SET7 regulation of ER turnover [164]
K303 acetylation p300 transcription inhibition [151]

K303 sumoylation Ubc9, PIAS1, PIAS3 transcription activation, DNA
binding [179]

S305 phosphorylation PAK1
resistance to aromatase
inhibitor, transcription

activation
[187,188]

T311 phosphorylation p38-MAPK nuclear localization [147]
C447 palmitoylation PAT plasma membrane localization [189,190]

Y537 phosphorylation calf uterine kinase,
SRC, EGFR

DNA binding, dimerization,
proliferation [191,192]

6. Estrogen Receptor Mutations

Overall, many genes bearing various mutations have been identified as involved
in tumorigenesis. These so-called mutational cancer diver genes have been reviewed in
detail by Martínez-Jiménez and colleagues [193]. In breast cancer, Krøigård and colleagues
identified metastasis driver genes [194], and the study of Zhang and colleagues [195]
characterized the frequency of mutation in Chinese BC patients. Recently, Nolan and
colleagues [13] summarized driver mutations in the context of BC subtypes. Here, we
focus on the ER mutations and present main driver mutations; in particular, breast cancer
subtypes (Figure 3). The ESR1 gene encodes the estrogen receptor alpha (ERα), which is
a key regulator of numerous biological processes, including cell growth and division. In
preclinical and clinical studies, it has been observed that ESR1 mutations appear in the early
stages of breast cancer development. Furthermore, as the cancer disease progresses, their
occurrence becomes increasingly prevalent in tumor cells [196]. ESR1 mutations’ frequency
and location is also presented in Figure 4.
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in the ESR1 gene indicates the presence of three cancer hotspots. The main post-translational
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ESR1 mutations were discovered in breast cancer over 30 years ago [198]. How-
ever, their significant role in endocrine therapy resistance was only proven in 2013 via
the sequencing of the metastatic breast cancer (MBC) genome [199]. These studies have
demonstrated that ESR1 mutations are more common in metastatic breast cancer than in
primary tumors and may contribute to hormonal therapy resistance. However, ESR1 muta-
tions alone only partially account for hormonal therapy resistance in MBC. For instance,
approximately 50% of hormonal resistance cases are linked to the ESR1 mutation. Other
increasingly identified mechanisms include alterations in the PI3K-AKT-mTORC1, RAS-
MAPK, and CDK4/6-RB-E2F signaling pathways, as well as the loss, amplification, and
translocation of ESR1. Moreover, the ESR1 mutations usually co-occur with other genomic
changes, resulting in an overall worse prognosis [200]. There are several methods used for
detecting ESR1 mutations. Mutations are detected in tumor cells (tumor biopsy), circulating
tumor cells (CTCs), and extracellular DNA (cfDNA—cell-free DNA). Common detection
methods include next-generation sequencing (NGS) and droplet digital PCR (ddPCR) [201].
All mutations associated with the resistance of ESRα are located in the ligand-binding
domain (LBD). The most commonly encountered ones are D538G and Y537S, while less
common ones include Y537N, Y537C, L536H, L536P, L536R, S463P, and E380Q [202]. Muta-
tions Y537S and D538G occur in the N-terminal portion of helix 12 (H12) in the ERα domain,
which is responsible for ligand binding [203]. The Y537S mutation in the ESR1 gene leads
to the substitution of serine for tyrosine at position 537 in the gene. In the case of the Y537S
mutation, it has been observed that the amino acid serine at position 537 forms a hydrogen
bond with asparagine at position 351 of the ERα protein. This interaction leads to a change
in the structure of the loop between helices 11 and 12; thus, it could potentially contribute
to the sustained activity of the protein carrying the Y537S mutation. It has also been discov-
ered that the surface mutation Y537S does not affect the structure of the ligand-binding
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domain, which aligns with the functional research results showing that the protein remains
sensitive to the action of antiestrogens [204]. The Y537S mutation in the ESR1 gene may also
lead to the situation in which cancer cells start to migrate, contributing to distant metastases.
To comprehend the pathomechanism associated with this mutation, experimental models
were used. These models involved genetic modifications using CRISPR-Cas9 technology
to include the Y537S mutation in the ESR1 gene [205,206]. Transcriptional profiling has
revealed that introducing this mutation into the ESR1 gene increases the activity of the
certain signaling pathways characteristic of tumor development, including p53 and the
MTORC1 pathway. This suggests that mutated estrogen receptors may play a crucial role
in promoting a tumor phenotype that is resistant to endocrine therapy (ET) and prone to
metastasis [207]. In the case of the wild-type (ESR1-WT) without mutations, activation oc-
curs through binding to the estrogen ligand. However, ESR1 with a mutation (ESR1-MUT)
in the ligand-binding domain displays constitutive receptor activity and is independent of
the presence or absence of the ligand. As a result, treatments based on receptor inhibition or
inhibiting the synthesis of its ligands (estrogens) prove to be less effective, since the mutated
receptor remains active regardless of ligand availability [203]. Under conditions where the
ligand is absent, ESR1-MUT exhibits greater stability in its active conformation, increased
the binding to co-activators, and reduced the proteolytic degradation compared to ESR1-
WT [208,209]. At the molecular level, ESR1-MUT transactivates the altered sets of target
genes, leading to increased cell motility and likely promoting metastasis formation [210].
It has been demonstrated that ESR1-MUT exhibits slightly altered interactions, such as
enhanced binding with FOXA1 and GREB1 [211]. Furthermore, even in the presence of
estrogen, ESR1-MUT can exhibit a significantly higher transactivation capacity compared
to ESR1-WT [199]. Conformational changes in ESR1-MUT lead to the reduced binding of
inhibitors, increased coactivator recruitment, and enhanced proteolytic stability, affecting
the resistance to aromatase inhibitors (AIs), tamoxifen, and fulvestrant in vitro. Ultimately,
the observation that higher doses of tamoxifen and fulvestrant still exhibit efficacy, along
with determining the structure of ESR1-MUT, has contributed to the development of new
molecules aimed at inhibiting ESR1-MUT. These molecules could be highly effective in
targeted therapy against ER [209].

7. Therapeutic Targeting of ERs Pathways for Metastatic Control

It is widely known that the main reason for resistance to endocrine therapy (ET)
is the complexity of the regulation of estrogen signaling in combination with crosstalk
to the other oncogenic signaling pathways [212–214]. In BC therapy, targeting the ER
signaling pathways plays a pivotal role [149]. However, the molecular mechanisms of
these pathways in BC are still unrevealed. Therefore, it is necessary to understand the
versatility of molecular mechanisms in different BC types and their divergent signaling.
Here, we summarize numerous reports on the therapeutic targeting of ERα signaling for
blocking BC metastasis, with a focus on the latest and most promising therapies. Upon
the discovery of the ERα (ESR1) and ERβ (ESR2) receptors’ implication in BC, targeted
therapies against these receptors became the center of scientific interest. Targeting the ERα,
ERβ, and GPER signaling components involved in enhancing the cell migration, invasion,
and EMT processes have also been set in the drug discovery pipeline [215].

There are several ways to effectively regulate metastasis in breast cancer patients by
targeting the ERα pathway. A schematic diagram of main drugs used in BC treatment is
presented in Figure 5. Two main classes of endocrine therapy exist: aromatase inhibitors,
(AIs) such as letrozole, anastrozole (non-steroidal AI), and exemestane (steroidal AI), and
antiestrogens: ER modulators (SERMs), their function is to block the activation of ERα in
BC, as exemplified by tamoxifen (TAM, Nolvadex, Astra Zeneca, Cambridge, UK) [216],
chlorinated derivative toremifene [217,218], and raloxifene [219]; and the selective ER down-
regulators (SERDs), which bind to ERα and leads to a reduced ERα level and activity due to
its decay; for example, fulvestrant [220]. These compounds inhibit breast cancer progression
by interfering with ER signaling [221]. Currently, the mechanism combining the activities
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of both SERMs and SERDs has gained much attention. Mixed SERM/SERDs (the so-called
SERM/SERD hybrids) such as lasofoxifene (laso) [222] and bazedoxifene [223,224] have
been proposed as a potential treatment of ER-positive metastatic BC. These SERM/SERD
dual compounds in breast cancer have recently been reviewed in [225,226].
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In metastatic carcinoma, it has been found that the ERα and aromatase levels are
higher than in normal tissue [227]. Based on the addiction to estrogen signaling by ERα-
positive tumors, therapies inhibiting the ERα directly, e.g., by using estrogen antagonists
like tamoxifen, or indirectly, e.g., blocking estrogens using aromatase inhibitors, are the
principal treatment for ER+, ER-, PR+, or HER2+ BC carriers [228].

Recent studies have found that a series of genetic and epigenetic modifications play
a role in resistance mechanisms; thus, these can be used as alternative targets in ER+
breast cancer. As described above, the ERα crosstalks with the other signaling pathways,
including growth factor receptor signaling such as HER family elements, the fibroblast
growth factor receptor (FGFR) pathways, intracellular growth, and the metabolic pathway
with survival signals PI3K/Akt/mTOR. ERα also interacts with HDACs, by which ERα can
regulate gene expression, along with CDK4 and 6 (cyclin-dependent kinases 4 and 6, which
are the main regulators of the cell cycle). Research on the development of the inhibitors of
these pathways contributes to the better effectiveness of hormone therapy in the treatment
of early and metastatic tumors [229]. Furthermore, phosphatases, proteases, miRNAs, and
long non-coding RNAs (lncRNAs) might also be potential therapeutic targets [230].
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Targeting the EGFR pathway, hormone therapy in use with HER2-targeted agents is
an alternative to current chemotherapy regimens in the fight against metastasis. Combi-
nation therapies (hormonal and targeted) have recently been approved and tested, and
hormonal drugs are also still being studied as monotherapy [231]. The most widely used
therapeutics for breast cancer are the agents that target ERs and HER2, such as TAM and
trastuzumab [232]. Another class of therapeutics agents developed is associated with FGFR
inhibitors, which are responsible for reverse endocrine resistance in BC. That mechanism is
based on the fact that FGFR inhibitors can restrain or reverse acquired multidrug resistance
(MDR) by directly blocking the efflux of ATP-binding cassette (ABC) transporter proteins,
and they play a pivotal role in overcoming chemotherapy resistance [233]. At present, FGFR
inhibitor AZD4547 is studied in combination with AIs such as letrozole or anastrozole in
patients with cancer progression [234].

The analysis of the targeting of the PI3K/Akt/mTOR pathway shows that the com-
bined targeting of the ERα and estrogen XPO1 affects metabolic pathways, inhibits Akt
activation, and causes autophagy, ultimately reversing TAM resistance [235]. Selinexor
(SEL), an XPO1 antagonist, has been used in many clinical trials to overcome hormonal re-
sistance [236,237]. Transcriptomic analysis showed that 4-hydroxy tamoxifen (4-OHT), SEL
alone or in combination, induced different gene expression profiles related to Akt signaling
and metabolism [235]. The same group of researchers reported the effective combination of
TAM and SEL suppressing progression by restraining the growth of metastatic ER-positive
tumors in vivo [238]. The GAS5 lncRNA is downregulated in BC. The combination of GAS5
restoration and HER2 inhibition has been shown to have a synergistic effect in inhibiting BC
cell proliferation and migration. Also, in trastuzumab-resistant BC cells, lapatinib increased
GAS5 by inhibiting the mTOR pathway [239]. miR-221 and miR-222 have also been shown
to target the ERα pathway by suppressing the expression of the tumor suppressor gene,
PTEN. The inhibition of miR-221 and miR-222 has been suggested as a therapeutic strat-
egy [240]. Beyond these, targeting other miRNAs such as miR-17-5p [241], miR-27a [242],
and miR-206 [243] might be a novel therapeutic strategy in BC.

The CDK4/6-targeted inhibitor treatment of advanced hormone-resistant and metastatic
ER+ breast cancer has shown significant clinical benefit when combined with aromatase
inhibitors (AIs) or selective estrogen receptor degraders (SERDs) [244]. The clinical success
of CDK4/6 inhibitors led to their approval by the FDA. Palbociclib (Ibrance), ribociclib
(Kisqali), and abemaciclib (Verzenio), in combination with letrozole (AI) or fulvestrant
(SERDs), have been used as effective initial or subsequent therapies [244,245].

In comparison to AI therapy, fulvestrant (SERD) treatment does not select ESR1 mu-
tations conferring the ligand-independent and constitutive activation of ERα [246]. The
mutated ESR1 is resistant to estrogen degradation in contrast to the wild-type ESR1 and is
definitely less susceptible to tamoxifen or fulvestrant. To make treatment more efficient,
it is necessary to develop a new generation SERM or SERD for breast cancer with the
ESR1 mutation or even new strategies that are successful in targeting the mutated ER.
The pursuit of this has led to the development and characterization of the second and
third generation hybrids of SERD, SERM, and SERDs-SERMs, which are currently in phase
I/II clinical trials [247,248]. Notably, a novel first, orally bioavailable SERD, elacestrant
(RAD1901) [249,250], has undergone a phase III clinical trial [251]. This phase III random-
ized clinical study called EMERALD compared elacestrant with the standard currently used
monotherapy with the fulvestrant or aromatase inhibitor in ER-positive/HER-negative
metastatic breast cancer. Elacestrant triggered progression-free survival in all patients
and in patients who have developed mutations in ESR1 [251]. Moreover, Patel and col-
leagues [252] have shown that elacestrant exhibits anti-cancer activity in the cells resistant to
all CDK4 and 6 inhibitors approved to date, namely palbociclib, abemaciclib, and ribociclib
in both wild-type and mutated ESR1. In January 2023, elacestrant (as ORSERDU™, Stem-
line Therapeutics, Menarini Group, Florence, Italy) received FDA approval for the treatment
of adult patients ER-positive/HER2-negative ESR1-mutated advanced or metastatic BC
(developments summarized recently by [253]). Future research prospects may focus on
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testing the status of the ESR1 mutations as a therapeutic target and can be used as therapies
associated with clinical benefits for cancer patients [254].

Studying another agent from the epigenetic modifier group, research showed that in
most BC, the ESR1 is methylated on its CpG island, which results in gene repression. By
changing the epigenetic landscape using HDAC inhibitors, the ERS1 gene is derepressed,
restoring the sensitivity of the ER to TNBC tumors [255]. Moreover, HDAC inhibitors
did not cause any changes alone, while had synergistic effect in combination with, e.g.,
cisplatin [256]. The same synergistic effects were observed for HDACs use in combination
with other treatments, such as aromatase inhibitors or radiation [257–260]. In addition,
synthetic lethality, where a single target has no effect but two targets result in cell death,
occurs in TNBC cells with simultaneous treatment when the HDAC inhibitors are com-
bined with the PARP or cisplatin inhibitors [261,262]. One of the HDAC inhibitors being
studied in clinical trials for the treatment of TNBC is an entinostat. It has been shown that
entinostat induces ERα expression and sensitizes TNBC cells to hormonal therapies such
as letrozole [263]. In a phase II clinical trial, entinostat, combined with exemestane, an aro-
matase inhibitor, revealed promising results in postmenopausal women with ER-positive,
HER2-negative metastatic breast cancer [258,264].

8. The Summary of the Latest Developments

It is estimated that by 2040, there will be more than 3 million BC cases per year, with
more than 1 million deaths [4]. Breast tumors are heterogeneous in nature but most express
estrogen receptors. Since ER regulates the transcription of many genes via its genomic
and nongenomic actions, it became an important therapeutic target. The assessment
of ER expression lays the foundations for the diagnostic workflow of BC patients and
serves as a biomarker for the prediction of endocrine therapy [6,265]. Over the past few
years, considerable progress has been achieved in the development of drugs targeting
BC. Endocrine therapy is a current treatment strategy for both early and advanced stages
of ER-positive BC. This therapy targets the ER pathway at different levels and includes
different compounds. These are aromatase inhibitors (reduces circulating estrogen, thus
acts on the ER stimulus), but also antiestrogens classified as SERMs or SERDs (directly
inhibits the ER with the first orally administered SERD elacestrant being approved for BC
treatment) [251,253]. However, dual compounds, the so-called SERM/SERD hybrids, have
recently gained much attention [222,223]. Depending on the cancer type and the disease
advancement, either monotherapy (one compound) or combination therapy (more than one
compound) is used for the treatment. The mutations in the ER-coding gene, the cross-talk
between various receptors, and the ER post-translational modifications make the treatment
more challenging, but also opens the door for other promising compound developments,
especially to overcome the problem of acquired resistance of the ER-positive BC [266].

9. Conclusions

Estrogen receptors orchestrate many cellular functions. Abnormal ER signaling may
result in various cancers, including breast cancer, a second cause of female cancer-related
death. Cancer is a multifactorial, complex disease; however, the majority of breast tumors
express ER. The critical function of ERs in the growth and survival of hormone-dependent
cancer cells makes them important targets for both diagnostic and therapeutic purposes.
ER-signaling involves either genomic nuclear mechanisms or non-genomic intracellular
cascades for transcriptional control. The mechanisms of action of ER are even more ver-
satile with its coregulators (coactivators and corepressors), with many protein–protein
interactions and post-translational modifications involved. The mutations of ER-encoding
genes appear already at the early stages of BC and are more prevalent once the disease
progresses. Given the complexity of ER signaling in breast cancer, there is a need to unravel
the molecular and cellular mechanisms that modulate ER signaling in BC. Thus, novel
combination treatment strategies and new molecules that also target the post-translational
mechanisms should be investigated.
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