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Simple Summary: According to cancer statistics published in 2020, there were 19.3 million new
cancer cases and almost 10.0 million cancer deaths worldwide. This suggests that cancer is one of
the main health threats worldwide. Survival analysis, combining the exponential distribution with
regression analysis, can predict the time when a specific event will occur. This nationwide follow-up
study aims to present survival deep learning models to assist in the early identification of cancer
incidence. Our models consistently achieved high performance in 10 types of cancer. By applying the
techniques outlined in this paper, clinical biomarkers, demographic, and anthropometric data can be
utilized to predict the risk of cancer occurrence.

Abstract: Background: Cancer is one of the main global health threats. Early personalized prediction
of cancer incidence is crucial for the population at risk. This study introduces a novel cancer prediction
model based on modern recurrent survival deep learning algorithms. Methods: The study includes
160,407 participants from the blood-based cohort of the Korea Cancer Prevention Research-II Biobank,
which has been ongoing since 2004. Data linkages were designed to ensure anonymity, and data
collection was carried out through nationwide medical examinations. Predictive performance on
ten cancer sites, evaluated using the concordance index (c-index), was compared among nDeep and
its multitask variation, Cox proportional hazard (PH) regression, DeepSurv, and DeepHit. Results:
Our models consistently achieved a c-index of over 0.8 for all ten cancers, with a peak of 0.8922
for lung cancer. They outperformed Cox PH regression and other survival deep neural networks.
Conclusion: This study presents a survival deep learning model that demonstrates the highest
predictive performance on censored health dataset, to the best of our knowledge. In the future, we
plan to investigate the causal relationship between explanatory variables and cancer to reduce cancer
incidence and mortality.

Keywords: survival analysis; recurrent neural network; LSTM; Cox PH; biomarkers; cancer; cohort;
follow-up

1. Introduction

Cancer stands as a leading cause of premature death in upper-middle- and high-
income countries [1]. Specifically, female breast, lung, colorectal, prostate, stomach, and
liver cancers account for the highest incidence and mortality rates [1,2]. Early personalized
prediction of cancer incidence holds paramount importance for the population at risk.
Substantial evidence regarding the risk factors of noncommunicable diseases, including
cancer, has primarily been drawn from large-scale follow-up studies, with many of them
employing survival analysis.

Survival analysis is centered on determining the probability of surpassing a certain
period without encountering the event, as well as relevant outcomes. It has demonstrated
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its robustness in comparing risks among subgroups within the targeted population and
has found applications in diverse fields, spanning from economics to healthcare [3]. Conse-
quently, survival analysis has been utilized in the quest to identify factors associated with
cancer and predict cancer survival [4].

The Cox proportional hazard (Cox PH) regression model [5] has emerged as a pop-
ular tool within the realm of survival analysis due to its interpretability and predictive
ability. However, it rests upon strong assumptions regarding covariates. To mitigate
these limitations, numerous models have been developed based on the Cox PH model,
incorporating artificial intelligence techniques [4]. One such machine learning approach,
the random survival forest, has gained prominence. Certain studies [6–8] were among
the first to introduce a single hidden layer network for survival analysis. Building upon
similar concepts, Katzman [9] further developed a deep survival network for personalized
treatment recommendations. The predictive efficacy of survival networks was markedly
enhanced by the application of multitask learning and residual connections, as proposed in
the model known as DeepHit [10].

Recent research has suggested that survival neural networks outperform their machine
learning and traditional statistical counterparts [10,11]. Leveraging data from a large-scale
blood-based cohort, we conducted a comparative assessment of the performance of various
survival deep networks, using Cox PH as the benchmark, to predict ten cancers that rank
among the most common globally [2,12]. Furthermore, we introduced nDeep—a model
that, to the best of our knowledge, achieves the highest possible performance on real
censored health datasets. In an attempt to interpret the effects of those biomarkers in each
model, feature importance was also calculated.

2. Materials and Methods
2.1. Subjects

A total of 160,407 observations (95,229 men and 62,169 women) were collected from a
blood-based cohort within The Korean Cancer Prevention Study-II Biobank, an ongoing
study initiated in 2004 through nationwide medical examinations [13]. Participants under-
went annual follow-ups utilizing personal identification numbers, enabling linkage with
the National Cancer Center registry, hospital admission records, and death registers. The
integrity of all linkages was guaranteed with anonymity safeguards. During routine health
check-ups, individuals diagnosed with cancer or other severe conditions (such as organ
failure, diabetes, malignant hypertension), as well as those who died, were subsequently
excluded from the study.

2.2. Characteristics, Biomarkers, and Events

Anthropometry (height and weight) was recorded by InBody (Biospace, Cheonan-si,
Korea) when participants wore light clothes. For waist circumference, the thinnest area
between the iliac crest and the inferior part of the lowest rib was measured in an upright
position. Forced vital capacity and forced expiratory volume in 1 second were recorded by
an electronic spirometer in standing position, while the better results out of two records
were taken.

Seated blood pressure was then taken by a registered nurse or technician using a
sphygmomanometer after resting 5 min. Fasting blood glucose, total cholesterol, and other
biomarkers were measured in the laboratory of the hospital by a COBAS INTEGRA 800
(Roche, Berlin, Germany) and a 7600 Analyzer (Hitachi, Tokyo, Japan). More details can be
found at [13]. For our final analysis, these features were included as covariates:

• Demographic: AGE—age, years; SEX—sex, 1 as male and 2 as female.
• Metabolic characteristics: WT—weight, kilograms; HT—height, centimeters; and BMI—

body mass index = weight/height2 (kg/m2); WC—waist circumference, centimeters;
SBP—systolic blood pressure, mmHg; DBP—diastolic blood pressure, mmHg; CHO
total cholesterol, mg/dL; HDL—high-density cholesterol, mg/dL; TG—triglycerides,
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mg/dL; LDL—low-density cholesterol, mg/dL; GLU—glucose, mg/dL; PP—pulse
pressure = systolic blood pressure − diastolic blood pressure, mmHg.

• Liver function: ALB—albumin, g/dL; GLOBULIN—globulin, g/dL; AGR—albumin
globulin rate; BIL—total bilirubin, mg/dL; DBIL—direct bilirubin, mg/dL; ALP—
alkaline phosphatase, units/L; AST—aspartate aminotransferase, units/L; ALT—
alanine aminotransferase, units/L; GGTP—gamma-glutamyl transpeptidase, units/L.

• Kidney function: CREAT—creatinine, mg/dL; BUN—blood urea nitrogen, mg/dL;
SG—specific gravity; PH—urine pH; CCR—creatinine clearance rate = (140 − Age) ×
Weight/(Creatinine × 72) for Men OR ((140 − Age) ×Weight/(Creatinine × 72)) ×
0.85 for Women.

• Pancreas function: AMYLASE—amylase, units/L.
• Pulmonary function: FVC—forced lung capacity, measured in liters; FEV1—forced

expiratory volume, measured in liters.

The study sample is representational regarding age. The number of men accounts for
60% of the total sample (Table 1).

Table 1. Basic information on demography, anthropometry, and clinical characteristics of study
population.

Mean ± SD Min Max Male
Mean ± SD

Female
Mean ± SD

AGE 41.62 ± 10.53 9.00 88.00 42.04 ± 9.95 40.98 ± 11.31
HT 166.80 ± 8.40 130.00 198.00 171.75 ± 5.95 159.31 ± 5.52
WT 65.79 ± 12.00 32.00 137.00 72.12 ± 9.93 56.23 ± 7.78
WC 80.58 ± 9.45 41.00 127.00 84.80 ± 7.65 74.21 ± 8.26
BMI 23.53 ± 3.17 12.91 42.36 24.42 ± 2.88 22.18 ± 3.10
SBP 117.65 ± 14.11 61.00 19 9.00 121.23 ± 12.87 112.25 ± 14.19
DBP 74.12 ± 10.04 30.00 134.00 76.55 ± 9.56 70.45 ± 9.63
CHO 188.83 ± 33.02 3.68 382.00 192.04 ± 32.86 183.99 ± 32.68
HDL 52.27 ± 10.70 2.00 118.00 48.80 ± 9.01 57.50 ± 10.92
TG 132.82 ± 83.35 30.00 690.00 155.29 ± 90.44 98.96 ± 56.51

LDL 112.13 ± 31.03 1.00 299.60 115.23 ± 31.25 107.47 ± 30.11
FVC 26.93 ± 30.82 0.04 158.00 25.33 ± 30.39 29.16 ± 31.33
FEV1 28.64 ± 33.96 0.42 178.00 26.58 ± 33.25 31.56 ± 34.81
ALB 4.53 ± 0.25 2.20 5.90 4.58 ± 0.24 4.45 ± 0.24

GLOBULIN 2.76 ± 0.17 1.80 3.80 2.74 ± 0.17 2.78 ± 0.16
AGR 1.64 ± 0.13 0.85 2.39 1.67 ± 0.13 1.59 ± 0.11
BIL 0.87 ± 0.33 0.10 2.93 0.94 ± 0.34 0.75 ± 0.28

DBIL 0.33 ± 0.12 0.04 1.07 0.36 ± 0.12 0.28 ± 0.10
ALP 133.52 ± 50.56 10.00 445.00 142.70 ± 50.77 119.69 ± 46.93
AST 22.69 ± 8.90 1.00 135.00 24.65 ± 9.55 19.75 ± 6.85
ALT 24.43 ± 17.23 1.00 180.00 29.46 ± 18.95 16.87 ± 10.68

GGTP 34.23 ± 32.45 1.90 390.00 44.58 ± 36.75 18.67 ± 14.83
GLU 90.56 ± 15.19 10.00 208.00 92.37 ± 16.18 87.83 ± 13.07

AMYLASE 70.98 ± 19.00 3.00 195.00 69.63 ± 18.65 73.04 ± 19.35
CREAT 0.98 ± 0.18 0.38 2.40 1.09 ± 0.14 0.83 ± 0.12

BUN 13.74 ± 3.25 0.45 59.00 14.50 ± 3.13 12.57 ± 3.07
SG 1.02 ± 0.01 1.00 1.05 1.02 ± 0.01 1.02 ± 0.01
PH 5.68 ± 0.76 0.50 9.00 5.66 ± 0.75 5.72 ± 0.77
PP 43.54 ± 9.64 0.00 101.00 44.69 ± 9.50 41.80 ± 9.59

CCR 92.92 ± 20.02 20.14 213.37 91.66 ± 19.86 94.85 ± 20.12

Events of interest are ten cancer sites that are among the cancers with top incidence
and top mortality rates: thyroid, gastric, breast, colorectal, lung, prostate, liver, kidney,
uterine-cervical, and lymphoma cancers.

2.3. Project Pipeline

For the raw dataset, observations that are left-censored or contain values that are
6SD away from the mean were excluded (3.3% of the sample). Features with a missing
rate of less than 25% were retained and imputed. The time variable was defined by
subtracting the year of study enrolment from the year of getting diagnosed with any of
the above cancers (event case) or finishing/quitting the study before any event (censored
case). The processed data were then fed into each of the five models so that cancer risk
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and feature importance could be calculated (Figure 1). Our analysis process are released
at https://github.com/ngocdung03/nDeep.
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2.4. Model Description

Four neural networks and one Cox PH model were included for predictive perfor-
mance comparison.

2.4.1. Cox PH Regression

Developed in 1972, Cox PH is a semi-parametric regression model for determining the
association between predictors (covariates) and the rate of an event happening at a specific
time point (hazard rate).

h(t) = h0(t)exp(β × xi)

where,

• t is the survival time
• h(t) is the hazard function
• xi is the vector of covariates
• h0(t) is the baseline hazard when all the xi are equal to zero.
• β is the vector of coefficients of xi

By maximizing this partial likelihood, the vector of β is estimated:

Lc(β) = ∏
i:Ei=1

exp(β× xi)

∑j∈R(Ti)
exp
(

β× xj
)

where,

• Ei, Ti, and xi are event indicator, survival time, and baseline covariates of the ith
observation.

• The likelihood is defined in non-censored observations (Ei = 1).
• R(t) = {i: Ti >= t} is the set of participants at risk of event at time t.

2.4.2. DeepSurv

DeepSurv is a deep neural network (DNN) that outputs the estimate of hazard function
ĥθ(x) with θ as the weights of the network [9]. Unlike the model of [8], it applied modern

https://github.com/ngocdung03/nDeep
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techniques for training DNN, including weight decay regularization, batch normalization,
Rectified Linear Units (ReLU), dropout, and gradient descent optimization.

2.4.3. DeepHit

DeepHit is a multitask neural network that is formed by shared layer(s) and K task-
specific sub-networks (K is the number of tasks). There is a residual connection from input
to each task-specific sub-network. Deep residual learning [14] is a technique for overcoming
the accuracy degradation when increasing the depth of the network. In addition, with
multitask learning, DeepHit can alleviate the competing risk issue, which is common in
survival analysis and studies of cancer.

In this study, we performed two multitask learning DeepHit models on these groups
of tasks: Group 1—thyroid, gastric, breast, colorectal, and lung cancers; and Group 2—
prostate, liver, kidney, uterus-cervical, and lymphoma cancers.

2.4.4. nDeep

This model contains three layers of long short-term memory (LSTM) and one fully
connected layer that outputs predicted hazard. LSTM is a type of recurrent network (RNN)
that has feedback connections that can address vanishing or exploding gradient issues of
RNN [15]. Its architecture transforms survival data into sequences of n time steps, which
can then be processed and analyzed. A basic LSTM unit includes a cell, an input gate, an
output gate, and a forget gate (Figure 2). The equations for a forward pass of an LSTM cell
are as follows:

ft = σg

(
W f xt + U f ht−1 + b f

)
it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)
∼
ct = σc(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it �
∼
ct

ht = ot � σh(ct)

where,

• The initial values c0 = 0 and h0 = 0
• xt ∈ Rd: vector of input
• ft ∈ (0, 1)h: vector of forget gate’s activation
• it ∈ (0, 1)h: vector of input/update gate’s activation
• ot ∈ (0, 1)h: vector of output gate’s activation
• ht ∈ (−1, 1)h: vector of hidden state, also output

• ∼
ct ∈ (−1, 1)h: vector of cell input activation

• ct ∈ Rh: vector of cell state
• W ∈ Rhxd, U ∈ Rhxd and b ∈ Rh: vectors of weight matrices and bias
• �: element-wise product (Hadamard product)

2.4.5. Multi-nDeep

Being inspired by the combination of multitask learning and residual connection,
multi-nDeep has a shared block of fully connected layers and K task-specific blocks of
nDeep network (Figure 3). The residual is connected from the input to each task-specific
block. Models of multitask-nDeep were trained on these groups of tasks: Group 1—thyroid
and gastric; Group 2—breast, colorectal, and lung; Group 3—prostate and liver; and Group
4—kidney, uterus-cervical, and lymphoma cancers.
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2.4.6. Hyperparameters of DNN Models

Hyperparameters of each DNN model are shown in Supplementary Table S1. Their
optimization progress is depicted in Supplementary Figure S1.

2.5. Model Learning

Four networks were involved in two training loops. The outer loop started with
the dataset being randomly divided into a train set and a test set (ratio 4:1). In the inner
loop, the valid set was further sampled on the train set with the probability of 0.2 so
that hyperparameters were optimized by an automatic framework called Optuna with
60 iterations. This framework employs a Tree-structured Parzen Estimator (TPE), a state-
of-the-art algorithm based on Bayesian optimization, which is faster and more efficient
than grid search (Supplementary Figure S1). The tuned hyperparameters were used for
training parameters of each neural network. The inner loop returned a learned model,
which was run on the test set 30 times to output predicted cancer hazard risks and averaged
c-index (Figure 4).
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The loss function used for each DNN is calculated by the sum of L1 + L2 where: L1 is
the negative log partial likelihood:

L1 = −
N

∑
i=1

Ii

ĥθ(xi)− log ∑
j∈R(ti)

eĥθ(xj)


where,

• N: number of subjects
• I: indicator function (1: death, 0: otherwise)
• θ: weights of the network
• ĥθ : estimated hazard function
• xi, xj: vectors of covariates
• R(ti): set of subjects at risk at time ti

L2 is the ranking loss function:

L2 = ∑i 6=j Ii,j.η
(

F̂
(

s(i)
∣∣∣x(i)), F̂

(
s(j)
∣∣∣x(j)

)
where,

• Ii,j: indicator function of acceptable pairs (i,j) [16]

• η(x, y) = exp
(
−(x−y)

σ

)
: convex loss function

• F̂: estimated cumulative incidence function
• s: time
• x: covariate

2.6. Performance Metric

Model accuracy was evaluated by Harrell’s concordance index (c-index) [16].
A c-index of 1 represents perfect accuracy. Contrary, a c-index which is 0.5 or less suggests
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the model performs no better than a naïve model. Five-fold cross-validation was performed
30 times for each task, with the test set being sampled with replacement. The final c-index
was achieved by averaging the c-indices of those 30 trials.

2.7. Feature Importance

For each model, permutation feature importance (PFI) was calculated by the module
permutation importance of sklearn version 1.0.2—a Python library. PFI scores were eval-
uated based on the c-index. The values of PFI are presented in figures and grouped by a
separation line for interpretation. The groups of features represent demographic, metabolic,
liver function, pulmonary function, kidney function, and pancreas function.

2.8. Ethical Considerations

Informed consent of participants was received under the support of the Metabolic Syn-
drome Research Program of the Seoul Metropolitan Government in December 2005. This
study was approved by the Yonsei University Institutional Review Board (IRB Approval
No. 4-2011-0277).

The current study is approved by the Korea Institute of Bioethics Policy Electromag-
netic Concern Committee to be exempt from examination. All methods were used based
on ethical regulations and guidelines.

3. Results

Table 2 indicates the number of cases on each cancer site and the corresponding rate
over the total number of samples. Cases/total sample rates were small, suggesting an
imbalance in data.

Table 2. Number and rate of cancer cases on each site.

Cancer Site Number of Cases Cases/Total Cancer Cases Cases/Total Sample

Thyroid 3385 0.33120 0.02189
Gastric 1499 0.15109 0.00969
Breast 1169 0.11783 0.00756

Colorectum 1031 0.10392 0.00667
Lung 757 0.07630 0.00489

Prostate 697 0.07026 0.00451
Liver 439 0.04425 0.00284

Kidney 352 0.03548 0.00228
Uterus-cervical 306 0.03084 0.00198

Lymphoma 286 0.02883 0.00185

3.1. Comparing c-Index of Each Model

Figure 5 shows the c-index of five models on different tasks of predicting cancer. Deep-
Hit and Cox PH regression models attained the equivalent pattern of c-index. Although
c-indices of DeepHit on many cancers are slightly lower as compared to Cox PH, DeepHit,
a multitasking model, reached c-index as high as 0.8962 and 0.8822 for prostate and liver
cancers. DeepSurv did not indicate any predictive power with the c-index of about 0.5 for
every model. On the other hand, nDeep and multi-nDeep achieved the c-indices, which are
consistently more than 0.8. Although there was a slight improvement in multi-nDeep as
compared to nDeep, the effects were not remarkable. In Supplementary Table S2, the best
c-index of each cancer is presented in bold. For reference purpose, c-indices of variants of
Cox PH were included in Table S3.
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3.2. Feature Importance

For Cox PH, the most important features are demographic ones (Age and Sex), fol-
lowed by liver function (Figure 6A). Age is the most decisive factor in the majority of
Cox PH models, while sex applies to thyroid cancer, breast cancer, colorectal, and uterus-
cervical cancers (particularly, women have a higher risk of these cancers as compared with
men in this study). In addition, direct bilirubin, a liver function metric, was also a crucial
determinant of thyroid cancer. Metabolic characteristics even showed higher importance
than demographic factors for kidney and lymphoma cancers, where waist circumference
and weight were the main predictors. Kidney function characteristics showed moderate
importance for some cancers (creatinine clearance rate for gastric, prostate, and liver can-
cers, and blood urea nitrogen for kidney cancer). Amylase, a pancreas function index, and
creatinine clearance rate were moderately important for liver cancer.

Similar patterns were observed for DeepHit on gastric, lung, prostate, liver, kidney, and
lymphoma cancers, although there were more contributions from factors across categories
other than the dominant factor (Figure 6C). For kidney and lymphoma cancer, metabolic
characteristics were still the most important but attributed to other metrics (weight and
low-density lipoprotein, and triglyceride, respectively). Regarding colorectal cancer, age
is the main determinant rather than sex. PFIs, according to thyroid and breast cancers,
are relatively equitably distributed across categories. Uterus-cervical cancer is mostly
attributed to height.

The figure of feature importance for DeepSurv (Figure 6B) was almost uninformative,
with rather random distributions around zero. In Figure 6D,E, with PFI score <0.001, the
effect of each feature on nDeep models was minor. Generally, the patterns of multitask-
nDeep were similar to nDeep.
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4. Discussion

Only two models, nDeep and multitask nDeep, outperformed the traditional Cox PH
regression model. On the other hand, DeepSurv exhibited no improvement over a naïve
model. This is inconsistent with the results presented in reference [9], where the c-index
of DeepSurv can be more than 0.7. Similarly, DeepHit showed comparable c-indices with
Cox PH in our study, while its performance was significantly better in generated data [10].
That signifies the disparities in nature between the simulated and real censored data. One
of the persistent challenges in follow-up health data is the low rate of uncensored cases,
especially when the event is a rare disease such as cancer, which poses significant hurdles
for the accuracy of survival analysis [17]. Furthermore, in our study, DeepSurv is the only
neural network without residual connections, which could explain its underperformance.
In contrast, other than the well-known Cox PH, nDeep emerges as the best model in terms
of both accuracy and cost-effectiveness in the current study. It seems that the absence of a
particular feature did not hinder the performance of nDeep and its variants.

There are two main factors that affect nDeep performance. Firstly, drawing inspiration
from natural language processing, we treated the observed data for a participant and
a visit as a single sequence with n time steps and one subsequence with m time steps
(where m < n), respectively. Secondly, our model architectures incorporated the benefits
of residual connections and multiple gates in an LSTM memory cell to effectively capture
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the dynamic nature of covariates. Moreover, finding the optimal models was eased by
applying techniques including TPE algorithm.

The connection between age and cancer is well-established [18]. In fact, our analysis
based on Cox PH regression models indicates that age has an impact on nearly all types of
cancers. Aging decreases the effectiveness of autophagy, a process responsible for damaged
organelles removal, leading to uncontrollable cellular homeostasis and cancer genesis [19].
Some cancers, such as breast and uterus-cervical cancers, are strongly affected by sex, which
is expected as these cancers predominantly or exclusively affect females [2,12]. Additionally,
our study reveals a higher prevalence of colorectal cancer in women compared to men. This
is possibly due to both genetic and environmental factors, including dietary habits [20].
Similarly, the female predominance in thyroid cancer cases can be attributed to factors such
as sex hormones, genetics, and the immune system [21–24].

Neural network like DeepHit helps learn the non-linear effects of factors beyond age
and sex in cancer risk assessment. It was observed that metabolic metrics, liver function,
pulmonary function, and kidney function indices serve as predictors for certain cancer
types, including thyroid, gastric, breast, colorectal, kidney, and lymphoma cancers.

Obesity-related metabolic disorders have long been recognized as risk factors for
thyroid cancer [25]. Specifically, WC is a strong indicator of the association between over-
weight/obesity and thyroid cancer [26]. Obesity also highly promotes the progression of
various other cancers through mechanisms involving hormones, insulin and insulin-like
growth factors, sex steroids, and obese inflammation [27,28]. Increased inflammation in
adipose tissue, a consequence of obesity, results in changes in adipokine secretion patterns
and the release of pro-inflammatory cytokines, leading to insulin resistance rises in tissues
with active metabolism [29]. Overexpression of insulin-like growth factors may have neo-
plastic effects by promoting cell cycle progression and inhibiting apoptosis, either directly
or indirectly, through interaction with established oncogenic systems such as steroid hor-
mones and integrins [30]. Moreover, excess peripheral adipose tissue contributes to steroid
aromatization, leading to elevated estrogen levels. Androgens and androgenic antecedents
are changed over to estradiol by the chemical aromatase. Within the setting of weight
and abundance of fat tissue, aromatase expanded action leads to higher transformation
rates coming about in higher levels of estrogens [31]. Estrogen advances tumorigenesis in
endometrial tissue by incitement of cell multiplication and hindrance of apoptosis [32].

A recent study demonstrated a link between metabolic dysfunction-associated fatty
liver and thyroid cancer, even after adjusting for WC [33]. The relationship between thyroid
cancer, a hormone-sensitive cancer, and metabolic dysfunction was found to be modified by
menopausal status in females. Higher levels of liver function markers were pointed out to
be associated with a reduced risk of colorectal cancer [34]. In the ileum, bilirubin undergoes
deconjugation through bacterial and mucosal processes, potentially possessing antioxidant
and anti-inflammatory properties [35]. Considering that inflammation and oxidative stress
are pivotal contributors to cancer development, this association is noteworthy [36]. The link
between pulmonary function and cancer is primarily limited to lung cancer [37]. Likewise,
kidney function has been found to be associated with kidney cancer mainly.

This study represents the first attempt to compare different neural network models and
traditional models in survival analysis using clinical biomarkers on a large-scale cohort. Our
findings align with prior evidence indicating that deep neural networks outperform other
methods in healthcare survival analysis. Furthermore, we have clarified the role of different
factors in predicting cancer incidence. However, according to the PFI heatmaps, while Cox
PH regression heavily relies on information regarding sex and age, cancers appear to be
more evenly affected by all the features in our models. Therefore, in the future, we should
investigate advanced models capable of distinguishing key factors clearly and incorporate
additional biomarkers for more accurate cancer prediction. Additionally, exploring the
causal relationship between key factors and specific cancers is crucial, as it can help identify
causal factors and facilitate cancer prevention efforts.
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5. Conclusions

We have introduced nDeep and its multitasking version for predicting cancer risks
based on clinical biomarkers. These algorithms transform health follow-up data into
sequences that can be fed into recurrent neural networks, enabling high predictive perfor-
mance. Our model can assist health care providers in determining people at risk of ten
different cancers.
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