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Simple Summary: In the dynamic realm of cancer research, the Signaling Lymphocyte Activation
Molecule (SLAM) family has emerged as a significant factor in modulating immune responses within
tumors. This review delves into the roles of specific SLAM members, such as SLAMF8 and SLAMF9,
and their impact on tumor progression in cancers like colorectal cancer and melanoma. Recent
immunotherapy advances show promise, but challenges like resistance persist. Insights suggest that
the SLAM family might be a key to overcoming this resistance. Advances in technology, including
single-cell RNA sequencing, help to demystify tumor interactions, and SLAM-focused treatments
could potentially revolutionize cancer care. This article underscores the importance of patient safety
and calls for thorough research to bring the potential of SLAM in cancer treatment to fruition.

Abstract: In the field of oncology, the Signaling Lymphocyte Activation Molecule (SLAM) family is
emerging as pivotal in modulating immune responses within tumor environments. The SLAM family
comprises nine receptors, mainly found on immune cell surfaces. These receptors play complex
roles in the interaction between cancer and the host immune system. Research suggests SLAM’s
role in both enhancing and dampening tumor-immune responses, influencing the progression and
treatment outcomes of various cancers. As immunotherapy advances, resistance remains an issue.
The nuanced roles of the SLAM family might provide answers. With the rise in technologies like
single-cell RNA sequencing and advanced imaging, there is potential for precise SLAM-targeted
treatments. This review stresses patient safety, the importance of thorough clinical trials, and the
potential of SLAM-focused therapies to transform cancer care. In summary, SLAM’s role in oncology
signals a new direction for more tailored and adaptable cancer treatments.

Keywords: SLAM; SLAMF; cancer; immune modulation; CLL; AML; MM; HNSCC; HCC;
CRC; melanoma

1. Introduction
1.1. Introduction to the SLAM Family

Cellular interactions, instrumental in guiding the immune response, chiefly influence
the differentiation and proliferation of immune cells. Such interactions encompass a di-
verse set of cells, leading to what is termed heterotypic engagements [1]. Central to these
interactions is the signaling lymphocytic activation molecule (SLAM) receptor family. The
SLAM family includes nine transmembrane receptors labeled SLAMF1 through SLAMF9.
Except for SLAMF2 and SLAMF4, which interact reciprocally, these receptors predomi-
nantly adorn immune cell surfaces [2]. SLAM1 (CD150) marks activated T cells, B cells,
and dendritic cells and is crucial for T-B cell interactions [3]. SLAM2 (CD48) is common
among all leukocytes and interfaces with 2B4 on NK cells [4]. SLAM3 (Ly9) is expressed in
T and B cells and plays a role in autoimmunity regulation [5]. SLAM4 (CD84) is associated
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with various hematopoietic cells and platelet aggregation [6], while SLAM5 (CD244, 2B4) is
found in NK cells, some CD8+ T cells, and myeloid cells, hinting at its role in activating NK
cells [7]. SLAM6 (NTB-A, Ly108) not only triggers NK cells but also modulates autoimmune
responses [8]. Additionally, SLAM7 (CRACC, CD319) is predominantly present in plasma
cells with ties to conditions like multiple myeloma [9]. Interestingly, SLAM7 seems to
exhibit both suppressive and activating roles in the context of cancer [10].

SLAM8 seems vital in modulating inflammatory responses [11], whereas recent studies
indicate SLAMF9’s expression in specific cancerous cell lines, suggesting a potential role in
melanoma cytokine production and macrophage dynamics [12].

1.2. SLAM’s Role in Host Defenses and Immune Responses

The immune system heavily relies on a variety of receptor–ligand pairs to facili-
tate these cellular interactions. Some of these involve receptors that recognize multiple
ligands, representing the phenomenon of heterotypic receptor–ligand engagements. A
significant example of this is the T cell receptor (TCR) engaging with antigens presented
by the major histocompatibility complex (MHC) molecule [3]. Essential co-stimulatory
molecules, like CD28-B7, CTLA-4-B7, and CD40-CD40L, along with their ligands, further
enhance this intricate process [13]. Working alongside their intracellular counterparts,
especially the SLAM-associated protein (SAP)-related adaptors, SLAM receptors play a
pivotal role in modulating immune responses [3]. Their influence is widespread across
various immune cells, substantially shaping the outcomes of immune responses in different
health and disease contexts. For instance, SLAM6 has been identified as a marker for
progenitor exhausted CD8+ T cells, differentiating them from terminally exhausted cells.
Through flow cytometry, research confirmed that progenitor exhausted cells, characterized
as SLAM6+Tim-3-, coexpress the transcription factor T cell factor 1(Tcf1) and SLAM6,
with a significant percentage (76%) of these cells expressing Tcf1. These progenitor cells,
when transferred, showed the potential to differentiate into both SLAM6+ and Tim-3+ cells
in the tumor microenvironment (TME). Furthermore, upon acquiring the phenotype of
terminally exhausted cells, these progenitor cells exhibited increased IFN-γ and granzyme
B production, indicating their functional adaptability [14].

The genetic background of patients is of paramount importance in determining the
efficacy of therapeutic interventions. Within this context, the SLAM family plays a cru-
cial role in the innate immune response, particularly concerning NKT cell function and
macrophage responses [15]. The SLAM family’s genetic variability, mainly manifested
through divergent Slam haplotypes, modulates in vivo responses to stimuli like LPS, influ-
encing NKT cell numbers and functionality [15]. Consequently, this impacts macrophage
responses to ligands such as the TLR4 ligand LPS [16].

Two exemplary Slam haplotypes, C57BL/6J and 129X1/SvJ, highlight the diversity
within the SLAM family. They lead to the differential expression of Slamf6 isoforms, where
certain isoforms signal with varying efficiencies [17]. Specifically, the Slam haplotype-2+
found in 129 mice strains is associated with diminished cytokine production, affecting
levels of pivotal cytokines like IFN-g, IL-4, and TNF [18].

However, the diverse nature of SLAM haplotypes extends beyond modulating immune
responses. Specific haplotypes can lead to varied therapeutic outcomes due to their unique
genetic compositions. Notably, certain diseases, such as malaria, have exhibited reduced
drug susceptibility in specific haplotypes, highlighting the potential challenges posed by
genetic variations in the treatment landscape [19].

Given the significance of the SLAM family receptors, this review endeavors to offer
an exhaustive overview of our current understanding of these molecules, elucidating
their signaling pathways and influence on immune regulation. Special attention will
be paid to their roles in T-cell activation, B-cell differentiation, and natural killer cell
cytotoxicity. In addition, we will shed light on the therapeutic implications of SLAM
signaling, emphasizing their potential as pivotal targets in a spectrum of diseases, including
immunodeficiencies and cancer.
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2. SLAM Receptors in Oncology: Dual Roles and Therapeutic Potential

SLAM family receptors, traditionally recognized for their immune-modulation roles,
have garnered attention in oncology for their multifaceted implications. They have been
identified as both potential therapeutic agents and markers for disease prognosis. A
growing body of literature underscores SLAM’s ambivalent nature in cancer therapy,
portraying them simultaneously as friends and foes [20].

Specifically, the presence of SLAM receptors on antigen-presenting B cells and B
lymphoma cells is instrumental for antigen priming and the oversight mechanism of
immunosurveillance by CD8 T cells [21]. One noteworthy SLAM family member, CD244,
holds paramount importance across various diseases, especially cancers. Its function has
been shown to influence disease onset and progression, hinting at its potential utility as a
prognostic marker or therapeutic intervention point [22].

Furthermore, a cutting-edge approach has harnessed oncolytic recombinant measles
viruses, which, when stripped of their SLAM-binding ability, can hone in on cancer cells
expressing particular receptors, notably nectin-4 [23]. Another compelling avenue is the
relationship between SLAM receptors and the trajectory of Multiple Myeloma (MM). Un-
raveling this relationship might be key to innovative immunotherapy strategies, especially
targeting disease relapse [24].

In light of these findings, it becomes evident that SLAM and its associated family
members command a pivotal position in oncology research. Given their roles in immuno-
logical modulation, tumor progression dynamics, and potential as therapeutic targets, they
form a nucleus in current cancer research narratives. In the ensuing sections, we delve
deeper into various cancer types, dissecting specific SLAM receptors’ unique contributions
and roles, be it for prognosis or therapy.

2.1. Chronic Lymphocytic Leukemia (CLL)

Chronic Lymphocytic Leukemia, predominantly observed in European and North
American adult populations, manifests as a marked proliferation of mature B-lymphocytes
within the bone marrow, lymph nodes, and bloodstream [25]. The SLAM receptors have
gained prominence within this milieu due to their pivotal role in modulating the immune
system, especially in the context of CLL.

One such notable receptor, SLAMF1, serves as a suppressor of IL-10 expression and
release on the B-CLL cell surface. There is a documented correlation between SLAMF1’s
presence and improved clinical prognosis in CLL patients [26]. Notably, an increased
expression of both SLAMF1 and SLAMF7 emerges as a positive prognostic sign. Such
patients, without the diminished activity of these receptors, may display heightened NK
cell-induced cytotoxicity, indicating a more robust immunological oversight. On the other
hand, diminished SLAMF1 expression is viewed with apprehension, as it may influence the
timing of treatment initiation, as well as overall patient survival rates. Delving deeper into
the mechanism, there is a hypothesis suggesting that SLAMF1 loss in CLL could perturb
genetic routes that control chemotaxis, autophagy, and responses to treatment [27,28].

A significant interplay to consider in CLL’s pathobiology is between SLAMF1 and the
CD180 receptor pathway. This dynamic interaction selectively inhibits both Akt and MAPK
signaling. Intriguingly, both SLAMF1 and CD180 have been spotlighted as enhancers of
CD20 expression. This might insinuate that B-CLL cells with these receptors are potentially
more susceptible to immunotherapies targeting CD20 [29]. These findings suggest that the
expression patterns of SLAM receptors can serve as potential biomarkers for predicting
disease progression and patient outcomes.

In terms of chemotherapeutic susceptibility, although direct associations between
SLAMF1 levels and drug sensitivity in B-CLL were elusive, there is documentation indicat-
ing that an elevated mRNA expression of the mSLAMF1 isoform correlates with fludarabine
sensitivity and cyclophosphamide resistance. Conversely, an upsurge in nSLAMF1 mRNA
expression could signify resistance to fludarabine [29]. On a hopeful note for combination
treatments, preliminary research posits that synchronizing an anti-SLAMF6 antibody with
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the drug ibrutinib effectively stymies CLL cell growth, paving the way for potential CLL
therapeutic avenues [30].

2.2. Acute Myeloid Leukemia (AML)

AML is a rapidly progressing cancer of hematopoietic progenitor cells, leading to the
unregulated growth of immature myeloid cells. Although survival rates have improved
for chronic myeloid and lymphocytic leukemias, the prognosis for adult AML remains
relatively unchanged over the years [31,32]. Within the AML landscape, SLAMF2 is
recognized as a positive prognostic indicator. However, it is frequently found to be down-
regulated in affected patients. This reduction in SLAMF2 levels might be a tactic employed
by AML to avoid detection and elimination by Natural Killer (NK) cells. Intriguingly,
methylation is one of the regulatory mechanisms affecting SLAMF2 expression. Studies
suggest that hypomethylating agents could boost SLAMF2 levels, potentially intensifying
NK cell-mediated attack against AML cells in vitro [33]. Delving deeper into the molecular
underpinnings of AML, research indicates the role of the fusion gene AML1-ETO. It is
postulated that this gene facilitates the immune evasion of AML cells by specifically
targeting CD48 (SLAMF2) [33]. Corroborating this, another study revealed the ability of
AML cells to dampen the immune response by epigenetically down-regulating CD48 [34].

2.3. Multiple Myeloma (MM)

Multiple myeloma (MM) is a hematologic malignancy marked by excessive growth
of clonal plasma cells within the bone marrow. This rapid proliferation leads to severe
complications such as bone degradation, renal problems, anemia, and hypercalcemia.
Annually, an estimated 34,920 individuals in the U.S. and a staggering 588,161 worldwide
receive an MM diagnosis [35].

SLAMF3 stands out as a consistent marker on MM cells, regardless of the disease’s
phase. Attenuating or eradicating SLAMF3 has a dual advantage: it not only restricts
MM cell growth but also makes them more susceptible to drug-triggered apoptosis. A
surge in serum-soluble SLAMF3 concentrations could act as an indicative marker for
MM’s evolution. Interventions targeting SLAMF3 might offer a way to target the therapy-
resistant cells that persist in the bone marrow after standard treatments [36]. Precisely,
SLAMF3’s engagement in MM cells activates pathways like ERK signaling and certain
transcription factors, supporting cellular survival, growth, movement, differentiation, and
resistance against apoptosis. The utilization of anti-SLAMF3 antibodies could hold back
MM progression [37].

Pioneering studies have crafted SLAMF3-based CAR T cells, showcasing remarkable
efficacy against various MM cells both in lab settings and animal models [38]. Another
member of the same family, SLAMF5, is also prevalent in MM cells. Cells release the
macrophage migration inhibitory factor (MIF), stimulating its expression and leading to
Myeloid-Derived Suppressor Cells (MDSCs) aggregation. This consequently up-regulates
PD-L1 expression in these cells. Targeting SLAMF5 can counteract this MDSCs buildup,
resulting in enhanced T cell activation and a reduced tumor presence [34,39].

Elotuzumab, a specialized humanized IgG1 monoclonal antibody aimed at SLAMF7,
has gained approval for use in MM patients. It is prescribed alongside lenalidomide and
dexamethasone when 1–3 treatment regimens have been ineffective. Alternatively, it is
combined with pomalidomide and dexamethasone after two unsuccessful treatments,
specifically those involving lenalidomide and a protease inhibitor [40]. Elotuzumab func-
tions as an immune activator, disconnecting MM cells from the bone marrow’s stromal cells
and initiating ADCC against the MM cells [9,41]. Significantly, Elotuzumab amplifies the
bond between NK cells and MM cells, driving the NK cells to target and destroy MM cells
more extensively than through the typical ADCC process [42,43] (Figure 1).
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Figure 1. The therapeutic mechanisms involving elotuzumab and Anti-SLAMF3 in multiple myeloma
(MM). Elotuzumab engages with various receptors and pathways to coordinate an immune response.
It targets signaling lymphocytic activation molecule family receptor (SLAMF7) on both natural killer
(NK) cells and MM cells, activating NK cells through EAT-2 and inducing antibody-dependent
cellular cytotoxicity (ADCC) via Fc component interaction with CD16. The antibody also disrupts
the homotypic interactions between SLAMF7 on MM cells and bone marrow stromal cells (BMSCs),
inhibiting adhesion. The signaling cascade initiated by elotuzumab enhances cytotoxicity through the
ERK pathway, polarizes cytolytic granules, and enables macrophage-mediated antibody-dependent
cellular phagocytosis (ADCP). In the context of MM, SLAMF3 molecules also play a role by forming
connections that trigger the ERK signaling pathway and activate distinct transcription factors. The
potential for limiting malignancy growth exists through antibodies targeting SLAMF3. Collectively,
these mechanisms activate innate immune responses against MM cells and enhance the therapeutic
efficacy of both elotuzumab and Anti-SLAMF3.

Toxicities from Elotuzumab include infusion reactions experienced by 10% of patients,
with symptoms such as fever, chills, and hypertension. A significant 81.4% of patients re-
ported infections, including opportunistic and fungal types. Additionally, 9.1% of patients
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developed another invasive malignancy, termed Second Primary Malignancies. Hepatotox-
icity was evident in 2.5% of patients, indicated by elevated liver enzymes. Elotuzumab can
also interfere with the determination of a complete response in certain myeloma patients.
Other commonly reported adverse reactions are fatigue, diarrhea, pyrexia, constipation,
cough, peripheral neuropathy, nasopharyngitis, respiratory infections, decreased appetite,
and pneumonia [40].

A commendable effort by Bristol-Myers Squibb to provide Expanded Access to Elo-
tuzumab for Multiple Myeloma patients in several countries was initiated and intended
for patients who were running out of treatment options [44]. An interesting trial from
Tulane University School of Medicine sought to combine Elotuzumab with Selinexor and
dexamethasone for relapsed refractory multiple myeloma (RRMM) patients resistant to
several treatment lines. However, the study was withdrawn due to a lack of funding
from the collaborating pharmaceutical company [45]. It is worth noting that Elotuzumab
has the potential to induce ADCC even in MM cells that do not respond to treatments
like bortezomib. Its binding mechanism with SLAMF7 directly activates NK cells and,
concurrently, prevents MM cell attachment to bone marrow stromal cells due to inherent
SLAMF7 interactions [46].

2.4. Head and Neck Squamous Cell Carcinoma (HNSCC)

HNSCC, the predominant head and neck tumor histology, has a global incidence near-
ing 890,000 cases each year. It originates from the mucosa of the upper aerodigestive tract,
encompassing areas like the oral cavity, nasopharynx, pharynx, larynx, and lip. Despite
significant medical advancements, HNSCC’s lethality remains a significant concern [47].

One promising therapeutic direction points to SLAM5 (CD244 or 2B4), a signaling
lymphocyte activation molecule family member. This molecule is primarily found in
hematopoietic cells, including Natural Killer (NK) cells, certain CD8+ αβ T cells, Dendritic
Cells (DCs), and Myeloid-Derived Suppressor Cells (MDSCs). Significantly, CD244 interacts
with CD48, found in most hematopoietic cells [48–50].

Within HNSCC patients and their mouse model counterparts, there is a marked
increase in CD244 levels in tumor-infiltrating CD8+ T cells, which also correlates with
heightened PD-1 expression. This elevation is seen not just in these T cells but also in DCs
and MDSCs within many tumor sites. A strong correlation exists between heightened
CD244 and PD-L1 levels, paired with a surge in immune-suppressive agents. Activation
of CD244 in a lab setting was found to suppress the release of crucial pro-inflammatory
cytokines in human DCs, and intriguingly, CD244-deficient mice demonstrated delayed
HNSCC tumor progression [51].

The potential therapeutic benefits of targeting CD244 have been previously described,
especially given its association with releasing immune-suppressive agents in DCs and
Mo-MDSCs. This hints at a potential weakening of the immune response within the tumor
environment by CD244 signaling [42]. Prior research has indicated a connection between
elevated CD244 levels in CD8+ T cells and increased PD-1 expression, suggesting CD244’s
role in the exhaustion of these T cells in chronic viral infections and cancer [52,53].

With respect to the myeloid tumor compartment, it is theorized that CD244 signaling
augments the immune-suppressive characteristics of both DCs and MDSCs. In the case of
DCs, CD244 signaling might reduce the initial activation of T cells and the stimulation of
NK cells [48]. Meanwhile, in MDSCs, the presence of CD244 aligns with the suppression of
specific antigen-driven CD8+ T cells [48].

2.5. Hepatocellular Carcinoma (HCC)

Hepatocellular Carcinoma (HCC) is the most prevalent form of primary liver cancer
and poses a significant global health challenge due to its high mortality and limited
therapeutic options [54]. Ranking third in cancer-related deaths worldwide, the incidence
of HCC is anticipated to rise in the upcoming years [48].
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SLAMF3 is uniquely underexpressed in human liver cells, suggesting its potential role
in HCC development, whereas other SLAMFs have not been implicated. Notably, SLAMF3
expression is evident in 40–65% of healthy human liver cells, but this is markedly reduced
in HCC cell lines [55]. Both mRNA and protein levels of SLAMF3 are considerably lower
in HCC cells compared to their healthy counterparts. This observation is further supported
by tumor specimens from HCC patients, where SLAMF3 was significantly less present in
cancerous areas compared to the surrounding non-cancerous regions [56].

SLAMF3 has been identified as having a significant relationship with cell growth,
particularly in the context of HCC. Studies have shown that when HCC cells with high
SLAMF3 expression are implanted in mice, the growth of the tumor is inhibited [56].
This suggests that rather than promoting tumor growth, high SLAMF3 expression might
suppress it. Additionally, liver cells with abundant SLAMF3 have decreased activity in key
cellular pathways like MAPK, ERK1/2, JNK, and mTOR, which are typically associated
with cell proliferation. This further underscores SLAMF3’s potential role in regulating HCC
cell proliferation [55]. Based on these findings, SLAMF3 not only serves as a distinguishing
biomarker between healthy and malignant liver cells but also emerges as a potential
therapeutic target in HCC treatment.

2.6. Colorectal Cancer (CRC)

Colorectal Cancer (CRC), the most common digestive system malignancy, has both
prevalence and mortality rates that eclipse many other widespread cancers [57]. Recently,
there have been significant advancements in treatment for certain subtypes, particularly
with the emergence of immune checkpoint inhibitors (ICIs) such as anti-PD-1 monoclonal
antibodies, leading to frequent updates in treatment guidelines [58].

Also known as BLAME or CD353, SLAMF8 is a surface protein within the SLAM family.
Despite its potential significance, more research is needed on the role of SLAMF8 within
the tumor microenvironment [59]. Recent studies pinpoint the predominant expression of
SLAMF8 in tumor-associated macrophages (TAMs), which play a pivotal role in fostering
an immune-suppressive tumor milieu. These TAMs are instrumental in establishing an
immune-suppressive environment around tumors [60]. With various SLAM family proteins
known to influence the tumor immune landscape, their potential as immunotherapy targets
becomes increasingly evident.

Further research has indicated a correlation between SLAMF8 expression and the
presence of CD8-positive T cells in colorectal cancer. This association suggests that SLAMF8,
like other SLAM family members, may influence the tumor’s immune milieu [61]. In
essence, emerging evidence correlates SLAMF8 expression with malignancy progression,
unfavorable outcomes, and the expression of distinct immune checkpoint markers in CRC.
While these findings shine a light on its therapeutic potential, further investigations are
imperative to confirm SLAMF8’s viability as an immunotherapy target [61].

2.7. Melanoma

Originating from malignant melanocytes, melanomas predominantly arise in the skin’s
basal layer [62]. However, they can also manifest in unexpected regions, such as the uvea,
digestive system, genitourinary tract, and the meninges—the protective layers around the
brain and spinal cord [63].

A recent study employing a unique anti-hsSLAMF9 antibody explored human melanoma
specimens. Findings indicated the following:

The presence of SLAMF9+ tumor-associated macrophages (TAMs) in 73.3% of human
melanomas.

Notably, these macrophages were evident in 95.5% of nevi from melanoma patients
and 50% from non-melanoma individuals.

SLAMF9 expression was observed in melanocytic cells of 20% of melanomas and a
mere 2.3% of nevi from melanoma patients [12].
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SLAMF9, a recent debutant to the immunoglobulin superfamily of receptors, is ex-
pressed on TAMs across both mouse and human melanomas. Its significant role involves
modulating pro-inflammatory cytokines’ release and affecting cellular movement [12]. The
widespread occurrence of SLAMF9 in both benign and malignant melanocytic formations
complicates its direct linkage with malignancy. Focused research is crucial to determine
SLAMF9’s reliability as a melanoma marker [12].

In summary, SLAMF9 emerges as a promising component of the immunoglobulin-
receptor superfamily. Present within various melanocytic growths, its capability to regulate
pro-inflammatory responses and influence macrophage movement, even devoid of internal
signaling constructs, is intriguing. Delving deeper into its role, potential binding allies and
initiated signaling will be pivotal. Fully grasping the role of SLAMF9+ TAMs in melanoma’s
development and progression could spotlight this molecule as a crucial therapeutic target
in the near future [12]. Table 1 summarizes data from cancers reviewed here and their
relation with SLAM.

Table 1. A Summary of the role of SLAMF in selected types of cancer (not a comprehensive List).

Cancer Type SLAMF Involved Expression Patterns and
Notable Findings

Clinical Implications and
Outcomes

Therapeutic Strategies and
Studies

CLL SLAMF1, SLAMF7

SLAMF1: Differentially
expressed in CLL B cells.

SLAMF7: Expression
correlates with CD38, ZAP-70.

SLAMF1: Potential CLL
diagnostic tool.

SLAMF7: Correlation with
unfavorable prognostic

markers.

SLAMF7: Lenalidomide (IMiD)
enhances NK-cell-mediated

cytotoxicity, targeting the CD20
epitope.

AML SLAMF2 Down-regulated in AML
patients.

SLAMF2 down-regulation
might aid AML evasion from

NK cells.

Hypomethylating drugs might
up-regulate SLAMF2,

enhancing NK cell-mediated
cytotoxicity. AML1-ETO fusion
gene targets CD48 (SLAMF2),
contributing to AML immune

escape.

MM SLAMF3, SLAMF5,
SLAMF7

SLAMF3: Ubiquitously
expressed in MM cells.

SLAMF5: Expressed in MM
cells, stimulated by MIF.
SLAMF7: Targeted by

Elotuzumab.

SLAMF3: Potential prognostic
marker for MM progression.

SLAMF5: Contributes to
MDSCs accumulation and

increased PD-L1 expression.

SLAMF3: Potential therapeutic
target, especially for

therapy-resistant cells. SLAMF3
chimeric antigen receptor

(CAR) T cells show efficacy
against MM cells.

SLAMF5: Inhibition reduces
MDSCs accumulation and

tumor burden.
SLAMF7: Elotuzumab targets

SLAMF7, impedes MM cell
adhesion, and induces ADCC.

HNSCC SLAMF5 (CD244)

CD244 expression increased in
tumor-infiltrating CD8+ T

cells, DCs, and MDSCs.
Correlates with PD1

expression.

CD244 signaling weakens
immune response within the

tumor microenvironment,
correlating with increased

immune suppression and T
cell exhaustion.

Inhibition of CD244 signaling
might offer therapeutic benefits.

HCC SLAMF3

Expressed in human liver cells
but is reduced in HCC cell

lines and patient tumor
specimens.

SLAMF3 is a marker of
healthy liver cells, and its

reduction might modulate the
proliferation of HCC cells.

Higher SLAMF3 levels were
linked with decreased HCC
development in lab settings.

Inhibition of certain pathways
(e.g., MAPK ERK1/2, JNK, and
mTOR) in liver cells displaying

SLAMF3 hints at therapeutic
avenues.
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Table 1. Cont.

Cancer Type SLAMF Involved Expression Patterns and
Notable Findings

Clinical Implications and
Outcomes

Therapeutic Strategies and
Studies

CRC SLAMF8

- Predominant expression in
TAMs.

- Correlation with
CD8-positive T cell presence.

- Influence on tumor’s immune
milieu.

Emerging evidence correlates
SLAMF8 expression with
malignancy progression,

unfavorable outcomes, and
distinct immune checkpoint

markers.

Further investigations are
needed to confirm SLAMF8’s

viability as an immunotherapy
target.

Melanoma SLAMF9

- Presence in 73.3% of human
melanomas.

- Observed in melanocytic cells
of 20% melanomas.

- SLAMF9+ TAMs evident in a
large fraction of melanomas

and nevi.

Presence in both benign and
malignant melanocytic

growths complicates the direct
linkage with malignancy.

Deep research is required to
determine SLAMF9’s reliability
as a melanoma marker and its
role as a potential therapeutic

target.

3. Role of SLAM in Overcoming Immunotherapy Resistance

The emergence of immunotherapy heralds a transformative phase in cancer care,
harnessing the body’s natural defense systems to combat tumors. However, a significant
hurdle persists: numerous patients are either initially unresponsive to this therapeutic
approach or develop resistance over time. Thus, understanding the core mechanisms,
especially the role of the SLAM family, is of utmost importance [64].

Current research has brought to light the instrumental role of the SLAM family and
intertwined pathways in this resistance paradigm. Notably, Kawase et al.’s 2023 research
underscored the IFNγ signaling pathway’s criticality in resistance mechanisms against
immune checkpoint inhibitors, suggesting that resistance might largely emanate from a
dampened MHC-I expression. A case-in-point was a JAK-negative head and neck squa-
mous cell carcinoma patient who retained HLA-I expression and, intriguingly, showcased
a positive response to immune checkpoint inhibitors [65].

Delving into the tumor microenvironment (TME) presents further revelations. For
instance, Cappellesso et al. spotlighted the bicarbonate transporter SLC4A4 as a potential
game-changer in pancreatic cancer therapy. The strategic inhibition of SLC4A4 can mitigate
the acidic TME, facilitating a heightened T cell-driven immune response and diminished
immunosuppression. Marrying SLC4A4 targeting with immune checkpoint blockade
therapies has emerged as a promising tactic to counteract immunotherapy resistance [64].

In a parallel vein, the ATM signaling cascade’s influence in delineating the differ-
entiation of myofibroblastic cancer-associated fibroblasts has come under the spotlight.
Manipulating ATM provides a promising avenue to recalibrate the tumor microenviron-
ment, offering a potential strategy against immunotherapy resistance [66]. Simultaneously,
the distinctive properties of cancer stem cells (CSCs) have been mooted as pivotal con-
tributors to this resistance. As Gupta et al. elucidated, factors ranging from the unique
surface marker profile of CSCs and the array of cytokines they release to the metabolites
they produce all play roles in tailoring the immune landscape within the TME [67].

In essence, the intricate interplay of the SLAM family, intertwined pathways, and
specific cellular constituents holds the key to deciphering tumor behavior and immune re-
sponses. Venturing deeper into these corridors of knowledge might unlock novel strategies
to surmount resistance to immunotherapy, heralding a brighter therapeutic horizon for
cancer patients.

4. Future Perspectives

As our grasp on SLAM and its affiliated pathways in cancer and immunotherapy
resistance intensifies, it beckons a new era of therapeutic interventions. As the field
progresses, with tumors showcasing stark heterogeneity and the TME revealing layers of
complexity, the horizon of personalized medicine—where therapies are tailored to specific
SLAM pathways based on individual tumor profiles—seems closer than ever. Moreover,



Cancers 2023, 15, 4808 10 of 13

intertwining SLAM-centric treatments with established immunotherapies, such as immune
checkpoint inhibitors, could herald a paradigm shift in heightening therapeutic outcomes
and countering resistance.

Preclinical and clinical trials exploring these combinations will be of paramount im-
portance. However, as with all therapies, understanding the mechanisms by which tumors
might develop resistance to SLAM-targeted therapies remains crucial. This knowledge will
be instrumental in developing next-generation drugs and strategies to bypass resistance.
While much focus has been on specific cancers, venturing beyond traditionally studied
cancers, the implications of SLAM across a wider gamut of malignancies beckon deeper
exploration. As we stride ahead, the sanctity of patient safety remains paramount in devel-
oping SLAM-targeted interventions. Concurrently, technological marvels like single-cell
RNA sequencing and advanced imaging are poised to unravel the intricacies of tumor
interactions and SLAM’s role within—the future of SLAM in oncology research sparkles
with promise. With persistent research endeavors, interdisciplinary collaboration, and
groundbreaking innovations, SLAM-centric therapies could reshape the contours of cancer
care, illuminating a hopeful path for numerous patients globally.

5. Conclusions

In the intricate tapestry of cancer biology that constantly evolves and adapts, the
signaling lymphocyte activation molecule (SLAM) family has emerged as a pivotal thread,
weaving complex interactions between the tumor microenvironment (TME) and the host
immune system. As delineated in the preceding sections, members of the SLAM family,
notably SLAMF8 and SLAMF9, play a dynamic role in tumor-immune modulation, pro-
foundly affecting the progression and therapeutic outcomes of malignancies like colorectal
cancer and melanoma [2,12,60–63].

The recent advancements in immunotherapy have illuminated the vast potential of har-
nessing the immune system to combat malignancies [59]. Yet, resistance to these therapies
remains a significant hurdle. The SLAM family, with its intimate involvement in immune
modulation, has been posited as a potential key to unlocking this conundrum. Kawase
et al.’s findings emphasize the IFNγ signaling pathway’s importance and its relation to
the SLAM family in deciphering resistance mechanisms [64]. Moreover, insights into the
tumor microenvironment, as provided by Cappellesso et al., underline the therapeutic
potential of targeting entities like the bicarbonate transporter SLC4A4 to bolster the efficacy
of immunotherapies [66].

Personalized therapies, once a distant aspiration in the evolving landscape of cancer
treatment, now loom as an impending reality. The heterogeneity of tumors, as suggested by
our understanding of SLAM-related pathways, necessitates a patient-centric approach that
tailors treatments based on individual tumors’ unique molecular and genetic profiles [67].

Technological strides, where tools like single-cell RNA sequencing complement ad-
vanced imaging techniques, provide us with the arsenal to delve deeper into these intrica-
cies, ensuring that our therapeutic interventions are both precise and impactful. However,
as we charter these promising waters, it is imperative to emphasize the safety and efficacy
of potential treatments. The role of rigorous clinical trials and continuous monitoring
cannot be overstated, ensuring that while we strive for effectiveness, the well-being of
patients remains at the forefront.

In summation, the SLAM family stands at the confluence of immunology and oncology,
offering fresh avenues for research and therapy. With a comprehensive understanding
driven by collaborative efforts and innovative technologies, SLAM-targeted therapies have
the potential to reshape cancer treatment paradigms. Yet, as we stand at the cusp of this
promising frontier, there lies ahead a path demanding meticulous research, unwavering
commitment, and an ethos grounded in patient welfare. As the journey unfolds, it is
paramount that the scientific community remains both tenacious and adaptive, ensuring
that the promise of SLAM in cancer therapy translates from potential to reality.
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