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Simple Summary: Intensity Modulated Radiation Therapy (IMRT) is a cancer treatment that targets
cancer cells while protecting nearby healthy organs using a linear accelerator. Traditional IMRT
planning involves a sequential process: optimizing beam intensities (Fluence Map Optimization) for
a set of angles and then sequencing (Multi-Leaf Sequencing). Unfortunately, treatment plans obtained
by the sequencing step are severely impaired. One approach that addresses the problem described
is the Direct Aperture Optimisation (DAO) approach. The DAO problem aims at simultaneously
determining deliverable aperture shapes and a set of radiation intensities. This approach considers
physical and delivery time constraints, allowing clinically acceptable treatment plans to be generated.
In this work, we adapt the Particle Swarm Optimisation to solve the DAO and introduce a reparation
heuristic to enhance treatment plans. We tested our method on prostate cancer patients and found
that it delivers radiation more efficiently than the traditional approach, reducing treatment time and
improving outcomes.

Abstract: Intensity modulated radiation therapy (IMRT) is one of the most used techniques for cancer
treatment. Using a linear accelerator, it delivers radiation directly at the cancerogenic cells in the
tumour, reducing the impact of the radiation on the organs surrounding the tumour. The complexity
of the IMRT problem forces researchers to subdivide it into three sub-problems that are addressed
sequentially. Using this sequential approach, we first need to find a beam angle configuration that
will be the set of irradiation points (beam angles) over which the tumour radiation is delivered.
This first problem is called the Beam Angle Optimisation (BAO) problem. Then, we must optimise
the radiation intensity delivered from each angle to the tumour. This second problem is called the
Fluence Map Optimisation (FMO) problem. Finally, we need to generate a set of apertures for each
beam angle, making the intensities computed in the previous step deliverable. This third problem is
called the Sequencing problem. Solving these three sub-problems sequentially allows clinicians to
obtain a treatment plan that can be delivered from a physical point of view. However, the obtained
treatment plans generally have too many apertures, resulting in long delivery times. One strategy to
avoid this problem is the Direct Aperture Optimisation (DAO) problem. In the DAO problem, the
idea is to merge the FMO and the Sequencing problem. Hence, optimising the radiation’s intensities
considers the physical constraints of the delivery process. The DAO problem is usually modelled
as a Mixed-Integer optimisation problem and aims to determine the aperture shapes and their
corresponding radiation intensities, considering the physical constraints imposed by the Multi-Leaf
Collimator device. In solving the DAO problem, generating clinically acceptable treatments without
additional sequencing steps to deliver to the patients is possible. In this work, we propose to solve the
DAO problem using the well-known Particle Swarm Optimisation (PSO) algorithm. Our approach
integrates the use of mathematical programming to optimise the intensities and utilizes PSO to
optimise the aperture shapes. Additionally, we introduce a reparation heuristic to enhance aperture
shapes with minimal impact on the treatment plan. We apply our proposed algorithm to prostate
cancer cases and compare our results with those obtained in the sequential approach. Results show
that the PSO obtains competitive results compared to the sequential approach, receiving less radiation
time (beam on time) and using the available apertures with major efficiency.
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1. Introduction

Cancer is a type of disease that causes abnormal growth of cells in the body, leading to
the formation of carcinomas, which can eventually turn into malignant tumours. In 2020,
the International Agency for Research on Cancer reported 19.3 million new cancer cases
and nearly 10 million cancer-related deaths [1]. There are various methods for treating
cancer, and the treatment choice largely depends on the specific type of cancer and its
impact on the patient’s health.

Radiotherapy is a commonly used cancer treatment technique involving exposing
patients to ionising radiation to target cancerous cells. There are various forms of radio-
therapy, such as Volumetric Modulated Arc Therapy (VMAT), Stereotactic Body Radiation
Therapy (SBRT), and Intensity Modulated Radiation Therapy (IMRT), among others. IMRT
is one of the most widely used methods of radiation therapy, and is delivered using a linear
accelerator (linac) machine [2] (Figure 1). IMRT aims to effectively deliver the prescribed
radiation dose to the cancerous cells while minimising the exposure of healthy structures [3].
This is achieved by modulating the radiation passing through the linac using a multi-leaf
collimator (MLC) device.

Figure 1. Linear accelerator from the Centro Oncologico Hondureño in Honduras.

The IMRT technique enables the delivery of an optimal radiation dose to the tu-
mour while minimising exposure to surrounding healthy organs [4]. However, finding a
treatment plan that balances the desired dose to the tumour and minimal side effects on
surrounding organs is highly complex. To address this, the IMRT planning process is typi-
cally split into three sequential sub-problems: beam angle optimisation (BAO), fluence map
optimisation (FMO), and multi-leaf collimator sequencing [5]. First, the BAO problem aims
to identify the best possible combination of beam angles from which the radiation should
be delivered, also known as the beam angle configuration (BAC). Once a BAC has been
selected, the optimal intensities for that BAC must be found (Fluence Map Optimisation
problem, FMO). Finally, in the MLC sequencing problem, we compute a set of deliverable
aperture shapes and their corresponding intensities.
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This sequential approach ends with a treatment plan consisting of a large set of
aperture shapes (with corresponding intensity values). Unfortunately, having too many
apertures and larger intensity values per aperture means longer treatment time. The total
delivery time of a treatment plan is calculated considering both the beam-on time and the
decomposition times. The beam-on time (BoT) is the total time a patient is exposed to
radiation. The decomposition time is the time the linear accelerator needs to move from
one bean angle in a BAC to the next one and the time needed by the MLC to move from
one aperture shape to the other [6,7].

As a general rule, prolonged treatment time is something we want to avoid, as it
increases the attention time per patient and, thus, reduces the number of patients treated
per day [8]. Further, longer treatment plans are more likely to suffer from inaccuracies
produced, for instance, by patient’s movements.

One strategy commonly used to minimise the total delivery time of treatment plans
generated using the sequential approach described before is to reduce the number of
apertures. This can be made by “rounding” the intensity values computed during the FMO
phase. Unfortunately, such strategies can severely impair the final treatment plan quality.

One alternative to the sequential approach that does not require any “rounding”
process is the direct aperture optimisation problem (DAO). The main idea in DAO is to
solve the FMO problem considering a limited number of deliverable aperture shapes and
the physical constraints associated with the MLC sequencing.

To solve the DAO problem, we must find a set of aperture shapes and their associated
intensity values [9]. Usually, aperture shapes are optimised using heuristic strategies [10,11]
or looking for the best possible combination of aperture shapes from a pre-defined set of
apertures [12]. To optimise intensity values, gradient-based optimisation methods are usually
implemented. Compared to the sequential approach, the treatment plan obtained using DAO
is not only deliverable, but also better regarding the objective function value [13].

In this paper, we implement a particle swarm optimisation algorithm (PSO) combined
with a mathematical programming technique to solve the DAO problem. PSO is recognised
for effectively solving large-scale nonlinear optimisation problems through a good balance
between exploitation (local search) and exploration (global search) [14,15]. While the PSO
algorithm finds the best aperture shapes at each beam angle for a given BAC, the mathemat-
ical programming algorithm optimises each aperture’s intensity value. Also, we present a
reparation heuristic for those aperture shapes that have a negligible effect on the treatment
plan. To analyse our algorithm results, we use a set of clinical cases of prostate cancer and
compare the treatment plans obtained by our algorithm to those obtained by the traditional
sequential approach. The results show that our algorithm can find deliverable treatment
plans using fewer apertures and significantly reduce the beam-on time compared to the
traditional sequential approach. Compared to deliverable treatment plans with a similar
number of apertures, our algorithm outperforms them regarding objective function values.

The remainder of this paper is organised as follows: Section 2 introduces the general
concepts of IMRT and DAO and the mathematical models we will consider in this study. In
Section 3, the algorithms we implement in this paper are presented. Section 4 presents the
results obtained by our algorithm applied to a prostate case. A discussion of these results
is also included in this section. Finally, in Section 5, we draw the main conclusions of our
work and outline future work.

2. IMRT and the DAO Problem

In this section, we first discuss the main features of the IMRT problem and how to
model it. Then, we introduce the DAO problem and present a brief literature review,
focusing on the algorithms that have been previously proposed to solve the DAO problem.

2.1. Intensity Modulated Radiation Therapy

To mathematically model the IMRT problem, we first need to discretise each beam
angle into beamlets, and each region (tissues and tumour) into a set of small sub-volumes
called voxels [16]. See Figure 2 for a graphical representation of these concepts.
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Figure 2. Representation of beam angles and organs discretised into beamlets and voxels, respectively
(Cabrera-Guerrero et al. [17]).

Thus, the IMRT problem can be modelled using the representation depicted in
Figure 2 [12,17–21]. First, we model the dose distribution deposited in the voxels that
compose a region. As mentioned above, beam angles are divided into a set of n beamlets,
being n, the total number of beamlets summed over all the possible beam angles. Let A
be a BAC and x ∈ Rn

=0 be an intensity vector or fluence map solution for A . Each vector
component xb represents the length of time the patient is exposed to the radiation of the
b-th beamlet. The radiation dose deposited into each voxel v of region r by fluence map x
is computed by the expression [16,20]

dr
v(x) =

n

∑
b=1

(Dr
v1ixb) ∀v = 1, 2, . . . , mr, (1)

where mr is the total number of voxels in the region r, r ∈ R = {O1, . . . , OQ, T} is an
element of the index set of regions, with the tumour indexed by r = T and the organs at risk
and normal tissue indexed by r = Oq with q = 1, . . . , Q. Dr ∈ Rmr×n is the dose deposition
matrix related to region r, where Dr

vb = 0 defines the rate at which the radiation dose along
beamlet b is deposited into voxel v of region r (As shown Figure 3). The set X(A ) ⊆ Rn is
the set of all feasible fluence maps when the BAC A is considered. Note that searching for
an optimal fluence map x over the X(A ) space implies solving the FMO problem.

Based on the dose distribution in Equation (1), physical and biological models have
been proposed in the literature (see Ehrgott et al. [16] for a survey). This study uses the
convex nonlinear penalty function in [22,23]. In this model, each voxel is penalised according
to the squared difference between the actual and the prescribed doses. This formulation
yields a quadratic programming problem with only linear non-negativity constraints on the
fluence values [22]. This model is as follows:

min
x

z(x) = ∑
r∈R

[
1

mr

mr

∑
i=1

[
λr(Yr − dr

v(x))2
+ + λr(dr

v(x)−Yr)
2
+

]]
(2)

where parameter mr is, again, the number of voxels of the region r and Yr is the desired
dose for the voxels of the region r. The function (·)+ is the maximum between 0 and (·),
dr

v(x) gives the dose delivered by fluence map x to voxel v of the region r (see Equation (1)),
and λr and λr are the penalty weights parameter of under-dose and overdose related to
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region r, respectively. Since the Equation (2) is convex, the optimal fluence maps can be
obtained using mathematical programming techniques.

Figure 3. Radiation is delivered from a subset of beamlets, and it irradiates voxels at both tumour
and organs at risk (Cabrera-Guerrero et al. [17]).

2.2. Direct Aperture Optimisation

The Direct Aperture Optimisation [10] merges the FMO and MLC problems, optimis-
ing the fluence map considering the constraints imposed by the MLC device. This means
that the decision variables we focus on are not the beamlet intensities (as we did in the FMO
problem), but the beamlet apertures and their corresponding aperture intensities. One
consequence of this change is that the model becomes a mixed integer nonlinear problem as
the beamlet apertures are binary variables (open/closed). Having binary variables makes
the problem too hard to be solved by mathematical programming techniques, as we used
to do with the FMO problem.

Let us consider a BAC A = {A1, . . . , AU}, where U ∈ N>0 represents the number of
beams that are part of the BAC A . Consider that we represent a DAO solution as the set
H = {(P1, I1), . . . , (PN , IN)}, where the (Pc, Ic) tuples correspond to a set of Θc aperture
and intensity values for some beam angle c. We define each aperture shape Sc

i ∈ Pc as a
matrix of binary variables. Figure 4 gives an example of a tuple (Pc, Ic) for a beam angle c.

Figure 4. Set of aperture shapes and intensity values associated with a beam angle.

As we can see, the value of an element in the matrix is 1 if the radiation passes through
the associated beamlet and 0 otherwise. The elements with value −1 are not considered, as
the associated beamlets do not hit any voxel from the tumour. Also note that because of
MLC physical constraints, the matrix Sc

i is a consecutive 1’s matrix (C1), that is, for each
row, 1 values must be consecutive, with no 0 value in between them.
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To evaluate z(x), it is necessary to obtain the fluence map x, used in Equation (1), from
the DAO solution. To this end, we first need to compute an aggregated matrix for each
tuple in H. This aggregated matrix can be obtained through a positive linear combination
of the aperture shapes Sc

i and their corresponding intensities Ic
i for angle A:

Ac =
Θc

∑
i=1

Sc
i · Ic

i (3)

Then, we need to convert the aggregated matrix Ac obtained in Equation (3) to a
fluence map x vector. We perform this by mapping the position of each beamlet in the
aggregated matrix of beam angle A to its corresponding position b in the fluence map
solution x of beam angle A. Figure 5 shows how to do this.

Figure 5. Generation of a fluence map from an angle’s apertures and associated intensities.

Direct Aperture Optimisation Related Work

The DAO problem was first introduced by Shepard et al. [10]. In their paper, the authors
identify as input of the problem the beam angles, the beam energies, and the number of
apertures per beam angle. At the same time, the decision variables are the aperture shapes
and their intensities. Currently, several different techniques have been used to solve the
DAO problem. Some of these techniques are classified as stochastic search methods. These
methods apply small changes in the leaf position of the apertures. When a change in the
leaf position improves the objective function, it is accepted. It is important to remark that
the changes in this method are stochastic [3,10–12,21,24–27].

Other methods for solving the DAO problem are based on gradient leaf refinement.
In these methods, the leaf position is used as the optimisation variable. The relation-
ship between the objective function and the leaf position is established, and the first
derivative is given. Such algorithms have been applied to various commercial therapeutic
systems, including the direct machine parameter optimisation model used in Pinnacle and
RayStation systems [28,29]. Column generation methods have also been proposed in the
literature [9,30–33]. In these methods, the initial apertures are not set at the beginning of
an iteration; instead, deliverable apertures are individually added to the treatment plan.
The iteration process involves two steps. First, the price problem is solved to generate
the deliverable aperture that can improve the objective function, which is added to the
treatment plan. Then, the new set of aperture weights is optimised in the master problem.

Unfortunately, the methods above also suffer from some issues. For instance, column
generation approaches usually converge very fast; however, they do not allow for a hard
limit on the number of apertures, which may translate to unreasonably long total treatment
times and negligibly small apertures [34]. A relevant issue in stochastic search and gradient-
based leaf refinement techniques is generating the initial solution. The quality of the initial
solution influences the quality of the given final solution, as seen in [12,24].

All in all, solving the DAO problem using a limited number of apertures and obtaining
good objective quality function values is an open problem that is worth to be studied.
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3. Solution Method

This section introduces our hybrid PSO algorithm to solve the DAO problem. The main
goal of our algorithm is to obtain a high-quality treatment plan for IMRT that consists of a
set of deliverable set of aperture shapes and their corresponding intensity values.

In Section 3.1, we explain the original PSO algorithm proposed in [35] and how we
adapt it to the DAO problem. Then, in Section 3.2, we define a reparation heuristic that uses a
mathematical programming algorithm to improve the solution found by our PSO algorithm.

3.1. Particle Swarm Optimisation

The PSO is a nature-inspired population-based metaheuristic algorithm that imitates
the social behaviour of birds in nature. This swarm consists of particles that search the
objective space intending to find different high-quality solutions. Each particle is, in turn,
composed of two fitness-related elements. The first element is the current fitness value of
the i-th particle, and the second element is the fitness value of the best position the i-th
particle has ever found during the algorithm execution, pbesti. Finally, the algorithm also
keeps track of the best fitness value found so far, gbest.

The PSO starts with an initial population of particles whose positions have been
randomly assigned. The i-th particle’s position at iteration t is represented by xt

i . The
direction of particles in each iteration is determined by a velocity variable denoted by vt

i
that obtains its value from Equation (4).

vt+1
i = c f ∗ (wvt

i + c1r1(pbesti − xt
i ) + c2r2(gbest− xt

i )), (4)

where t is the current iteration, pbesti is the best position the i-th particle has achieved,
and gbest is the best position any particle in the swarm has achieved. Parameter c f is the
constriction factor used to adjust the velocity of each particle and obtain a balance between
exploration and exploitation. The parameter w is the algorithm’s inertia and controls the
last velocity contribution. Parameter c1 and c2 are learning factors for managing the impact
of pbesti and gbest. Parameters r1 and r2 are random numbers between 0 and 1. The new
position of each particle is updated by adding the current velocity to the function of the
position of the particle, as shown in Equation (5).

xt+1
i = xt

i + vt+1
i (5)

In the proposed algorithm, we represented the particles as shown in Figure 6. As we
can see, the particle is composed of three attributes, namely the current fitness value (a
real-valued attribute), its best singular position (a treatment plan), and its current position
(a treatment plan). Naturally, the current fitness value results from evaluating the current
particle’s position in the objective function considered by the algorithm.

Figure 6. DAO solution on particle representation.



Cancers 2023, 15, 4868 8 of 18

As in any other heuristic algorithm, solutions generated by the PSO algorithms are
not (necessarily) optimal. One drawback of the PSO implemented here is that there is no
relation between the intensity values associated with an aperture and the aperture itself.
Unfortunately, as mentioned before, the aperture shape optimisation problem is an NP-
hard problem that mathematical programming solvers cannot solve in a reasonable time.
Unlike this, the apertures’ intensity optimisation problem (also known as aperture weight
optimisation [9] or segmentation weight optimisation) is a convex continuous problem
that can quickly be solved for solvers such as Gurobi (see, for instance, [24–26]). Then, we
propose to implement a hybrid PSO with a mathematical programming algorithm to solve
the DAO problem. We use the PSO algorithm to find a set of aperture shapes and their
corresponding intensities, which the linear solver will then optimise.

To better understand the algorithm’s behaviour, we can see in Figure 7 how an aperture
shape and the associated intensities change in each step. Considering the representation
of the treatment plan mentioned in Section 2.2, we can represent the aperture shape and
the intensities obtained by the PSO algorithm like a tuple (Pc, Ic). The intensities Ic are
optimised by the solver at the end of each iteration of the PSO algorithm. As a result, we
obtain a new tuple (Pc, I′c) where, as mentioned before, some intensities in I′c are set to zero
by the solver. To improve the aperture shapes that resulted in (near) zero intensity value
after the solver optimisation, we use a reparation heuristic. This heuristic only modifies Pc,
leading to a new tuple (P′c, I′c). Finally, the reparation heuristic passes on the Solver the
tuple (P′c, I′c) so we can obtain the optimal intensity values for the new set of apertures
P′c, generating the tuple (P′c, I′′c). Finally, the treatment plan defined by the tuple (P′c, I′′c)
is passed onto the PSO algorithm for the next iteration. This process is repeated until the
PSO algorithm meets some termination criterion (e.g., it reaches a predetermined number
of iterations).

PSO al-
gorithm Solver

Reparation
heuristic

(Pc, Ic)

(P′c, I′′c)

(Pc, I′c)

(P′c, I′c)

Figure 7. Interaction between PSO algorithm, linear solver and reparation heuristic.

3.2. Reparation Heuristic

As mentioned in the previous paragraph, as a result of the solver usage, we obtain
the optimal intensities for each aperture at each beam angle. Since the optimisation solver
is conditioned to the aperture shapes obtained at each iteration by the PSO algorithm, it
is not unusual that some of the intensities end up in the optimisation process with values
close to zero.

In practice, apertures with associated intensities near to zero value are equivalent
to having no aperture at all, i.e., an insignificant (or null) impact on the treatment plan.
Further, improving the shapes of those apertures with intensity values close to zero is
complex. To address this issue, we propose a reparation heuristic that allows us to avoid
(as much as possible) those apertures with a negligible effect on the treatment plan.

Figure 8 shows a numerical example of the intensities optimisation process. On top of
the image, we can see four aperture shapes with their associated intensities. We can see
that all the intensities are modified on the bottom part of the same image.

The main idea of the reparation heuristic proposed here is to replace those apertures
with intensity values closer to zero with apertures that (hopefully) can help after running
the solver. Particularly, we aim to irradiate those parts of the aperture shape that are not
irradiated from any other aperture of the beam angle.

To this end, we generate a new aperture that results from overlapping the apertures
with an intensity value greater than 1. We call this new aperture the “overlapped aperture”,
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and the ones with intensity values greater than one “the original apertures”. Figure 9 shows
an example of the apertures overlapping process. Fields with a value of 1 correspond
to beamlets radiation passes through. Fields with zero value correspond to the beamlets
closed in the original apertures. Finally, −1 corresponds to the inactive beamlets (those that
do not hit the tumour).

Figure 8. Representation of the change in the intensities of a set of apertures using the solver.

Figure 9. Overlapping matrix from the apertures with intensities over one.

As shown in Figure 9, the overlapped aperture corresponds to the original apertures’
aggregation, i.e., the overlapped aperture keeps open beamlets that are open in at least
one original aperture and sets closed those beamlets that are closed in all the original apertures.

As a result of this aggregation process, we have a matrix showing all the beamlets
currently open in at least one original aperture. As mentioned above, we want to diversify
our search, and thus, we want to irradiate from those fields that are not currently in use.

To this end, the reparation heuristic generates the complementary matrix of the over-
lapped matrix, as shown in Figure 10.

Figure 10. Complementary matrix generated from the overlapping matrix.

It is important to keep in mind some considerations about the application of our repa-
ration heuristic. First, in some cases, the shape of the complementary matrix does not satisfy
the MLC physical constraints and can not directly replace the original aperture. In that case,
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we can select part of the aperture that is actually deliverable and remove those parts that do
not satisfy MLC physical constraints. As shown in Figure 11, we divide the complementary
matrix into two different apertures that satisfy the MLC physical constraints.

Figure 11. Dividing the complementary matrix so we can obtain deliverable aperture shapes.

Second, suppose the number of original apertures with an intensity value close to
zero is more than one. In that case, we must divide the complimentary matrix to generate
as many new apertures as needed. Note that this situation can help us to solve our
first consideration (undeliverable aperture shapes), as we can divide the complementary
matrix in such a way that all (or most of) the open beamlets in the complementary matrix
can be added to the new apertures (see, for instance, Figure 11).

Finally, the reparation heuristic replaces those apertures with (near) zero intensity
values by the aperture shapes obtained in the previous step. We need to note that, in
some cases, one or more apertures still with (near) zero intensity values as the number of
deliverable aperture shapes produced by the reparation heuristic is less than the number of
apertures with (near) zero intensity values. Once we obtained the repaired aperture shapes,
we optimised the intensities values, as shown in Figure 12.

Figure 12. Representation of the apertures obtained after the reparation process.

4. Computational Experiments

This Section introduces the experiments performed by our algorithm and analyses
the obtained results. The Section is divided into three subsections. In Section 4.1, we in-
troduce the set of instances considered in our study and the parameters used by the PSO.
In Section 4.2, we obtain the best parameters for the PSO algorithm using the framework
Irace [36]. Finally, in Section 4.3, we compare our PSO to two algorithms used in the litera-
ture. Comparison is made regarding the obtained objective function values, the required
number of aperture shapes, and their beam-on time.
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4.1. Experimental Setup

In this work, we perform a set of initial experiments on the prostate case instance from
CERR package [37] and also examine a prostate case acquired from Clinica Alemana de
Santiago, Chile. This particular patient is denoted as TRT001 [19]. We use this prostate case
to evaluate the performance of the PSO algorithm introduced in Section 3.1. For the CERR
and TRT001 cases, we consider three organs: the prostate, where the tumour is located, the
bladder, and the rectum (see Figure 13). We label the rectum and the bladder as organs at
risk (OARs) and the prostate as planning target volume (PTV).

Figure 13. Prostate case from CERR. Two OARs (bladder and rectum) are considered.

The number of voxels per region in the CERR case is 15,172 for the prostate, 22,936 for
the bladder and 18,128 for the rectum. We consider 72 beam angles, all of which are on the
same plane. Similarly, in the TRT001 case, the prostate comprises 13,081 voxels, the bladder
holds 19,762 voxels, and the rectum encompasses 8500 voxels.

Like other works in the problem we consider a set of 14 equidistant BACs [12,17,18,21,24,25].
Each BAC consists of five beam angles for the CERR and TRT01 instances, as shown in
Table 1.

Table 1. Equidistant BACs and their corresponding number of beamlets for the CERR and TRT01 cases.

BAC Beam Angles # Beamleats # Beamleats
θ1 θ2 θ3 θ4 θ5 CERR TRT

1 0 70 140 210 280 336 327
2 5 75 145 215 285 336 329
3 10 80 150 220 290 333 328
4 15 85 155 225 295 333 330
5 20 90 160 230 300 329 334
6 25 95 165 235 305 328 334
7 30 100 170 240 310 333 333
8 35 105 175 245 315 336 330
9 40 110 180 250 320 337 329
10 45 115 185 255 325 335 329
11 50 120 190 260 330 331 335
12 55 125 195 265 335 329 335
13 60 130 200 270 340 329 332
14 65 135 205 275 345 328 328

Table 2 details the prescribed doses, Yr, considered per each organ at all the instances
and the weights for both under-dose λr and overdose λr.
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Table 2. Value of Ti, λi and λi for function z(x).

Organ Yr λr λr

PTV 76 Gy 5 5
Rectum 65 Gy 0 1
Bladder 65 Gy 0 1

4.2. Irace Parameter

To optimise the parameter used in the PSO algorithm implemented, we tried the package
Irace [36]. This package is an extension of the iterative F-race algorithm (I/F race) [38,39]. The
principal use of this method is for the automatic configuration of optimisation algorithms.
This is performed by finding the most appropriate configuration of parameters from a set
of instances executed in the algorithm. This package has also been used for the parameters
optimisation of the algorithm proposed by Caceres et al. [21]. That said, using IRace aims to
find suitable parameters for our PSO implementation. The parameters to optimise within
the IRace package are shown in Table 3.

Table 3. Parameters of PSO used in Irace.

Parameter Description Range

Npop Number of population Npop ∈ [100, 600]
c1a Local Learning factor on Apertures c1a ∈ [0, 2]
c2a Global Learning factor on Apertures c2a ∈ [0, 2]
wa Inertia weight on Apertures wa ∈ [0, 2]
c fa Constriction factor on Aperture c fa ∈ [0, 2]
c1i Local Learning factor on Intensities c1i ∈ [0, 2]
c2i Global Learning factor on Intensities c2i ∈ [0, 2]
wi Inertia weight on Intensities wi ∈ [0, 2]
c fi Constriction factor on Intensities c fi ∈ [0, 2]

Table 4 shows the results provided by the IRace package:

Table 4. Best parameters’ values obtained by IRace.

Parameter Value

Npop 418
c1a 1.8751
c2a 0.2134
wa 0.5774
c fa 1.6641
c1i 0.3158
c2i 1.7017
wi 0.5331
c fi 1.2389

The number of iterations used by our algorithm is given by Equation (6), where we
set the evaluation to 40,000 (number obtained testing the algorithm) and an Npop of 518
(given in Table 4) doing a total of 95 iterations, like limits for the algorithm.

Iterations =
evaluation

Npop
. (6)

4.3. Experiments on Test Instances

In our experiments, we measure the performance of the proposed PSO using the
best-found parameter configuration, described in Section 4.2. Note that we run our algo-
rithm 30 times per BAC, as 30 is a widely accepted value for statistical analysis [40].



Cancers 2023, 15, 4868 13 of 18

Tables 5–8 report the results obtained by both the sequential and the PSO approaches
when applied to the CERR and TRT001 cases. As mentioned in the previous section, the
IMRT sequential approach obtains a fluence map, optimising the dose-volume model of the
FMO problem. Next, the MLC sequencing problem is solved for the resulting fluence maps
by using a well-known algorithm from [7], which finds a set of apertures that minimise the
BoT. In Tables 5 and 6, column z(x∗) corresponds to the cost of the optimal fluence map
using the function in Equation (2). Columns z(r(x∗)), z(r2(x∗)) and z(r4(x∗)) correspond
to the cost of the fluence maps with intensities rounded to the nearest integer, the nearest
multiple of 2, and the nearest multiple of 4, respectively. For each rounding, we also report
the number of apertures generated by the MLC sequencing algorithm (#ap) and the BoT.

Table 5. Results reported by the traditional two-step approach in the CERR dataset.

BAC z(x∗) z(r(x∗)) # ap BoT z(r2(x∗)) # ap BoT z(r4(x∗)) # ap BoT

1 42.98 44.84 140 196 49.29 87 192 61.54 51 204
2 43.40 43.40 140 215 48.76 84 212 61.72 52 224
3 43.70 44.98 144 203 48.83 87 202 72.87 49 208
4 43.53 45.06 145 206 51.77 89 208 66.48 50 212
5 43.23 44.55 142 200 47.40 89 202 67.48 51 204
6 43.05 44.47 149 212 49.23 90 208 66.05 50 208
7 42.86 44.48 152 212 48.05 96 214 62.96 49 212
8 43.06 44.70 146 197 48.00 88 196 61.75 48 196
9 43.66 45.03 141 186 50.62 83 190 70.76 46 192

10 44.14 45.71 144 200 51.21 89 204 59.64 47 200
11 43.83 45.02 138 190 51.97 86 190 68.84 47 200
12 43.31 44.35 144 214 47.38 94 212 64.03 55 228
13 42.84 44.98 157 229 49.05 98 226 82.49 56 232
14 42.85 44.24 142 217 48.57 92 214 68.45 51 220

Average 43.32 44.71 144 205 49.30 89 205 66.80 50 210

Table 6. Results reported by the traditional two-step approach in patient TRT001 in the CAS dataset.

BAC z(x∗) z(r(x∗)) # ap BoT z(r2(x∗)) # ap BoT z(r4(x∗)) # ap BoT

1 55.78 56.92 146 220 63.05 92 222 89.97 52 224
2 56.35 58.38 138 212 63.66 89 212 84.22 49 212
3 56.72 58.39 141 211 63.55 85 210 77.01 49 216
4 56.55 57.99 132 210 63.22 88 220 74.48 51 224
5 55.98 57.97 138 210 64.31 90 214 81.44 49 220
6 55.19 56.37 139 208 59.81 87 204 80.24 47 196
7 55.21 56.54 129 192 59.55 78 192 78.24 44 196
8 56.14 57.26 131 187 62.71 84 188 82.21 46 188
9 56.62 58.13 136 218 62.58 88 210 76.24 52 216

10 56.94 58.30 140 207 63.59 85 206 92.40 50 212
11 56.74 58.27 152 231 61.47 100 234 84.80 56 232
12 56.17 57.99 144 218 61.18 96 218 79.20 54 216
13 55.32 57.54 134 204 59.75 87 204 76.08 49 204
14 55.46 56.85 142 212 59.99 95 214 82.88 41 212

Average 56.08 57.64 138 210 62.03 88 210 81.39 49 212

Tables 7 and 8 report the results obtained by our PSO algorithm. Due to its stochastic
nature, the strategy was run 30 times on each instance. We report the mean over the
14 instances of each set, the best value for each set, the mean number of apertures with
intensity different to zero, and the mean BoT. We need to point out that apertures for which
the intensity is set to zero by the mathematical programming solver in the last iteration are
considered closed.
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Table 7. Results reported by the PSO algorithm in the CERR dataset.

BAC z(x∗) # ap BoT

1 56.34 11.70 63.47
2 57.49 13.07 64.13
3 57.39 12.63 61.31
4 57.33 12.67 61.60
5 56.24 12.13 65.38
6 54.76 12.59 60.72
7 54.38 12.60 62.46
8 54.57 12.57 66.49
9 57.53 12.29 61.28
10 57.36 11.67 64.57
11 56.18 12.75 68.62
12 54.96 12.35 61.54
13 55.85 12.25 60.35
14 54.41 12.60 62.49

Average 56.06 12.42 63.17

Table 8. Results reported by the PSO algorithm in the TRT001 dataset.

BAC z(x∗) # ap BoT

1 71.33 12.40 62.44
2 72.39 12.70 62.13
3 73.79 12.00 62.96
4 73.85 12.20 63.07
5 73.80 11.10 58.99
6 73.75 11.40 63.91
7 72.52 10.90 58.94
8 72.65 10.20 60.30
9 74.27 12.10 66.04
10 77.58 11.40 63.30
11 74.63 12.60 62.51
12 72.00 12.10 60.13
13 69.75 11.30 60.32
14 71.31 10.50 59.74

Average 73.18 11.64 61.77

When comparing the objective function value reported by the PSO and the optimal
(but not deliverable) fluence map, the difference is 29.41% and 30.49% for CERR and TRT001,
respectively, with the PSO algorithm being the one with the higher objective value. This
difference in the objective function value is reduced when the rounding process is applied
to the optimal fluence map. For instance, when the optimal fluence map is rounded to the
nearest multiple of 1(z(r(x∗))) and 2(z(r2(x∗))), the difference is 25.39% and 13.71% for
the CERR case and 26.98% and 17.98% for the TRT001 case, respectively. Further, rounding
to the nearest multiple of 4(z(r4(x∗))) leads to an impairment in the quality of the rounded
treatment plan that makes solutions provided by our PSO algorithm become better in all
cases. Further, even though our algorithm is not better than the r1(x∗) and r2(x∗) treatment
plans (with respect to the objective function value), the number of aperture shapes our
solutions need is always smaller than the apertures needed by the solutions obtained by
the sequential approach. Also, it is interesting to note that even though our approach is not
directly focused on reducing the beam on time value, our approach reports better values in
all cases compared to the sequential approach. This is mainly because of the fact that we
use far fewer aperture shapes in our final treatment plans.

In addition, we report the dose-volume histogram (DVH) for the CERR and TRT001 in
Figures 14 and 15, respectively. DVH curves specify the received dose level by different
volumes of structures. In the case of CERR, we can see that our algorithm obtains treatments
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that do not overdose the voxels in the PTV. Unlike this, the solutions obtained by the optimal
fluence map overdose above 30% of PTV voxels. When observing the OARs, our algorithm
overdoses more voxels than the optimal fluence map. However, the max overdose received
for the voxels is less than the received by the optimal fluence map. In the case of TRT001,
the PSO and the optimal fluence map have a similar curve, where both do not overdose the
PTV. When observing the OARs, our algorithm overdoses more voxels than the optimal
fluence map. It is necessary to remember that the optima fluence map is not a deliverable
treatment and needs to pass for the MLC sequencing problem.

Figure 14. Dose-volume histogram comparing dose obtained by PSO algorithm (solid line) and optimal
fluence map obtained by FMO (dashed line) for a prescribed dose of 76 Gy to PTV, and 65 Gy to
the rectum and bladder (purple and black horizontal dashed-point line, respectively) with BAC 1 in
CERR instance.

Figure 15. Dose-volume histogram comparing dose obtained by PSO algorithm (solid line) and
optimal fluence map obtained by FMO (dashed line) for a prescribed dose of 76 Gy to PTV, and 65 Gy
to the rectum and bladder (purple and black horizontal dashed-point line, respectively) with BAC 1
in TRT001 instance.

5. Conclusions

This paper introduces a hybrid heuristic based on PSO and mathematical program-
ming to solve the DAO problem in radiation therapy for cancer treatment. The proposed
PSO heuristic finds a set of deliverable aperture shapes and their corresponding intensities
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for each beam angle within a clinically acceptable time. Further, even though our heuristic
algorithm was allowed to use only five aperture shapes per beam angle, they could find
very competitive treatment plans.

Comparing our algorithm with the traditional sequential approach shows that the
proposed algorithm can obtain competitive results regarding the objective function value.
However, the difference with the optimal solution generated by the FMO is still significant.
On the opposite, when evaluating the number of apertures generated by our algorithm,
we can observe a substantial reduction compared to the traditional approach. This is very
important as fewer aperture shapes mean, in general, shorter treatment times, which is
something desirable from a clinical point of view.

In future work, we can see different research lines to improve the obtained results.
First, we believe that improving the reparation heuristic to activate apertures that have
intensities close to zero would allow us to find better-quality treatment plans. This is
because the more apertures are used, the better the treatment plan quality. Note that, as
mentioned before in the paper, this would be at the cost of longer treatment times. In
addition, we seek to extend our single-objective PSO algorithm to a multi-objective one.
This is because IMRT is an inherently multi-objective problem, since there is a compromise
between tumour irradiation and avoiding damage to the organs at risk. Extending our
approach to a multi-objective one is a challenging task from both computational and clinical
points of view. However, we are sure that addressing the problem as a multi-objective
one will help us better understand the underlying trade-offs between tumour control and
OARs sparing.
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The following abbreviations are used in this manuscript:

ASO Aperture Segmentation Optimisation
AWO Aperture Weight Optimisation
BAC Beam angle configuration
BAO Beam angle optimisation
BoT Beam-on-Time
CERR Computational Environment for Radiological Research
DAO Direct Aperture Optimisation
DVH Dose-Volume histogram
FMO Fluence map optimisation
IMRT Intensity modulated radiotherapy treatment
MLC Multi-leaf Collimator
Npop Population of solution
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OAR Organ at risk
PTV Planning target volume
PSO Particle Swarm Optimisation
SBRT Stereotactic Body Radiation Therapy
VMAT Volumetric Modulated Arc Therapy
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