Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Costs
2.3. TDABC Method
- DC: Direct cost per PT course in EUR,
- i: Treatment indication,
- CCR1→n: CCR in EUR/minute for human resource group 1, up to group n,
- t1→n: Time involvement in minutes for human resource group 1, up to group n,
- O: Total cost for optional care pathway activities in EUR,
- p: Probability of conducting optional care pathway activities in %,
- C: Costs related to consumables in EUR,
- IC: Indirect cost per PT course in EUR,
- D: Depreciation cost in EUR,
- I: Annual indirect human resource costs in EUR,
- R: Annual total fixed operating costs in EUR (maintenance, overhead, depreciation, interest),
- Ni: Number of treatments delivered for the indication in 2020,
- Fi: Mean fraction number per course for the indication.
2.4. Statistical Analysis and Outcome
3. Results
3.1. Sensitivity Analysis
3.2. Scenario Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Expenditure Database. Available online: https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?name_desc=false (accessed on 1 June 2022).
- Zorg, V.e. Zorguitgaven. Available online: https://www.vzinfo.nl/kanker#node-kosten-van-zorg-voor-kanker (accessed on 1 June 2022).
- Hofmarcher, T.; Lindgren, P.; Wilking, N.; Jönsson, B. The cost of cancer in Europe 2018. Eur. J. Cancer 2020, 129, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaffray, D.A.; Gospodarowicz, M.K. Radiation Therapy for Cancer. In Cancer: Disease Control Priorities, 3rd ed.; Gelband, H., Jha, P., Sankaranarayanan, R., Horton, S., Eds.; The International Bank for Reconstruction and Development/The World Bank © 2015 International Bank for Reconstruction and Development/TheWorld Bank: Washington, DC, USA, 2015; Volume 3. [Google Scholar] [CrossRef] [Green Version]
- Luengo-Fernandez, R.; Leal, J.; Gray, A.; Sullivan, R. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet Oncol. 2013, 14, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Olsen, D.R.; Bruland, Ø.S.; Frykholm, G.; Norderhaug, I.N. Proton therapy—A systematic review of clinical effectiveness. Radiother. Oncol. 2007, 83, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.J.; Bhattacharya, I.S. Protons and more: State of the art in radiotherapy. Clin. Med. 2014, 14 (Suppl. 6), s61–s65. [Google Scholar] [CrossRef]
- Weber, D.C.; Langendijk, J.A.; Grau, C.; Thariat, J. Proton therapy and the European Particle Therapy Network: The past, present and future. Cancer/Radiothérapie 2020, 24, 687–690. [Google Scholar] [CrossRef]
- Goitein, M.; Jermann, M. The relative costs of proton and X-ray radiation therapy. Clin. Oncol. 2003, 15, S37–S50. [Google Scholar] [CrossRef]
- Vanderstraeten, B.; Verstraete, J.; De Croock, R.; De Neve, W.; Lievens, Y. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 152–160. [Google Scholar] [CrossRef]
- Tarricone, R.; Callea, G.; Ogorevc, M.; Prevolnik Rupel, V. Improving the methods for the economic evaluation of medical devices. Health Econ. 2017, 26, 70–92. [Google Scholar] [CrossRef] [Green Version]
- Varabyova, Y.; Blankart, C.R.; Schreyögg, J. The Role of Learning in Health Technology Assessments: An Empirical Assessment of Endovascular Aneurysm Repairs in German Hospitals. Health Econ. 2017, 26 (Suppl. 1), 93–108. [Google Scholar] [CrossRef]
- NFU. Cao Universitair Medische Centra 2018–2020; CAO UMC: Utrecht, The Netherlands, 2019; Volume 11. [Google Scholar]
- Kaplan, R.S.; Anderson, S.R. Time-driven activity-based costing: A simpler and more powerful path to higher profits; Harvard Business Press: Boston, MA, USA, Available at SSRN 485443; 2003. [Google Scholar]
- Keel, G.; Savage, C.; Rafiq, M.; Mazzocato, P. Time-driven activity-based costing in health care: A systematic review of the literature. Health Policy 2017, 121, 755–763. [Google Scholar] [CrossRef]
- Defourny, N.; Perrier, L.; Borras, J.M.; Coffey, M.; Corral, J.; Hoozée, S.; Loon, J.V.; Grau, C.; Lievens, Y. National costs and resource requirements of external beam radiotherapy: A time-driven activity-based costing model from the ESTRO-HERO project. Radiother. Oncol. 2019, 138, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, P.G. An improved set of standards for finding cost for cost-effectiveness analysis. Med. Care 2009, 47, S82–S88. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, B.L.; Grutters, J.P.; Pijls-Johannesma, M.; Lambin, P.; Joore, M.A.; Langendijk, J.A. Protons in head-and-neck cancer: Bridging the gap of evidence. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Peeters, A.; Grutters, J.P.; Pijls-Johannesma, M.; Reimoser, S.; De Ruysscher, D.; Severens, J.L.; Joore, M.A.; Lambin, P. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother. Oncol. 2010, 95, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Grutters, J.P.; Pijls-Johannesma, M.; Ruysscher, D.D.; Peeters, A.; Reimoser, S.; Severens, J.L.; Lambin, P.; Joore, M.A. The cost-effectiveness of particle therapy in non-small cell lung cancer: Exploring decision uncertainty and areas for future research. Cancer Treat Rev. 2010, 36, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Lundkvist, J.; Ekman, M.; Ericsson, S.R.; Jönsson, B.; Glimelius, B. Proton therapy of cancer: Potential clinical advantages and cost-effectiveness. Acta Oncol. 2005, 44, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, J.P.; Borah, B.J.; Foote, R.L.; Pulido, J.S.; Shah, N.D. Cost-effectiveness of proton beam therapy for intraocular melanoma. PLoS ONE 2015, 10, e0127814. [Google Scholar] [CrossRef]
- Lievens, Y.; Obyn, C.; Mertens, A.-S.; Halewyck, D.V.; Hulstaert, F. Stereotactic Body Radiotherapy for Lung Cancer: How Much Does it Really Cost? J. Thorac. Oncol. 2015, 10, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Van de Werf, E.; Verstraete, J.; Lievens, Y. The cost of radiotherapy in a decade of technology evolution. Radiother. Oncol. 2012, 102, 148–153. [Google Scholar] [CrossRef]
- Lievens, Y.; Van den Bogaert, W.; Kesteloot, K. Activity-based costing: A practical model for cost calculation in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 522–535. [Google Scholar] [CrossRef] [Green Version]
- Dunscombe, P.; Roberts, G.; Walker, J. The cost of radiotherapy as a function of facility size and hours of operation. Br. J. Radiol. 1999, 72, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Nederland, Z. Richtlijn Voor Het Uitvoeren Van Economische Evaluaties in de Gezondheidszorg; Zorginstituut Nederland: Diemen, The Netherlands, 2015. [Google Scholar]
Patients’ Characteristic | |
---|---|
Gender (Count (%)) | |
Male | 67 (33.7) |
Female | 132 (66.3) |
Age | |
Mean | 49.1 |
Age group (count (%)) | |
18–29 | 19 (9.5) |
30–49 | 81 (40.1) |
50–64 | 72 (36.2) |
65+ | 27 (13.6) |
Cancer type (patient number (average fraction per treatment course)) | |
Head and neck cancer | 30 (35) |
Brain cancer | 72 (31) |
Breast cancer | 86 (19) |
Thorax cancer | 10 (23) |
Chordoma (spinal) | 8 (36) |
Chordoma (skull base) | 5 (36) |
Eye melanoma | 33 (4) |
Head and Neck | Brain | Breast | Thorax | Chordoma (Spinal) | Chordoma (Skull Base) | Eye Melanoma | |
---|---|---|---|---|---|---|---|
Variable costs per patient | |||||||
Direct human resource cost | 6013 | 3267 | 2856 | 2931 | 3616 | 4660 | 1919 |
Consumables | 430 | 151 | - | 69 | 21 | 21 | 144 |
Other patient-related costs | 586 | 586 | 586 | 586 | 586 | 586 | 586 |
Optional costs (PET/CT) | 27 | - | - | 27 | - | - | - |
Treatment plan adaptation | 300 | - | 29 | - | - | - | - |
Uncaptured direct HR cost | 14,993 | 13,066 | 7925 | 9639 | 15,422 | 15,422 | 1714 |
Depreciation costs | 10,008 | 8721 | 5290 | 6434 | 10,294 | 10,294 | 1144 |
Total variable costs | 32,357 | 25,791 | 16,686 | 19,685 | 29,938 | 30,982 | 5506 |
Aggregate fixed costs | |||||||
Indirect human resource costs | 8551 | 7452 | 4520 | 5497 | 8795 | 8795 | 977 |
Fixed depreciation costs | 2776 | 2419 | 1467 | 1785 | 2855 | 2855 | 317 |
Operating costs and interest expenditures | 46,032 | 40,113 | 24,331 | 29,592 | 47,347 | 47,347 | 5261 |
Total fixed costs (per patient) | 57,359 | 49,984 | 30,318 | 36,873 | 58,998 | 58,998 | 6555 |
Cost per course | 89,716 | 75,775 | 47,004 | 56,559 | 88,936 | 85,786 | 12,062 |
Cost per fraction | 2563 | 2484 | 2541 | 2514 | 2470 | 2499 | 3015 |
Head and Neck | Brain | Breast | Thorax | Chordoma (Spinal) | Chordoma (Skull Base) | Eye Melanoma | |
---|---|---|---|---|---|---|---|
Variable costs per patient | |||||||
Direct human resource cost | 6013 | 3267 | 2856 | 2931 | 3616 | 4660 | 1919 |
Consumables | 430 | 151 | - | 69 | 21 | 21 | 144 |
Other patient-related costs | 586 | 586 | 586 | 586 | 586 | 586 | 586 |
Optional costs (PET/CT) | 27 | - | - | 27 | - | - | - |
Treatment plan adaptation | 300 | - | 29 | - | - | - | - |
Uncaptured direct HR cost | 7663 | 7663 | 7663 | 7663 | 7663 | 7663 | 24,500 |
Depreciation costs | 5115 | 5115 | 5115 | 5115 | 5115 | 5115 | 16,353 |
Total variable costs | 20,135 | 16,783 | 16,250 | 16,392 | 17,002 | 18,046 | 43,502 |
Aggregate fixed costs | |||||||
Indirect human resource costs | 4371 | 4371 | 4371 | 4371 | 4371 | 4371 | 13,973 |
Fixed depreciation costs | 1419 | 1419 | 1419 | 1419 | 1419 | 1419 | 4536 |
Operating costs and interest expenditures | 23,528 | 23,528 | 23,528 | 23,528 | 23,528 | 23,528 | 75,218 |
Total fixed costs (per patient) | 29,318 | 29,318 | 29,318 | 29,318 | 29,318 | 29,318 | 93,727 |
Cost per course | 49,452 | 46,100 | 45,567 | 45,709 | 46,319 | 47,363 | 137,229 |
Cost per fraction | 1413 | 1511 | 2463 | 2032 | 1287 | 1316 | 34,307 |
Head and Neck | Brain | Breast | Thorax | Chordoma (Spinal) | Chordoma (Skull-Base) | Eye Melanoma | |
---|---|---|---|---|---|---|---|
Direct costs per patient | |||||||
Human resource cost | 6010 (4986–7218) | 3268 (2528–4368) | 2855 (2302–3505) | 2930 (2237–3798) | 3616 (2647–4773) | 4660 (3652–5896) | 1918 (1609–2261) |
Other costs | 11,269 (11,133–11,434) | 9506 (9384–9655) | 5857 (5747–6000) | 7131 (7016–7284) | 10,725 (10,614–10,867) | 10,321 (10,209–10,465) | 1711 (1589–1858) |
Indirect costs | |||||||
Human resource costs | 24,122 (13,747–37,379) | 20,631 (11,757–31,969) | 12,401 (7067–19,216) | 15,235 (8682–23,608) | 23,805 (13,566–36,887) | 22,853 (13,023–35,412) | 2308 (1315–3577) |
Other costs | 50,007 (31,848–76,074) | 42,769 (27,238–45,419) | 25,707 (16,372–39,108) | 31,583 (20,115–48,047) | 49,349 (31,429–75,073) | 47,375 (30,172–72,070) | 4785 (3048–7280) |
Total costs | 91,409 (69,719–118,863) | 76,174 (57,544–99,357) | 46,820 (35,600–60,847) | 56,880 (43,176–74,274) | 87,496 (65,773–114,601) | 85,208 (64,374–111,191) | 10,723 (8541–13,471) |
Head and Neck | Brain | Breast | Thorax | Chordoma (Spinal) | Chordoma (Skull Base) | Eye Melanoma | |
---|---|---|---|---|---|---|---|
Annual Patients: 244 (2020) | |||||||
Patient number | 30 | 72 | 86 | 10 | 8 | 5 | 33 |
PT | 89,716 | 75,775 | 47,004 | 56,559 | 88,936 | 89,980 | 12,062 |
Annual Patients: 450 (2021) | |||||||
Patient number | 55 | 133 | 159 | 18 | 15 | 9 | 61 |
PT | 52,013 | 42,920 | 27,076 | 32,321 | 50,156 | 47,006 | 7753 |
Annual Patients: 600 (Capped capacity till 2024) | |||||||
Patient number | 74 | 177 | 211 | 25 | 20 | 12 | 81 |
PT | 40,849 | 33,191 | 21,174 | 25,144 | 38,673 | 35,523 | 6477 |
Annual Patients: 800 (Full capacity) | |||||||
Patient number | 98 | 236 | 282 | 33 | 26 | 16 | 108 |
PT | 32,476 | 25,894 | 16,749 | 19,761 | 30,060 | 31,104 | 5520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.H.; Blommestein, H.M.; Klazenga, R.; Uyl-de Groot, C.; van Vulpen, M. Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands. Cancers 2023, 15, 516. https://doi.org/10.3390/cancers15020516
Chen YH, Blommestein HM, Klazenga R, Uyl-de Groot C, van Vulpen M. Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands. Cancers. 2023; 15(2):516. https://doi.org/10.3390/cancers15020516
Chicago/Turabian StyleChen, Yi Hsuan, Hedwig M. Blommestein, Reinder Klazenga, Carin Uyl-de Groot, and Marco van Vulpen. 2023. "Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands" Cancers 15, no. 2: 516. https://doi.org/10.3390/cancers15020516
APA StyleChen, Y. H., Blommestein, H. M., Klazenga, R., Uyl-de Groot, C., & van Vulpen, M. (2023). Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands. Cancers, 15(2), 516. https://doi.org/10.3390/cancers15020516