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Simple Summary: Intraperitoneal (IP) chemotherapy is a treatment for cancers in the abdomen,
delivering anti-cancer drugs directly into the peritoneal cavity. While this method has shown
promising outcomes, limited drug penetration into tumors remains a challenge due to their unique
pathophysiology. Our study aims to investigate drug delivery during IP chemotherapy using a
mathematical model. We incorporated a real tumor image into our model to understand how
tumor vessels and their distribution affect drug delivery. Our model allowed us to analyze the
spatiotemporal distribution of drug concentration in the tumor. We also quantitatively evaluated
treatment efficacy by examining drug availability in the tumor, drug penetration depth, and the
fraction of killed cells during the treatment. Our findings revealed that each tumor’s specific vascular
network can impact drug delivery during IP chemotherapy. Our model provides valuable insights
into the challenges of IP chemotherapy and holds promise for applications in personalized medicine.

Abstract: Intraperitoneal (IP) chemotherapy is a promising treatment approach for patients diagnosed
with peritoneal carcinomatosis, allowing the direct delivery of therapeutic agents to the tumor site
within the abdominal cavity. Nevertheless, limited drug penetration into the tumor remains a
primary drawback of this method. The process of delivering drugs to the tumor entails numerous
complications, primarily stemming from the specific pathophysiology of the tumor. Investigating
drug delivery during IP chemotherapy and studying the parameters affecting it are challenging due
to the limitations of experimental studies. In contrast, mathematical modeling, with its capabilities
such as enabling single-parameter studies, and cost and time efficiency, emerges as a potent tool
for this purpose. In this study, we developed a numerical model to investigate IP chemotherapy by
incorporating an actual image of a tumor with heterogeneous vasculature. The tumor’s geometry is
reconstructed using image processing techniques. The model also incorporates drug binding and
uptake by cancer cells. After 60 min of IP treatment with Doxorubicin, the area under the curve (AUC)
of the average free drug concentration versus time curve, serving as an indicator of drug availability
to the tumor, reached 295.18 mol·m−3·s−1. Additionally, the half-width parameter W1/2, which
reflects drug penetration into the tumor, ranged from 0.11 to 0.14 mm. Furthermore, the treatment
resulted in a fraction of killed cells reaching 20.4% by the end of the procedure. Analyzing the spatial
distribution of interstitial fluid velocity, pressure, and drug concentration in the tumor revealed
that the heterogeneous distribution of tumor vasculature influences the drug delivery process. Our
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findings underscore the significance of considering the specific vascular network of a tumor when
modeling intraperitoneal chemotherapy. The proposed methodology holds promise for application
in patient-specific studies.

Keywords: drug delivery; intraperitoneal chemotherapy; computational oncology; image-based
spatiotemporal model; peritoneal carcinomatosis

1. Introduction

Patients with malignancies within the peritoneal cavity are susceptible to metastasis
in this region [1,2]. Peritoneal carcinomatosis (PC), also known as peritoneal dissemination,
refers to the spread of malignancy along the lining surface of the peritoneal (abdominal)
cavity [3]. PC stands as a grave consequence that menaces these patients, resulting in
diminished quality of life and an unfavorable prognosis, attributed to issues like bowel
obstructions and ascites [4–6]. While intravenous (IV) chemotherapy serves as a palliative
measure for these cases, intraperitoneal (IP) chemotherapy, coupled with cytoreductive
surgery (CRS), holds promise for treating these patients [7–11]. In IP administration,
chemotherapy agents are introduced into the peritoneal cavity, directly exposing the tumor
to the drug. Conversely, in IV injection, drug particles are transported to the tumor site
through the blood circulation system and then penetrate the tumor by crossing the vessel
wall. As a result, IP chemotherapy is considered a locoregional therapy that may provide
improved efficacy with comparable systemic side effects to IV chemotherapy. Due to
the direct drug–tumor contact following injection, this method yields a higher likelihood
of drug penetration into the tumor. Nonetheless, drug penetration in IP chemotherapy
remains limited, and this leads to poor efficacy of this treatment method [12]. Consequently,
a comprehensive study of IP chemotherapy becomes imperative to thoroughly comprehend
the factors constraining drug penetration within tumors.

Tumors have a unique pathophysiology. The extracellular matrix (ECM) in tumors
is denser than in normal tissue [13–15]. Additionally, tumors lack an effective lymphatic
system [16,17]. Tumor vessels are leakier than normal vessels, and their spatial distri-
bution within the tumor is heterogeneous. Also, these vessels have irregular structures
compared to healthy ones [18–20]. Collectively, these factors contribute to an elevated
interstitial fluid pressure (IFP) within the tumor, while IFP sharply decreases at the
tumor’s periphery [21]. This results in an outward convective flow at the tumor periphery,
which impedes the convection-mediated penetration of drug particles, leaving diffusion as
the primary mechanism for drug transport and penetration into the tumor. Nevertheless,
the ECM structure in tumors further compromises the intratumoral diffusive transport
of therapeutic agents [22]. In addition to these tissue-related factors, the ultimate distri-
bution of the drug within the tumor is influenced by various therapy-related parameters,
including dosage, temperature, the volume of the carrier fluid, intra-abdominal pressure,
the potential use of vaso-active agents or surfactants, and treatment duration. Further-
more, the characteristics of the drug, such as its molecular weight, ionic charge, membrane
binding, solubility, and diffusivity, also play a substantial role in determining how the
drug distributes within the tumor [23]. To comprehend the impact of each of these factors
on the drug transfer process, a comprehensive investigation encompassing the relevant
parameters is essential. Mathematical modeling emerges as a potent tool, offering the
capability to conduct cost-effective analyses. The in silico models of IP chemotherapy solve
the governing equations related to interstitial fluid and mass transport, considering both
the convection and diffusion mechanisms within the tumor. These models incorporate the
characteristics of the tumor microenvironment, as well as the parameters associated with
the drug and the treatment protocol. A mathematical investigation has the potential to offer
deeper insights into the fundamental factors responsible for the limited drug penetration
observed in IP chemotherapy. Furthermore, such a study could serve as a foundational
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platform for devising strategies aimed at enhancing the efficacy of this chemotherapy
approach.

Until now, drug delivery to solid tumors has been studied in several works using
mathematical models, with the majority of them focusing on IV chemotherapy [24–33].
One of the earliest models that concentrated on drug delivery during IP chemotherapy
is the study by Au et al. [34], where a mathematical model was used to investigate the
IP transfer of Paclitaxel to the tumor. In this model, spatially varying parameters were
employed and the results were verified using a mouse model. Based on the framework
first presented by Baxter and Jain [28,30,35] for intravascular injection of drugs into tumors,
Steuperaert et al. [36] studied IP drug delivery in solid tumors accounting for diverse
sizes and shapes of tumors. In this study, the concentration distribution in the tumor was
investigated for two different drugs, including Paclitaxel and Cisplatin. The results of
this model showed that IP injection works better for smaller tumors. Furthermore, the
outcomes of this model indicated that vascular normalization therapy has the potential
to elevate the depth of drug penetration into the tumor. Expanding upon this model in a
study by the same group [37], a model was developed using DCE-MRI images of an actual
mouse tumor to investigate the effect of the spatial distribution of the vascular network in
the tumor. In this model, the tumor, normal tissue, and necrotic region were demarcated
based on distinctive vascular properties derived from the real images of the tumor. The
findings of this investigation revealed that the distribution of IFP in a heterogeneous tumor
nodule is affected by the abnormal geometry and different segmentation of the tumor in
terms of vascular properties.

Considering the shallow drug penetration depth within the tumor during IP chemother-
apy as a basic limitation, Shamsi et al. [38] proposed IP delivery of magnetic nanoparticles
to improve drug penetration. To achieve this objective, they examined the intraperitoneal
transfer of drug-coated magnetic nanoparticles. The results of this study showed that using
this technique can have a significant effect on increasing the penetration depth of the drug
into solid tumors. Rezaeian et al. [39] proposed the use of a targeted drug delivery system
using temperature-sensitive liposomes that releases encapsulated drug particle using the
heat generated by high-intensity focused ultrasound. The results of this study showed
that this two-stage drug delivery system can lead to increased drug penetration while
also potentially mitigating the side effects associated with IP chemotherapy. Although
the mentioned articles have investigated different aspects of IP chemotherapy, treating
the tumor vasculature as a distributed source, none of the aforementioned studies ex-
plicitly addressed the heterogeneity of the tumor vasculature. Consequently, there is a
noticeable gap in modeling studies that consider the actual tumor vasculature’s impact on
drug distribution during IP chemotherapy. This aspect is particularly crucial, especially
considering that vessels have been confirmed to function as localized drug sinks [40]. Our
previous work in IV chemotherapy [32] demonstrated that image-based modeling can
provide a more accurate representation of drug delivery to solid tumors. Consequently, it is
anticipated that the heterogeneity of the tumor vasculature will also impact drug delivery
during IP chemotherapy.

In this work, we modeled drug delivery during IP chemotherapy using a reconstructed
geometry based on an actual image of a heterogeneous tumor vasculature. Using image
processing techniques, tumor geometry is built based on a real image and considered
as an input for our model. By solving the fluid flow and convection–reaction–diffusion
equations, the transport of drugs within the tumor has been simulated. Moreover, the
process of drug binding and uptake into cancer cells has been taken into account. Finally,
by investigating IFV and IFP in the tumor, as well as the temporal and spatial distribution
of drug concentration within the tumor, the performance of IP chemotherapy has been
investigated. Also, the accuracy of the results has been compared and validated with
previous studies.
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2. Materials and Methods

A schematic of chemotherapy with IP injection is shown in Figure 1. Therapeutic
agents are administered intraperitoneally, where they can penetrate the tumor tissue.
The diffusion and convection mechanisms aid in facilitating the deeper penetration of
therapeutic agents within the tumor tissue [41]. Diffusive transport is determined by the
concentration and diffusion coefficient of the drug within the interstitium. Convective
transport, on the contrary side, is dependent on interstitial fluid velocity (IFV) and tissue
permeability [16]. The drug can penetrate the tissue, attach or detach to receptors on the
surface of cancerous cells, and finally internalize into the cells [25].
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Figure 1. Schematic of drug delivery during IP administration of Doxorubicin. The IP chemotherapy
is delivered to the patient’s abdomen using an IP port and catheter. Once the Doxorubicin particles
enter the tumor interstitium, they can bind to cancer cells, unbind, or become internalized [39].

Darcy’s law for interstitial fluid flow, the laminar flow equation for intravascular flow,
and convection–diffusion–reaction (CDR) equations for drug delivery in tumor tissue are
all included in the mathematical model for IP chemotherapy. The diffusion and convection
of therapeutic agents in the interstitium, as well as interactions of therapeutic agents and
cancerous, such as binding/unbinding and internalization, are determined by the mass
transport equations.

The compartmental models, which are frequently employed to represent drug delivery,
are the foundation of the generic mass transport model. The concentration of drug in each
compartment is considered to be independent in compartmental models. To compute the
spatiotemporal distribution of drug concentration within each compartment, we integrated
the compartmental model with the CDR equations [42]. A block diagram illustrating the
compartmental model of IP drug delivery is presented in Figure 2.
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2.1. Governing Equations

Drug delivery equations in tumor tissue are presented in this section as two different
sets of equations: (i) interstitial fluid flow, and (ii) drug transport in tissue.

(i) Interstitial fluid flow

Given the intervascularity of the tumor interstitium, it is reasonable to assume that
tumor tissue is a porous environment [43,44]. In this case, Darcy’s law is employed to
characterize the tumor’s interstitial fluid flow as [30]

vi = −K∇Pi (1)

In which K (m2/(Pa·s)) is the hydraulic conductivity of the interstitium, ∇ represents
the divergence operator, Pi (Pa) is the IFP, and vi (m/s) stands for the IFV. K is frequently
described as a function of tissue permeability, k (m2), and dynamic viscosity of the fluid, µ
(Pa·s), as

K =
k
µ

(2)

For incompressible interstitial fluid in the interstitium, the steady state continuity
equation is presented as [30]

∇vi = φB − φL (3)

In which φL (s−1) and φB (s−1) represent the fluid flow from the interstitium to the
lymph system and fluid flow from the microvascular system to the interstitium, respectively.
It is assumed that there is not a functional lymph system in solid tumors, so φL = 0 in
tumor tissue. However, φB term can be achieved through Starling’s equation as [42]

φB =
LPS
V

(PB − Pi − σs(πB − πi)) (4)

In which LP (m/(Pa·s)) is microvessels’ hydraulic conductivity, S/V (m−1) demon-
strates the surface area per unit volume of microvessels, PB (Pa) is blood pressure, σs
represents osmotic reflection coefficient, πB, and πi (Pa) stand for the osmotic pressure of
microvessels and interstitium, respectively.

(ii) Drug Transport

The following equation can be used to obtain the free drug’s concentration in intersti-
tium based on the CDR equation [25,39]:

∂CF
∂t

= −vi∇CF + DF∇2CF −
1
ϕ

KONCrecCF + KOFFCB + Φ (5)

where CF and CB (mol/m3) express the free and bound drug concentration in the inter-
stitium, Crec stands for the cell surface receptors’ concentration, KON and KOFF (1/s) are
the association and dissociation rate of the drug agents to cell receptors, respectively. DF
(m2⁄s) is the therapeutic agents’ diffusion coefficient and ϕ is the volume fraction of the
tumor accessible to the drug. Φ is a source term demonstrating drug exchange among
microvessels, interstitium, and lymph system, which can be derived as

Φ = ΦB −ΦL (6)

ΦL represents the sink term for drug concentration caused by the lymphatic system,
which is negligible because the tumor lacks a functional lymphatic system. Also, ΦB is the
drug concentration source provided by microvessels [45,46]:

ΦB =

(
φB

(
1− σf

)
CP +

PS
V

(CP − CF)
Pe

ePe − 1

)
(7)



Cancers 2023, 15, 5069 6 of 20

where σf, CP (mol/m3), and P (m/s) are the filtration reflection coefficients for the drug,
injected drug concentration into the microvessels, and vessel wall’s permeability. Peclet
number, Pe, which reflects the ratio of mass transport via advection to drug transport along
microvessel walls, is as follows:

Pe =
φB

(
1− σf

)
P S

V
(8)

The concentrations of the drug that is bound and subsequently internalized are com-
puted as follows [25]:

∂CB
∂t

=
1
ϕ

KONCrecCF − KOFFCB−K INTCB (9)

∂CI
∂t

= KINTCB (10)

where CB and CI represent bound and internalized drug concentrations. In addition, KINT
is a constant that represents the internalization rate of the drug into cellular space.

The treatment efficacy, indicated by the fraction of killed cells (FK), is computed for
Doxorubicin as follows [47]:

FK = 1− exp(−ω·CI) (11)

In which ω is a fitting parameter that was obtained from the experiment [48].

2.2. Numerical Modeling
2.2.1. Boundary Conditions

Since the time scale of tumor growth is higher than the treatment time scale, the bound-
ary conditions are considered constant during the simulation. At the tumor surface, where
the drug particles are in direct contact with the tumor, the drug concentration is considered
to have a constant value (0.8 mol/m3). The constant pressure boundary condition for the
inlet and outlet is considered equal to 25 mm Hg and 10 mm Hg, respectively. Additionally,
a fixed zero-pressure boundary condition is established at the outer periphery of the tumor.

2.2.2. Solution Strategy

The flowchart describing the solution strategy of the simulation is shown in Figure 3.
The solution process comprises two distinct phases: the steady state phase, which solves
the intravascular and interstitial fluid flow equations, and the time-dependent phase, which
solves the mass transport equations. The results of the steady-state solution were used as
the input for transient simulations. According to the duration of the IP treatment method,
the transient simulations were performed in one hour. As a convergence criterion, a
4-fold drop in magnitude in the residuals was chosen. The parameters of the model are
summarized in Table 1.

2.2.3. Model Geometry

In this model, representing the peritoneal tumor, an ellipsoid geometry is adopted
with a long axis length of 4.85 mm and a short axis length of 3.51 mm (Figure 4). This
geometry also includes a vascular network that is extracted from a real image by using
image processing techniques. Section 2.2.4. describes the steps of converting the initial
image to the final geometry used in the model. The model’s geometry includes 5 inlets and
6 outlets in the vessels, named Inlets 1–5 and Outlets 1–6 in Figure 4.
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Table 1. Parameters used in the numerical model.

Parameter Definition Unit Value Reference

S/V The surface area of blood vessels per unit of tissue volume m−1 2 × 104 [49]

k Hydraulic conductivity of the interstitium m2·Pa−1·s−1 3 × 10−14 [50]

LP Hydraulic conductivity of the micro-vascular wall m·Pa−1·s−1 2.10 × 10−11 [50]

PB Vascular fluid pressure Pa 2.1 × 103 [50]

πB The osmotic pressure of the plasma Pa 2.7 × 103 [50]

πi The osmotic pressure of the interstitial fluid Pa 2 × 103 [50]

σs Average osmotic reflection coefficient for plasma proteins - 0.9 [50]

Deff Effective diffusion coefficient cm2·s−1 3.40 × 10−6 [49,51]

P Microvessel permeability coefficient cm·s−1 3.00 × 10−4 [49,51]

KON Constant of binding rate M−1·s−1 1.5 × 102 [25,52]

KOFF Constant of unbinding rate s−1 8 × 10−3 [25,52]

KINT Constant of cell uptake rate s−1 5 × 10−5 [25,52]

ϕ Tumor volume fraction accessible to drugs - 0.3 [53]

Crec Concentration of cell surface receptors M 10−5 [25]

ω Cancer cell survival constant m3·mol−1 0.6603 [47]
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named Outlets 1–6 in the model.

2.2.4. Image Processing Method

In this study, we used a real tumor image with a capillary network, extracted from
Roudnicky et al. [54], as input. Image processing is necessary for creating a standard
geometry from an image containing capillaries. The aim is to accurately separate the
capillary geometry from the background of the input image. By employing MATLAB
software version R2023a as an image-processing tool, we initially generated a binary im-
age. This was achieved by eliminating unnecessary background details from the input
image through techniques such as histogram equalization for color intensity. Subsequently,
following the assessment of the processed image contour, the minimum values are ex-
tracted to form a closed surface accurately representing the actual capillaries within the
tumor. Figure 5 outlines the image processing workflow employed in this study on the
input image.
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2.2.5. Grid Generation

Since drug entry occurs from the outer boundary of the tumor, the spatial variations
of the main investigated parameters, including IFP and concentrations, are very high in
these areas. In addition, the area close to the tumor vessels is also important because of
the fluid and mass exchange between tissue and vessels. For this reason, a boundary layer
network has been used for the meshing of the geometry for the areas close to the outer edge
of the tumor and the tumor vessels. This boundary layer contains 21 layers with the step of
1.2. For other areas of the geometry, the free triangular mesh has been used to achieve the
desired accuracy in calculations. Figure 6 shows the generated mesh for the model. The
total number of elements is 125,034, including 16,532 rectangular and 108,502 triangular
elements.
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3. Results and Discussion

In previous studies, IP drug delivery was modeled by considering tumor vessels as
source terms [23,34,36–39]. While this approach to modeling the vascular network provides
valuable insights into fluid and drug transport within tumors, research has highlighted
the potential influence of tumor vasculature heterogeneity on drug distribution within
the tumor [23,55]. In the present study, we have explicitly integrated the tumor’s vascular
network into the model, utilizing a real image as a reference. To ensure a precise geometry
for the tumor vascular network, image processing techniques were employed on the
original real image of the tumor vasculature. Subsequently, utilizing this refined geometry
alongside parameters related to the tumor tissue and the chemotherapy drug, we simulated
the interstitial fluid flow and drug delivery within the tumor.

Figure 7a shows the IFP distribution in the tumor. Notably, IFP reaches its peak in
the central regions of the tumor, while it experiences a rapid decline towards the outer
areas. This increased IFP value is in general agreement with the previous experimental and
modeling studies [28,36]. By incorporating the tumor vessels into the model’s geometry,
we observe a distinctively non-uniform pressure distribution within the tumor. This
observation highlights that the heterogonous vasculature of the tumor directly contributes
to the non-uniform distribution of IFP. Given that the IFV value is directly proportional to
the gradient of IFP as defined in Equation (1), it follows that the IFV value experiences an
increase in the outer regions of the tumor (Figure 7b).
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Unlike chemotherapy with intravenous (IV) administration, in IP chemotherapy, the
tumor vessels do not have the role of transporting the drug to the tumor tissue. How-
ever, the vascular network of the tumor is still influential in drug transport during IP
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chemotherapy [55]. Fluid exchange between blood vessels and tumor tissue determines
the IFP and IFV, which is the basis for drug transport in tumor tissue [30]. In addition,
the drug particles can be removed from the tumor tissue by intravasation into blood
vessels [40]. Hence, intravascular blood pressure (IBP) and intravascular blood velocity
(IBV) are important in determining fluid/mass exchange between blood vessels and tumor
tissue. Figure 8a and b show the contours of IBP and IBV distribution, respectively. The
ratio of minimum to maximum IBP in the simulation is 39.5, which is in agreement with
the values obtained by [56,57]. In general, high IBP by strengthening the fluid convection
to the interstitial space can increase the IFP values. This mechanism can ultimately hinder
effective drug penetration into the tumor during IP chemotherapy.
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To gain insights into the spatial distribution of interstitial fluid pressure/velocity
and drug concentration within the tumor, four distinct axes have been positioned across
the model geometry, as depicted in Figure 9. The distribution of IFP along axes 1 to
4 is illustrated in Figure 10. This figure demonstrates the presence of a heterogeneous
IFP distribution within the tumor. The average IFP in the tumor is 1433.5 Pa, which
is consistent with the values reported in previous numerical and experimental
studies [28,36,58]. Furthermore, the IFP value within the central regions of the tumor
has escalated to exceed 2500 Pa. The highest IFP value within the tumor reaches 2604.8 Pa.
This value notably surpasses the maximum IFP in our earlier non-image-based model,
which fell within the range of 1540 Pa. [39,42,59]. In general, a tumor typically exhibits
elevated IFP at its center, attributed to factors such as a denser extracellular matrix, the lack
of functional lymphatic vessels, and microvessels that display greater leakage compared to
normal vessels. When contrasting the IFP profiles along axes 1 to 4, as depicted in Figure 10,
it becomes evident that variations in IFP across different tumor regions are influenced by
the distribution pattern of vessels within the tumor.

Figure 11a–d display the concentration contours of free (CF), bound (CB), and inter-
nalized (CI) Doxorubicin, along with the total Doxorubicin concentration (CT), within the
tumor one hour after the initiation of drug injection. Doxorubicin’s penetration into the
tumor primarily occurs in the outer regions, with a noticeable decline in concentration as
one moves toward the tumor’s center. This restricted drug penetration is influenced by un-
derlying factors associated with interstitial fluid flow within the tumor. The heightened IFV
at the outer boundary triggers an outward convective flow, which consequently restricts
the delivery of Doxorubicin to the tumor. Although the general trend aligns with what
was observed in previous non-image-based models, a closer analysis of the concentration
contours reveals that, unlike these earlier models, the distribution of drug concentration
varies across different axes of the tumor. To facilitate a more comprehensive understanding,
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the concentration distribution profiles along axes 1 to 4 are presented in Figure 12. Notably,
the extent of drug penetration varies distinctly along these axes. Consequently, in addition
to being confined to the tumor’s outer boundary, drug penetration exhibits distinct pat-
terns along different axes. To evaluate drug penetration within the tumor, we computed
the half-width parameter W1/2, defined as the distance across the tumor surface where
the free drug concentration CF equals half of the exterior concentration (as described by
Au et al. [34]). The half-width values, W1/2, ranged from 0.11 to 0.14 mm, varying along
different axes within the tumor. This variance can be attributed to the heterogeneous
distribution of vessels within the tumor, which subsequently leads to non-uniform dis-
tributions of IFP and IFV. As a natural consequence of this fluid flow heterogeneity, the
distribution of drug concentration within the tumor is similarly influenced, thus amplifying
the complexity of drug delivery.
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Figure 13 shows the average free, bound, internalized, and total drug concentration
profiles in the tumor during 60 min of IP chemotherapy. With the start of injection, CF
increases from the initial value of zero. Upon entering the tumor, free Doxorubicin is moved
deeper into the tissue through a combination of convection and diffusion mechanisms.
Once within the tumor, it has the potential to bind to cancer cells. Through a continuous
process of introducing free Doxorubicin into the tumor during injection, its conversion
into bound drug, and subsequent internalization into cancer cells, the concentrations of
bound (CB) and internalized (CI) Doxorubicin within the tumor escalate. Meanwhile, CF
experiences a more gradual increase, with a slope lower than that observed at the onset
of injection. As depicted in Figure 13, it is notable that CB consistently remains higher
than the concentrations of the other two drug forms, namely CF and CI. The interaction
between the drug and the cells, characterized by the constants of drug binding, unbinding,
and internalization rate, plays a pivotal role in governing the interconversion between
these different drug forms. To visualize the spatiotemporal evolution of the drug delivery,
concentration distribution contours are depicted at four distinct time intervals: 15, 30,
45, and 60 min, as illustrated in Figure 14. These contours effectively demonstrate the
progressive increase in concentration over time, as well as the extent of drug penetration
into the tumor.
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To assess the level of drug exposure within the tumor, we calculate the area under
the curve (AUC) of the free drug concentration (CF) versus time. The AUC value reached
295.18 mol·m−3·s after 60 min of treatment with Doxorubicin. Furthermore, for a quan-
titative assessment of treatment effectiveness, Figure 15 illustrates the fraction of killed
cells (FK) versus time. As depicted, the FK value at the end of the 60-min treatment period
stands at 0.204. It is worth noting that FK is directly influenced by the concentration of
internalized drug (CI), leading to a gradual increase in FK with rising CI levels within the
tumor. Nevertheless, due to the constraints of drug transfer inherent in IP chemotherapy,
the FK value remains relatively modest by the conclusion of the treatment.
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4. Model Validation

We validated the results of our computational model through a comparison with pre-
vious experimental and numerical studies. Our model first solves the fluid flow equations,
including intravascular and interstitial fluid flow, and then the drug transport equations. In
this section, we have validated the results of both the fluid flow and mass transport solvers.



Cancers 2023, 15, 5069 16 of 20

4.1. Validation of Fluid Flow Simulations

We initially validated our interstitial and intravascular fluid flow simulations by
comparing them to previous studies. Our study recorded a maximum interstitial fluid
velocity (IFV) value of 2.67 µm/s. This value falls well within the range of values reported
in earlier experimental and modeling works [56,60]. Furthermore, our observed trend of
increased interstitial fluid pressure (IFP) aligns with the general findings from previous
experimental data, as demonstrated by Boucher et al. [28]. Moreover, the ratio of the
minimum to maximum IBP in our simulation stands at 39.5, which is consistent with values
obtained in other studies [56,57]. Additionally, the average IFP within the tumor, recorded
at 1433.5 Pa, agrees with the values reported in previous numerical and experimental
studies [28,36,58].

4.2. Validation of Mass Transport Simulations

After confirming the performance of our fluid flow solver, we proceeded to validate
the results of our mass transport model. We validated the results against experimental
data presented by Au et al. [34], which detailed drug concentration profiles of drugs as
a function of distance from the tumor periphery in mice after six hours of IP injection.
Similarly, our simulation involved IP chemotherapy over a six-hour duration, setting the
exterior concentration to 45 µM. A comparison between the results of our modeling and
the experimental study by Au et al. is presented in Figure 16. Our results exhibit similar
trends to the experimental data. However, differences between our simulation and the
experimental data by Au et al. [34] are observed. These can be attributed to variations in
drug properties and tumor tissue parameters between the two studies.
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5. Limitations and Future Work

In our study, we have certain assumptions and limitations that merit discussion. First,
the drug concentration at the outer edge of the tumor was held constant throughout the
simulation, primarily due to the unavailability of experimental data. Addressing this
limitation by implementing more realistic boundary conditions for concentration at the
tumor’s outer edge would undoubtedly enhance the model’s accuracy in future works.
Another limitation to consider is our utilization of a two-dimensional tumor model instead
of a more comprehensive three-dimensional representation. While this approach allowed
us to explore the initial facets of our research, it is important to acknowledge that a full three-
dimensional model will better represent real-world situations. Furthermore, our choice
to employ a static network for capillaries in our model represents a simplification of the
dynamic nature of microvascular networks in vivo. Similarly, assuming laminar flow for
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blood circulation within the microvascular network is another simplification that may not
fully capture the complexity of blood flow patterns. Lastly, we assumed uniform transport
properties within the tumor tissue. In reality, these properties can exhibit heterogeneity,
which may impact the accuracy of our model’s predictions. It is important to recognize
these limitations as they guide opportunities for future research aimed at refining and
expanding our understanding of the subject matter.

6. Conclusions

Chemotherapy by injection into the peritoneal cavity is a promising method for the
treatment of tumors in the peritoneal region. Even though IP chemotherapy provides
a locoregional therapy that delivers more drug particles to the tumor compared to IV
chemotherapy with the same systematic side effects, drug penetration in this method is
limited. Drug transfer in a tumor is affected by various parameters of tumor tissue, the
chemotherapy drug, and the administration route. Considering the tumor as a porous
medium, the interstitial fluid of the tumor is the medium for the transport of drug particles.
Therefore, the interstitial fluid flow in terms of IFP and IFV has a major impact on the drug
delivery in tumors. The interaction between the vascular network and the interstitial space
of the tumor leads to fluid/mass exchange between these two compartments. Therefore,
tumor vessels are potentially influential on the interstitial fluid flow and drug delivery
in tumors. In this study, a mathematical model based on diffusion–convection–reaction
equations is presented to investigate IP drug transfer in a tumor with a heterogeneous vas-
culature. In the previous models, the role of tumor vessels was considered as source/sink
terms. In other words, it was assumed that the vessels are homogeneously distributed
in the tumor. This was a simplifying assumption because, in reality, there are tumors
with different vascular networks that often have a heterogeneous distribution. The model
presented here, unlike previous models that used a simplified ideal tumor geometry, is
based on a real image of the vascular network, and the influence of the vessels is seen in
it. The results showed how the vascular network of a tumor is effective in drug delivery
during IP chemotherapy. The key findings of this study can be summarized as follows:

1. The tumor’s vascular network, characterized by its heterogeneous distribution of
vessels, contributes to heterogeneous distributions of interstitial fluid pressure (IFP)
and interstitial fluid velocity (IFV) within tumor.

2. Drug penetration within the tumor exhibits diverse patterns along different axes in
the tumor as a consequence of the heterogeneous distribution of vessels and fluid
flow in the tumor, thus increasing the complexity of drug delivery.

3. The geometric attributes and unique vascular network of tumors are crucial consider-
ations before treatment planning.

The image-based model presented here signifies the initial strides toward personalized
medicine for treating patients with peritoneal carcinomatosis. It offers unique insights into
the various challenges encountered during IP chemotherapy. Additionally, this model lays
the foundation for developing a computational tool capable of assessing and predicting IP
chemotherapy outcomes based on patient-specific data. Furthermore, when compared to
in vivo studies, this model presents a cost-effective alternative for testing various drugs and
treatment protocols, aiding in the identification of novel personalized treatment strategies
for patients. The results generated by this model also contribute valuable insights to the
drug transport processes during IP chemotherapy, with the potential to benefit future
preclinical investigations.
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