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Simple Summary: This study developed CT-based radiomics signatures using the least absolute
shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM)
algorithms to predict the pathological complete response (pCR) in locally advanced rectal cancer
(LARC) patients who underwent neoadjuvant chemoradiotherapy. Among these methods, the SVM-
based radiomics score (Radscore) exhibited superior performance compared to the others, with area
under the receiver operating characteristic curves (AUCs) of 0.880 and 0.830 in the training and
validation cohorts, respectively. By integrating the SVM-based Radscore with clinical indicators,
a nomogram was created for predicting pCR, achieving AUCs of 0.910 and 0.866 in the training
and validation cohorts, respectively. The study highlighted the promising performance of the SVM-
based Radscore and the value of the radiomics nomogram for predicting pCR in LARC patients.
Additionally, the identification of an optimal radiomics signature can significantly improve the
accuracy of pCR prediction.

Abstract: The objective of this study was to evaluate the discriminative capabilities of radiomics
signatures derived from three distinct machine learning algorithms and to identify a robust radiomics
signature capable of predicting pathological complete response (pCR) after neoadjuvant chemoradio-
therapy in patients diagnosed with locally advanced rectal cancer (LARC). In a retrospective study,
211 LARC patients were consecutively enrolled and divided into a training cohort (n = 148) and
a validation cohort (n = 63). From pretreatment contrast-enhanced planning CT images, a total of
851 radiomics features were extracted. Feature selection and radiomics score (Radscore) construction
were performed using three different machine learning methods: least absolute shrinkage and selec-
tion operator (LASSO), random forest (RF) and support vector machine (SVM). The SVM-derived
Radscore demonstrated a strong correlation with the pCR status, yielding area under the receiver
operating characteristic curves (AUCs) of 0.880 and 0.830 in the training and validation cohorts,
respectively, outperforming the RF and LASSO methods. Based on this, a nomogram was developed
by combining the SVM-based Radscore with clinical indicators to predict pCR after neoadjuvant
chemoradiotherapy. The nomogram exhibited superior predictive power, achieving AUCs of 0.910
and 0.866 in the training and validation cohorts, respectively. Calibration curves and decision curve
analyses confirmed its appropriateness. The SVM-based Radscore demonstrated promising per-
formance in predicting pCR for LARC patients. The machine learning-driven nomogram, which
integrates the Radscore and clinical indicators, represents a valuable tool for predicting pCR in
LARC patients.

Cancers 2023, 15, 5134. https://doi.org/10.3390/cancers15215134 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15215134
https://doi.org/10.3390/cancers15215134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0009-0000-3597-7784
https://orcid.org/0000-0002-8688-5000
https://doi.org/10.3390/cancers15215134
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15215134?type=check_update&version=1


Cancers 2023, 15, 5134 2 of 22

Keywords: radiomics signature; nomogram; pathological complete response (pCR); neoadjuvant
chemoradiotherapy (nCRT); locally advanced rectal cancer (LARC)

1. Introduction

Locally advanced rectal cancer (LARC) is a prevalent malignancy that is encountered
globally. The standard treatment for LARC involves total mesorectal excision (TME) surgery
following neoadjuvant chemoradiotherapy (nCRT), resulting in pathologic complete re-
sponse (pCR) in approximately 15% to 27% of patients [1–3]. Controversially, the “watch
and wait” strategy has emerged as a preferred option due to reduced surgical risks and
improved postoperative quality of life in patients achieving a complete response [4,5]. Cur-
rently, pCR can only be determined through the histopathologic examination of surgically
resected specimens. Therefore, the critical challenge lies in developing a non-invasive and
accurate method to identify complete response after chemoradiotherapy.

Medical imaging techniques such as positron emission tomography (PET), endorec-
tal ultrasound (EUS) and magnetic resonance imaging (MRI) have been utilized as non-
invasive methods to assess the response to CRT and evaluate pCR [6–11]. PET/CT can
effectively detect abnormal metabolic activity and metastases, and the features extracted
from PET/CT imaging have shown potential in predicting treatment response. EUS allows
the direct visualization of the rectal wall and adjacent structures, making it valuable in
predicting response to CRT. Similarly, MRI holds promise in predicting responses to CRT
due to its significant role in cancer diagnosis and staging. Different imaging modalities
have been employed to assist in predicting pCR, yielding promising results. However,
accessing these additional imaging modalities such as PET, EUS and MRI often requires
more time and effort compared to CT imaging. Moreover, CT imaging plays a crucial role
in radiotherapy planning for LARC patients. It provides detailed anatomical information,
allowing for the accurate delineation of the gross tumor volume (GTV) in the rectal region.
This delineation is essential for precise targeting during radiotherapy delivery. Addition-
ally, CT imaging facilitates the extraction of radiomics features, which are quantitative
metrics derived from medical images. These features capture tumor heterogeneity and
pathophysiological characteristics and can be used for predictive modeling and treatment
planning.

Recent studies in radiomics have highlighted the remarkable potential of CT-based
radiomics analyses in predicting the response to CRT in LARC, as evidenced by numerous
references [12–20]. The majority of these studies primarily focused on predicting the pCR
status [12–18]. Despite these valuable contributions, the current body of research still
faces several limitations that need to be addressed. One of the prominent challenges is
related to the quality and characteristics of the datasets utilized. This includes the lack of
independent validation datasets [13,15], inadequately small sample sizes [12,15] and the
presence of imbalanced test datasets [17]. Despite achieving exceptional performance on the
training datasets, these models often exhibit significant underperformance when tested on
independent validation datasets [16]. Consequently, concerns arise regarding the robustness
and generalizability of the developed models. Another critical gap in the existing literature
is the insufficient integration of clinical indicators to enhance response prediction [12–15].
Incorporating relevant clinical factors in combination with radiomic features can provide
a more comprehensive understanding of the predictive models, yielding more accurate
and reliable results. Furthermore, it is paramount to explore a robust classifier to ensure
the development of reliable predictive models [18]. Different machine learning algorithms
should be evaluated to identify the most suitable and effective approach for predicting pCR
in LARC based on radiomics scores.

The radiomics score (Radscore), which is calculated by assigning weights to selected
features based on their respective coefficients, has been employed in prior research to
predict the response to CRT in patients with LARC [16,18,21,22]. However, to the best of
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our knowledge, no study has comprehensively evaluated its feasibility and effectiveness
in combination with diverse machine learning techniques. This research gap emphasizes
the need for further investigations to leverage the potential synergies between Radscores
and machine learning techniques (LASSO, RF and SVM), aiming to advance the accuracy
and applicability of predictive models for pCR prediction in LARC. Therefore, the purpose
of our study was to develop and validate a robust radiomics nomogram that incorporates
the Radscore derived from planning CT scans, along with clinical indicators, for the
preoperative prediction of pCR in patients with LARC. Our work aims to non-invasively
evaluate patient outcomes and assist LARC patients in potentially avoiding surgery through
the use of a radiomics signature obtained from planning CT scans.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by our institutional review board. We con-
secutively enrolled patients diagnosed with LARC who underwent CRT and subsequent
surgery at the Second Affiliated Hospital, Zhejiang University School of Medicine, from
October 2015 to June 2021. The patient recruitment process, along with the inclusion and
exclusion criteria, are summarized in Figure S1.

The inclusion criteria for this study were as follows: (1) LARC patients diagnosed
with histologically confirmed rectal adenocarcinoma; (2) patients who underwent long-
course neoadjuvant CRT followed by TME surgical resection; (3) patients with available
pretreatment contrast-enhanced planning CT images acquired using the same CT scanner.
On the other hand, the exclusion criteria were: (1) patients whose surgery was either
canceled or delayed for more than 8 months after completing CRT; (2) patients diagnosed
with non-adenocarcinoma LARC; (3) patients with inadequate clinicopathological data or
CT images of poor quality.

A total of 211 consecutive patients were enrolled in this study, and they were divided
into two datasets in a ratio of 7:3 using computer-generated random numbers. The training
cohort consisted of 148 patients, while the validation cohort included 63 patients. The
allocation was conducted in a manner that maintained a balanced distribution of pCR
rates between the two cohorts. Baseline clinical characteristics, such as age, gender, body
mass index (BMI), T stage, N stage, distance from anal verge, tumor volume, tumor
diameter, tumor length, prescription dose, levels of carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9), were extracted from the patients’ pretreatment medical
records (Table S1).

2.2. Standard of Reference

All patients included in this study underwent intensity-modulated radiation therapy
(IMRT) with standard contouring. The total radiation dose administered was either 50 Gy
(delivered in daily fractions of 2.0 Gy) or 57.5 Gy (delivered in daily fractions of 2.3 Gy),
administered 5 days a week over a duration of 5 weeks. Concurrently, chemotherapy was
administered alongside radiation therapy using capecitabine at a dose of 825 mg/m2 orally
twice daily on radiation therapy days. Then, patients receive capecitabine alone or CAPEOX
chemotherapy for two cycles before surgery. TME surgery was performed within 12 weeks of
the completion of neoadjuvant CRT.

The surgical resection specimens were meticulously evaluated by specialized gastroin-
testinal pathologists who were blinded to the patients’ clinical and CT findings. Pathological
tumor staging was conducted in accordance with the American Joint Committee on Cancer
(AJCC) TNM system. The response to CRT was assessed using the tumor response grading
(TRG) system. Based on their response, patients were then categorized into two groups:
pCR and non-pCR. pCR was defined as the absence of viable tumor cells in both the primary
tumor and the associated lymph nodes. The study workflow is depicted in Figure 1.
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Figure 1. Radiomics workflow adopted in our study, encompassing the following steps: (I) Manual
segmentation of tumors was performed on the planning CT images, delineating the gross tumor
volume (GTV) with a red circle. (II) A total of 850 radiomics features were extracted from the defined
region of interest. (III) Radiomics feature selection techniques were employed to identify the most
informative features. (IV) A radiomics nomogram was developed by integrating the radiomics score,
calculated from the selected radiomics features, and relevant clinical indicators.

2.3. Feature Extraction

All patients in the study underwent a simulation CT scan utilizing the LightSpeed RT
system (GE Healthcare, Chicago, IL, USA), a 16-channel multi-detector row CT scanner
specifically designed for radiotherapy treatment planning. These scans involved the
administration of contrast-enhanced CT images following the intravenous injection of
80–100 mL of iodinated contrast material (Medrad, Bayer, Leverkusen, Germany) at a
controlled rate of 2.0–3.0 mL/s. For each patient, images were acquired during the portal
venous phase with a fixed delay time of 50 s. The acquired CT images were subsequently
reconstructed to provide a pixel matrix of 512 × 512 and a slice thickness of 2.5 mm,
ensuring precise visualization and analysis. To mitigate any potential variability arising
from parameters related to voxel size, radiomics data were extracted from images that had
been resampled to isometric voxels measuring 1 × 1 × 1 mm3. This standardized voxel
size allowed consistent and comparable radiomics analysis across the dataset.

The primary tumors were independently contoured manually by two experienced
abdominal radiation oncologists at our institution. Staging MR T2-weighted sequences
were utilized as a supplementary tool to assist in target definition. To assess the reliability
and consistency of the extracted features, intra- and interclass correlation coefficients (ICCs)
were employed. Features with ICC values exceeding 0.75 were deemed suitable for further
analysis in this study. Subsequently, the CT images and GTV structures were retrieved from
the Eclipse Treatment Planning System (TPS), developed by Varian Medical System, and
then transferred to an external workstation running auto-segmentation software named
AccuContour 3.2 (Manteia, Milwaukee, WI, USA). This software allowed the automatic
calculation of radiomics features based on the provided CT images and GTV structures.

A total of 851 imaging features were extracted from the planning CTs for each patient.
These features were classified into several categories, which included 18 first-order fea-
tures, 14 shape features, 24 grey-level co-occurrence matrix (GLCM) features, 16 grey-level
run-length matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features,
14 gray-level dependence matrix (GLDM) features, and 5 neighbor gray-level difference
matrix (NGTDM) features. Additionally, these categories comprised 744 high-dimensional
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feature types, encompassing both the first-order features and texture features calculated
from the images using a wavelet filter with a three-step depth of decomposition. This
comprehensive analysis involved considering various combinations of wavelet decomposi-
tions, specifically HHH, HHL, HLH, HLL, LHH, LHL, LLH and LLL (Table S4). Following
feature extraction, all radiomics features were normalized using a z-score transformation
method. This involved transforming the data into standardized intensity ranges for each
imaging modality across all subjects, resulting in a mean of 0 and a standard deviation of 1.

2.4. Feature Selection and Radscore Construction

To construct a robust radiomics signature and select the optimal radiomics features
from the initial pool of 851 radiomics features, we employed three feature selection steps.
Initially, we conducted Pearson correlation analysis with an r threshold of 0.8 to identify
and eliminate redundant features. Subsequently, features were selected based on univariate
logistic regression between the pCR and non-pCR groups in the training cohort, using a
threshold of 0.1 to avoid confounding effects during multivariate analysis.

In the next step, three commonly used machine learning methods were employed
to select key features from the previously identified set: the least absolute shrinkage
and selection operator (LASSO), random forest (RF) and support vector machine (SVM).
These algorithms were utilized to identify the most relevant features for the task at hand.
Radscores, which represent the radiomics scores, were calculated for each patient by linearly
combining the selected features and weighting them by their respective coefficients. These
Radscores were then used to predict the probability of pCR.

To obtain the LASSO radiomics score, we summed the selected radiomics features
weighted by their non-zero coefficients. Features with minimal impact on the target variable
were assigned a weight of zero and excluded from further analysis. In order to address
potential overfitting issues, we employed the Fast Unified Random Forests for Survival,
Regression, and Classification (RF-SRC) feature selection approach. This method ranks the
variables based on minimal depth and determines the optimal number of features with
the lowest out-of-bag (OOB) error. The RF radiomics score was obtained by summing the
selected radiomics features and weighting them according to their importance derived from
the RF-SRC method [23–26]. Additionally, the SVM-based Recursive Feature Elimination
(SVM-RFE) algorithm was utilized to determine the optimal subset of features. The SVM-
RFE algorithm iteratively removes features with the lowest weights and selects the most
relevant features for the classification task. The SVM radiomics score was then calculated
by summing the selected radiomics features weighted by their corresponding non-zero
coefficients obtained from the linear SVM model [27–30].

By employing these advanced feature selection techniques and leveraging the im-
portance of variables and coefficients, we were able to generate informative radiomics
scores that effectively captured the discriminatory power of the selected radiomic features.
These scores contribute to the development of robust classifiers and predictive models in
radiomics research, enabling improved accuracy and reliability in various applications.

In the third step, we identified the radiomics classifier with the highest area under
the curve (AUC) and accuracy as the optimal Radscore. All three classifiers were trained
using 10-fold cross-validation on the training cohort to determine the optimal parameter
configuration for each classifier. Subsequently, they were tested on the validation cohort.
The performance of each classifier was evaluated using receiver operating characteristic
(ROC) curves, and the AUC was used as the metric to assess their performance. Accuracy,
sensitivity, specificity, negative-predictive value (NPV), and positive-predictive value (PPV)
in both the training and validation sets were calculated based on the Youden index.

2.5. Nomogram Integrating Radscore and Clinical Indicators

The Radscore and all the aforementioned clinical candidate predictors were subjected
to univariable and multivariable logistic regression analyses in the training cohort. In
order to enhance the interpretability and facilitate statistical analysis, we employed a
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transformation method for continuous variables. Specifically, the continuous clinical
indicators were transformed into categorical variables using ROC values. This allowed us to
determine the optimal cut-off point for each continuous clinical feature. This categorization
of variables aided in simplifying the statistical analysis process while ensuring its robustness
and academic integrity.

Subsequently, a radiomics nomogram was developed based on the results of the
multivariate logistic analysis. This nomogram was designed to estimate the individual
probability of achieving a pCR within the training cohort. To assess the discriminatory
ability of the radiomics nomogram, several performance metrics were calculated, including
AUC, accuracy, sensitivity, specificity, PPV, and NPV. These metrics provided an evaluation
of the nomogram’s effectiveness in distinguishing between different response outcomes
and predicting the likelihood of achieving a pCR. To assess the calibration of the radiomics
nomogram, a calibration curve was generated by plotting the actual probability of pCR
against the predicted probability of pCR from the nomogram. Furthermore, the goodness-
of-fit of the radiomics nomogram was evaluated using the Hosmer–Lemeshow test.

In order to evaluate the clinical utility of the radiomics nomogram, a decision curve
analysis (DCA) was conducted. Net benefits were calculated at various threshold probabili-
ties to determine the potential value of the nomogram in clinical decision making.

To validate the predictive performance of the radiomics nomogram, the multivariable
logistic regression model derived from the training cohort was applied to all patients in
the validation cohort. This allowed us to assess the generalizability and robustness of the
nomogram in an independent dataset.

2.6. Statistical Analysis

All statistical analyses were performed using RStudio version 2022.12.0+353. The fol-
lowing packages in R software were utilized: “caret”, “glmnet”, “rms”, “pROC”, “rmda”,
“MASS”, “fmsb”, “ggplot2”, “randomForestSRC”, “ggRandomForests”, “ResourceSelec-
tion”, “msvmRFE” and “e1071”. To compare the AUC values of the radiomics signature,
a deLong test was employed. Chi-square tests were used to compare the differences in
categorical variables (gender, age, BMI, tumor volume, tumor diameter, tumor length, T
stage, N stage, CEA and CA19-9 levels, distance from anal verge, prescription dose), and
two-sample t-test was used to compare the differences in continuous variable (Radscore).
All statistical tests were two-sided, and p-values below 0.05 were considered statistically
significant.

3. Results
3.1. Clinical Characteristics

In this study, a total of 211 consecutive patients were included, and 50 of them achieved
pCR, representing a rate of 23.7%. The distribution of the pCR rate was similar in the
training and validation cohorts (p = 0.390). Additionally, other pretreatment clinical charac-
teristics, such as gender, age, BMI, tumor volume, tumor diameter, tumor length, T stage,
CEA and CA19-9 levels, distance from anal verge, and prescription dose, were balanced
between the cohorts, with the exception of N stage (p = 0.025). Furthermore, there were
no significant differences in these clinical characteristics between the pCR and non-pCR
groups, except for tumor volume within the training cohort (p = 0.005). For a detailed
summary of the clinical characteristics, please refer to Table 1.
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Table 1. Pretreatment characteristics of patients with pCR in the training and validation cohorts.

Training Cohort Validation Cohort

Characteristics Non-pCR pCR p Value Non-pCR pCR p Value

Gender 0.819 0.960
Male 74 (67.3%) 27 (71.1%) 37 (72.5%) 8 (66.7%)

Female 36 (22.7%) 11 (28.9%) 14 (27.5%) 4 (33.3%)

Age 0.341 0.052
>60 49 (44.5%) 21 (55.3%) 27 (52.9%) 2 (16.7%)
≤60 61 (55.5%) 17 (44.7%) 24 (47.1%) 10 (83.3%)

BMI 0.056 0.687
>21.7 66 (60.0%) 30 (78.9%) 37 (72.5%) 10 (83.3%)
≤21.7 44 (40.0%) 8 (21.1%) 14 (27.5%) 2 (16.7%)

Tumor volume 110 38 0.005 * 51 12 0.914
>51.7 cm3 63 (57.3%) 11 (28.9%) 29 (56.9%) 6 (50.0%)
≤51.7 cm3 47 (42.7%) 27 (71.1%) 22 (43.1%) 6 (50.0%)

Tumor diameter 0.061 0.237
>4.7 cm 53 (48.2%) 11 (28.9%) 25 (49.0%) 3 (25.0%)
≤4.7 cm 57 (51.8%) 27 (71.1%) 26 (51.0%) 9 (75.0%)

Tumor length 0.093 0.934
>4.7 cm 79 (71.8%) 21 (55.3%) 35 (31.4%) 9 (75.0%)
≤4.7 cm 31 (28.2%) 17 (44.7%) 16 (68.6%) 3 (25.0%)

Distance from anal verge 0.356 0.898
>4.0 cm 86 (78.2%) 33 (86.8%) 39 (76.5%) 10 (83.3%)
≤4.0 cm 24 (21.8%) 5 (13.2%) 12 (23.5%) 2 (16.7%)

T stage 0.951 0.225
2 4 (3.4%) 1 (3.2%) 2 (3.9%) 0 (0.0%)
3 59 (54.0%) 21 (61.9%) 29 (56.9%) 10 (83.3%)
4 47 (42.6%) 16 (34.9%) 20 (39.2%) 2 (16.7%)

N stage 0.650 0.627
0 9 (8.2%) 3 (7.9%) 8 (25.7%) 1 (8.3%)
1 33 (30.0%) 12 (31.6%) 12 (23.5%) 5 (41.7%)
2 37 (33.6%) 16 (42.1%) 26 (51.0%) 5 (41.7%)
3 31 (28.2%) 7 (18.4%) 5 (9.8%) 1 (8.3%)

CEA 1 0.237
>5 ng/mL 49 (44.5%) 17 (44.7%) 25 (49.0%) 3 (25.0%)
≤5 ng/mL 61 (55.5%) 21 (55.3%) 26 (51.0%) 9 (75.0%)

CA19-9 0.453 1
>37 U/mL 13 (11.8%) 7 (7.9%) 6 (11.8%) 1 (8.3%)
≤37 U/mL 97 (88.2%) 31 (92.1%) 45 (88.2%) 11 (91.7%)

Prescription dose 1 0.171
57.5 Gy 80 (72.7%) 27 (71.1%) 29 (56.9%) 10 (83.3%)
50 Gy 30 (27.3%) 11 (28.9%) 22 (43.1%) 2 (16.7%)

Radscore (mean ± SD) −1.6742 ± 0.8722 −0.2601 ± 1.1362 0.000 * −1.6379 ± 0.9098 −0.3133 ± 1.0479 0.000 *

pCR: pathological complete response; BMI: body mass index; CEA: carcinoembryonic antigen; CA19-9: carbohy-
drate antigen 19-9. * p < 0.05.

3.2. Feature Selection and Radscore Construction

A total of 851 imaging features were extracted from the pretreatment planning CT
images. To construct the Radscore using the aforementioned dataset, we initially performed
Pearson correlation analysis and univariate logistic regression in the training cohort. This
process resulted in the selection of 44 features as potential predictors. Subsequently, the
LASSO, RF and SVM algorithms were trained using these selected features, and their
differentiation abilities were evaluated in the validation cohort.

The LASSO was used to identify the optimized subset of features and calculate the
Radscore for each patient. Fourteen features with non-zero coefficients were identified
using minimum criteria (Figure 2A,B). For the RF algorithm, 16 features were chosen based
on the minimal depth criterion in the training cohort (Figure 2C,D). The SVM algorithm
selected the top 18 features with the highest accuracy for pCR prediction (Figure 2E,F).
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The coefficients and the calculation formula for the Radscores are provided in Table S3.
Consequently, the Radscores were calculated for each patient in both the training and
validation cohorts (Figure S2A–C).

The Radscore derived from the SVM method demonstrated AUC values of 0.880 (95%
confidence interval [CI], 0.823–0.946) and 0.830 (95% CI, 0.722–0.928) in the training and
validation cohorts, respectively. Similarly, the Radscore derived from the LASSO and RF
methods exhibited AUCs of 0.841 (95% CI, 0.758–0.924) and 0.818 (95% CI, 0.734–0.902) in
the training cohort, which were further validated in the validation cohort with AUCs of
0.806 (95% CI, 0.696–0.916) and 0.791 (95% CI, 0.670–0.912). These findings suggest that the
Radscore derived from the SVM model demonstrated better predictive efficacy compared
to the other two methods (Figure 3A,B).
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Figure 2. Development process of the three algorithms utilized in our study. (A) LASSO feature
selection was performed using a minimum criteria approach. The optimal tuning parameter λ

was determined to be 0.014, and 14 non-zero coefficients were selected. (B) The LASSO coefficient
profiles of the radiomics features were examined. (C) RF feature selection was conducted based
on the minimal depth approach, resulting in the selection of 16 features with depth higher than
3.222. (D) The optimal tuning parameters (x point) for the RF were determined as mtry = 18 and
nodesize = 25 using the out-of-bag error. (E) SVM feature selection was employed to identify the
most informative features using the feature rank approach. The optimal tuning parameters, gamma
and cost, were determined to be 1 and 10, respectively. (F) A total of 18 features were selected based
on evaluation of the cross-validation error. LASSO: least absolute shrinkage and selection operator;
RF: random forest; SVM: support vector machines.

The accuracy, sensitivity, specificity, NPV and PPV were high for the SVM in both
the training and validation cohorts, while specificity and PPV were relatively lower in the
training cohort. The radar chart depicted the performance metrics of accuracy, sensitivity,
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specificity, NPV, and PPV for the three classifiers in both the training and validation cohorts
(Figure 3C,D). For more detailed information on the performance of the Radscore, please
refer to Table S2.
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0.0001) (Table 1, Figure 4). 

Figure 3. Predictive performance evaluation of the three methods, namely LASSO, RF and SVM, in
both the training and validation cohorts. (A) ROC curves were plotted to visualize the performance
in the training cohort. (B) Similarly, ROC curves were generated to assess the performance in the
validation cohort. (C) The accuracy, sensitivity, specificity, NPV and PPV of the LASSO, RF and SVM
were evaluated in the training cohort. (D) Likewise, the accuracy, sensitivity, specificity, NPV and
PPV of the three classifiers were assessed in the validation cohort. LASSO: least absolute shrinkage
and selection operator; RF: random forest; SVM: support vector machines; ROC: receiver operating
characteristic; NPV: negative-predictive value; PPV: positive-predictive value.
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The Radscore derived from the SVM was significantly higher in the pCR group com-
pared to the non-pCR group in both the training cohort (−0.2601 ± 1.1362 vs. −1.6742 ±
0.8722, p < 0.0001) and the validation cohort (−0.3133 ± 1.0479 vs. −1.6379 ± 0.9098, p <
0.0001) (Table 1, Figure 4).
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3.3. Nomogram Integrating Radscore and Clinical Indicators

The Radscore based on a SVM algorithm, along with clinical indicators such as pretreat-
ment T stage, were identified as independent predictors for predicting the pCR status. These
results were obtained through univariable and multivariate logistic regression analyses, as
shown in Table 2. Subsequently, we constructed a radiomics nomogram incorporating the
independent predictor, as illustrated in Figure 5.

Table 2. Logistic regression analysis of risk factors for pCR.

Univariate Analysis Multivariate Analysis
Features β OR (95% CI) p Value β OR (95% CI) p Value

Gender 0.177 1.194
(0.543–2.757) 0.666

Age 0.430 1.538
(0.734–3.261) 0.255

BMI 0.916 2.500
(1.090–6.307) 0.039 *

Tumor volume −1.191 0.304
(0.133–0.659) 0.003 *

Tumor diameter −0.825 0.438
(0.191–0.949) 0.042 *
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Table 2. Cont.

Univariate Analysis Multivariate Analysis
Features β OR (95% CI) p Value β OR (95% CI) p Value

Tumor length −0.724 0.485
(0.226–1.045) 0.063

Distance from
anal verge 0.611 1.842

(0.694–5.825) 0.251

T stage −1.013 0.363
(0.137–0.595) 0.035 * −1.167 0.311

(0.104–0.841) 0.027 *

N stage −0.128 0.880
(0.588–1.317) 0.533

CEA 0.008 1.008
(0.476–2.114) 0.984

CA19-9 0.522 1.685
(0.588–4.505) 0.308

Prescription dose −0.011 0.989
(0.889–1.107) 0.842

Radscore 1.451 4.266
(2.658–7.470) 0.000 * 1.651 5.212

(2.993–10.161) 0.000 *

pCR: pathological complete response; β: regression coefficient; OR: odds ratio; CI: confidence interval; BMI: body
mass index; CEA: carcinoembryonic antigen; CA19-9: carbohydrate antigen 19-9. * p < 0.05.
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The AUC for the probability of achieving pCR derived from the radiomics nomogram
was 0.910 (95% CI, 0.815–0.976) in the training cohort and 0.866 (95% CI, 0.762–0.970) in the
validation cohort. For comparison, AUC values of 0.770 (95% CI, 0.629–0.911) in the training
cohort and 0.725 (95% CI, 0.642–0.808) in the validation cohort were obtained from the
clinical indicators alone. These findings indicate that the radiomics nomogram exhibited
superior predictive efficacy compared to both the Radscore alone and the clinical indicators
alone, as shown in Figure 6A,B. Furthermore, the Hosmer–Lemeshow test yielded non-
significant p-values of 0.281 and 0.585 in the training and validation cohorts, respectively,
suggesting a good fit of the nomogram to the observed data. Detailed information regarding
the performance of the three models can be found in Table 3.
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Table 3. Performance evaluation of three predictive models.

Clinical Radiomics Nomogram

Metrics Training (95%
CI)

Validation
(95% CI)

Training (95%
CI)

Validation
(95% CI)

Training
(95%CI)

Validation
(95% CI)

AUC 0.770
(0.629–0.911)

0.725
(0.642–0.808)

0.880
(0.823–0.946)

0.830
(0.722–0.928)

0.910
(0.815–0.976)

0.866
(0.762–0.970)

Accuracy 0.750
(0.676–0.764)

0.683
(0.540–0.857)

0.851
(0.703–0.912)

0.810
(0.667–0.873)

0.885
(0.797–0.946)

0.841
(0.651–0.937)

Sensitivity 0.605
(0.553–0.842) 0.750 (0.500–1) 0.711 (0.632–1) 0.917 (0.750–1) 0.816

(0.684–0.947) 0.917 (0.667–1)

Specificity 0.800
(0.554–0.918)

0.667
(0.471–0.902)

0.900
(0.627–0.964)

0.784
(0.588–0.882)

0.909
(0.763–0.991)

0.824
(0.588–0.961)

PPV 0.511
(0.343–0.786)

0.346
(0.250–0.611)

0.711
(0.462–0.879)

0.500
(0.344–0.611)

0.756
(0.581–0.968)

0.550
(0.333–0.833)

NPV 0.854
(0.815–0.926)

0.919
(0.857–0.975)

0.900
(0.880–0.989) 0.976 (0.921–1) 0.935

(0.897–0.980) 0.977 (0.907–1)

MCC 0.385
(0.094–0.742)

0.332
(0.023–0.798)

0.611
(0.228–0.934)

0.577
(0.266–0.766)

0.708
(0.409–0.947)

0.624
(0.201–0.908)

F1 score 0.554
(0.423–0.813)

0.474
(0.333–0.759)

0.711
(0.534–0.936)

0.647
(0.472–0.759)

0.785
(0.628–0.957)

0.688
(0.444–0.909)

AUC: area under the receiver operator characteristic curves; NPV: negative-predictive value, PPV: positive-
predictive value; CI: confidence interval; MCC: Matthew’s correlation coefficient.

The predictive performance of the LASSO-based Radscore, incorporating clinical indicators,
was compared to that of the RF-based Radscore in conjunction with clinical indicators. These
models were subsequently assessed against an SVM-based nomogram. In the training cohort,
the LASSO-based Radscore achieved an AUC of 0.889 (95% CI: 0.824–0.954), while in the
validation cohort, it yielded an AUC of 0.825 (95% CI: 0.722–0.928). Similarly, the RF-based
Radscore, when utilized with clinical indicators, exhibited an AUC of 0.835 (95% CI: 0.748–0.922)
in the training cohort and an AUC of 0.815 (95% CI: 0.709–0.922) in the validation cohort. For
a more comprehensive assessment of the performance of these three models, please consult
Figure S3.
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Figure 6. Performance evaluation of the clinical, radiomics, and nomogram models in both the train-
ing and validation cohorts. (A) ROC curves were plotted to assess and compare the discriminatory
power of the clinical, radiomics and nomogram models in the training cohort. (B) Similarly, ROC
curves were generated to evaluate the discriminatory abilities of these models in the validation
cohort. (C) Calibration curves were constructed to examine the agreement between the predicted and
observed outcomes of the clinical, radiomics and nomogram models in the training cohort. (D) Like-
wise, calibration curves were analyzed to assess the agreement between predicted and observed
outcomes in the validation cohort for all three models. (E) DCA was performed to evaluate the
clinical utility and net benefit of the clinical, radiomics and nomogram models in the training cohort.
(F) Additionally, DCA was conducted to assess the clinical utility and net benefit of these models in
the validation cohort. ROC: receiver operator characteristic; DCA: decision curve analysis.

The calibration curve of the radiomics nomogram displayed favorable agreement
between the probabilities predicted by the nomogram and the actual probabilities of pCR
observed in the training cohort. This favorable calibration and strong performance of
the radiomics nomogram were confirmed in the validation cohort, as demonstrated in
Figure 6C,D. The calibration plot for the nomogram showed closer alignment with the
diagonal line compared to the other models, indicating a higher predictive accuracy.

Lastly, the decision curve analysis (DCA) revealed that the radiomics nomogram,
incorporating both radiomics scores and clinical indicators, provided the highest clinical
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net benefit in both the training and validation cohorts. This suggests a strong performance
of the nomogram in terms of its clinical applicability, as depicted in Figure 6E,F.

4. Discussion

In our study, we employed a radiomics approach to extract 851 quantitative imaging
features from pretreatment contrast-enhanced planning CT scans. Subsequently, we de-
veloped and validated a radiomics nomogram that incorporates the planning CT-based
Radscore and the selected clinical indicator (pretreatment T stage). The proposed nomo-
gram could be used for the individualized prediction of the pCR before neoadjuvant CRT
for the patients with LARC. This was consistent with the findings of Cui et al. [21] and
Chen et al. [31].

To develop the Radscore, we employed the SVM methodology to select the 18 suit-
able radiomics predictors from the initial 851 candidate radiomics features. The Radscore
demonstrated favorable prognostic performance for pCR in the training cohort, with AUC
values of 0.880, which were subsequently validated in the validation cohort with AUC
values of 0.830. Numerous studies showed a correlation between radiomics score and treat-
ment response. Our study confirmed this association, as the radiomics scores derived from
planning CT images were significantly higher in the pCR group, with all corresponding
AUC values being greater than or nearly 80%. While some studies favored SVM classi-
fiers over the LASSO or RF methods [32–35] in the development of radiomics models,
other studies reported the superior performance of the LASSO or RF classifiers [27,36–39].
These divergent findings suggest that the choice of machine learning model influenced the
predictive performance. In our study, the SVM method outperformed the LASSO or RF
classifiers in the prediction of pCR to neoadjuvant chemoradiotherapy in LARC. This may
be because the SVM model performed well in high-dimensional space [40,41]. Additionally,
SVM classifiers could handle small datasets effectively [42], as they require only a small
number of support vectors to define decision boundaries. Furthermore, SVM demonstrates
robustness against noise [43], making it a reliable method for non-invasively characterizing
intratumoral heterogeneity.

Limited literature exists on the use of CT-based radiomics to predict pCR to neoad-
juvant CRT in LARC patients (refer to Table S5). Yuan et al. and Lutsyk et al. reported
achieving an AUC of 0.872 and an accuracy of 0.839, respectively, for predicting pCR in
LARC patients receiving neoadjuvant CRT using the RF method based on non-contrast-
enhanced CT images [12,13]. Conversely, the model reported by Hamerla et al. [44] using
the RF method showed no predictive power for treatment response. In our study, we
utilized contrast-enhanced CT images for radiomic analysis, which should offer superior
performance compared to non-contrast-enhanced images. Contrast enhancement enables
the visualization of more intricate details regarding the heterogeneous internal architec-
ture of malignant tumors. Previous results also support the use of radiomics based on
contrast-enhanced CT images in predicting treatment response in LARC [14–18]. Bonomo
et al. and Bibault et al. investigated the capability of radiomics features derived from
contrast-enhanced CT for predicting pCR; their findings revealed AUC values of 0.63 and
a predictive accuracy of 0.80 [14,15]. These values are significantly lower than the AUC
values obtained in our study, which utilized a greater number of high-dimensional features,
providing more detailed information on intratumoral heterogeneity. It is important to note
that the absence of independent validation or small sample size in previous studies may
have hindered the clinical applicability of their findings.

A recently established predictive model which incorporates clinical indicators and
the LASSO-based Radscore has shown improved prognostic performance with an AUC
of 0.822 [16]. Similarly, another predictive model utilizing the RF method, integrating
clinical indicators, dose-volume histogram (DVH), and radiomics texture, achieved an
AUC of 0.828 [17]. These findings align with Mao et al.’s study [18], where the integration
of clinical indicators and Radscore via a nomogram successfully improved the prediction
of pCR in patients with LARC using the LASSO method (AUC: 0.872). Consistent with
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these results, our study demonstrates that the integration of the SVM-based Radscore with
clinical indicators (AUC: 0.866) yields superior performance when contrasted with both
the LASSO method combined with clinical indicators (AUC: 0.825) and the RF method
coupled with clinical indicators (AUC: 0.815) (see Figure S3). Our findings suggest that the
SVM-based nomogram, characterized by a higher AUC and superior calibration, exhibits
enhanced predictive efficacy compared to either the Radscore or clinical indicators in
isolation. Consequently, our study introduces a radiomics nomogram as a readily applicable
and valuable tool for the non-invasive analysis and characterization of rectal cancer.

However, the successful implementation of radiomics in clinical practice faces chal-
lenges, including the accurate segmentation and extraction of stable and comparable
quantitative image features. Compared to MRI or PET/CT, planning CT images, readily
available in radiation therapy departments, provide higher consistency and profession-
alism, as all tumor regions of interest (ROIs) were manually contoured by experienced
radiation oncologists. Thus, the crucial factor lies in identifying a reliable feature selection
method that maximizes the accuracy of the radiomics signature. To address this, our
study applied various machine learning classifiers, including LASSO, RF and SVM, to the
extracted features for key feature selection and generating a radiomics score in both the
training and validation cohorts.

Despite these findings, our study exhibits several limitations. Firstly, the sample size
of patients with pCR was small, with just 12 patients achieving a pCR in the validation
cohort. This limitation is further compounded by the inherent challenge of an imbalanced
dataset. Although we diligently addressed this imbalance through the application of diverse
machine learning methods and conducted a comprehensive performance evaluation, it is
evident that the model’s robustness may be affected. Secondly, our radiomics model only
utilized CT images, warranting the further investigation of various modalities such as MRI,
molecular biomarkers and gene expression. Moreover, our study solely utilized pre-CRT CT
images rather than combining pre- and post-CRT images. Nevertheless, current studies in
this field suffer from overall low quality and exhibit heterogeneity, limiting the robustness
and replicability of the conclusions [45]. Lastly, as a retrospective study conducted in a
single center, it is essential to validate our proposed model in a large-scale, independent,
multicenter cohort to assess reproducibility and robustness.

5. Conclusions

A Radscore derived from SVM and based on pretreatment contrast-enhanced planning
CT scans was developed for predicting pCR in patients with LARC. The Radscore exhibited
promising performance in accurately predicting pCR. Moreover, the proposed nomogram,
which incorporates the SVM-derived Radscore and clinical indicators, holds considerable
value as a non-invasive tool for evaluating treatment outcomes in LARC patients. This ap-
proach has the potential to enhance clinical decision making and contribute to personalized
patient management strategies.
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