Role of Immunotherapy in Gastroesophageal Cancers—Advances, Challenges and Future Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immunogenicity of Gastroesophageal Cancer
3. Immunotherapy in Early Gastroesophageal Cancer
4. Advanced/Metastatic HER2-Negative—First-Line Treatment
5. Advanced/Metastatic HER2-Negative—Later-Line Treatment
6. Advanced/Metastatic HER2-Positive Gastric/GEJ Cancer
7. Looking Forward—The Future of Immunotherapy in Gastroesophageal Cancer
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; De Vita, F.; Landers, G.; Yen, C.J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Tougeron, D.; Piessen, G.; de la Fouchardière, C.; Louvet, C.; Adenis, A.; Jary, M.; Tournigand, C.; Aparicio, T.; Desrame, J.; et al. Neoadjuvant Nivolumab Plus Ipilimumab and Adjuvant Nivolumab in Localized Deficient Mismatch Repair/Microsatellite Instability–High Gastric or Esophagogastric Junction Adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J. Clin. Oncol. 2023, 41, 255–265. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Randon, G.; Di Bartolomeo, M.; Luciani, A.; Chao, J.; Smyth, E.; Petrelli, F. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: A meta-analysis of randomized clinical trials. ESMO Open 2021, 6, 100036. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Guo, W.; Wang, P.; Li, N.; Shao, F.; Zhang, H.; Yang, Z.; Li, R.; Gao, Y.; He, J. Prognostic value of PD-L1 in esophageal squamous cell carcinoma: A meta-analysis. Oncotarget 2018, 9, 13920–13933. [Google Scholar] [CrossRef]
- Gao, Y.B.; Chen, Z.L.; Li, J.G.; Hu, X.D.; Shi, X.J.; Sun, Z.M.; Zhang, F.; Zhao, Z.R.; Li, Z.T.; Liu, Z.Y.; et al. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet. 2014, 46, 1097–1102. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; A Busuttil, R.; Pattison, S.; Neeson, P.J.; Boussioutas, A. Immunological battlefield in gastric cancer and role of immunotherapies. World J. Gastroenterol. 2016, 22, 6373–6384. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Won, H.S.; Sun, S.; Hong, J.H.; Ko, Y.H. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A systematic review and meta-analysis. Medicine 2018, 97, e11769. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, W.; Geng, X.; Zhang, Y.; Zhang, G.; Qiu, B.; Tan, F.; Xue, Q.; Gao, S.; He, J. Prognostic value of tumor-infiltrating lymphocytes in esophageal cancer: An updated meta-analysis of 30 studies with 5,122 patients. Ann. Transl. Med. 2020, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.H.; Kua, L.F.; Nakajima, S.; Yong, W.P.; Kono, K. Chemoradiation induces upregulation of immunogenic cell death-related molecules together with increased expression of PD-L1 and galectin-9 in gastric cancer. Sci. Rep. 2021, 11, 12264. [Google Scholar] [CrossRef]
- Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007, 13, 1050–1059. [Google Scholar] [CrossRef]
- Kelly, R.J.; Bever, K.; Chao, J.; Ciombor, K.K.; Eng, C.; Fakih, M.; Goyal, L.; Hubbard, J.; Iyer, R.; Kemberling, H.T.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J. Immunother. Cancer 2023, 11, e006658. [Google Scholar] [CrossRef]
- Zhou, K.I.; Peterson, B.F.; Serritella, A.; Thomas, J.; Reizine, N.; Moya, S.; Tan, C.; Wang, Y.; Catenacci, D.V.T. Spatial and Temporal Heterogeneity of PD-L1 Expression and Tumor Mutational Burden in Gastroesophageal Adenocarcinoma at Baseline Diagnosis and after Chemotherapy. Clin. Cancer Res. 2020, 26, 6453–6463. [Google Scholar] [CrossRef]
- Van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- Blum Murphy, M.; Xiao, L.; Patel, V.R.; Maru, D.M.; Correa, A.M.; Amlashi, F.G.; Liao, Z.; Komaki, R.; Lin, S.H.; Skinner, H.D.; et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival-The University of Texas MD Anderson Cancer Center experience. Cancer 2017, 123, 4106–4113. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.; Knödler, M.; Giraut, A.; Mauer, M.; Nilsson, M.; Van Grieken, N.; Wagner, A.D.; Moehler, M.; Lordick, F. VESTIGE: Adjuvant Immunotherapy in Patients with Resected Esophageal, Gastroesophageal Junction and Gastric Cancer Following Preoperative Chemotherapy With High Risk for Recurrence (N+ and/or R1): An Open Label Randomized Controlled Phase-2-Study. Front. Oncol. 2019, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Raimondi, A.; Lonardi, S.; Murgioni, S.; Cardellino, G.G.; Tamberi, S.; Strippoli, A.; Palermo, F.; Prisciandaro, M.; Randon, G.; et al. INFINITY: A multicentre, single-arm, multi-cohort, phase II trial of tremelimumab and durvalumab as neoadjuvant treatment of patients with microsatellite instability-high (MSI) resectable gastric or gastroesophageal junction adenocarcinoma (GAC/GEJAC). J. Clin. Oncol. 2023, 41, 358. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Fuchs, C.S.; Ohtsu, A.; Tabernero, J.; Ilson, D.H.; Hyung, W.J.; Strong, V.E.; Goetze, T.O.; Yoshikawa, T.; et al. KEYNOTE-585: Phase 3 study of chemotherapy (chemo) + pembrolizumab (pembro) vs chemo + placebo as neoadjuvant/adjuvant treatment for patients (pts) with gastric or gastroesophageal junction (G/GEJ) cancer. J. Clin. Oncol. 2018, 36, TPS4136. [Google Scholar] [CrossRef]
- Shitara, K.; Rha, S.; Wyrwicz, L.; Oshima, T.; Karaseva, N.; Osipov, M.; Yasui, H.; Yabusaki, H.; Afanasyev, S.; Park, Y.-K.; et al. LBA74 Pembrolizumab plus chemotherapy vs chemotherapy as neoadjuvant and adjuvant therapy in locally-advanced gastric and gastroesophageal junction cancer: The phase III KEYNOTE-585 study. Ann. Oncol. 2023, 34, S1316. [Google Scholar] [CrossRef]
- Liu, P.; Chen, J.; Zhao, L.; Hollebecque, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. OncoImmunology 2022, 11, 2093518. [Google Scholar] [CrossRef]
- Xing, X.; Shi, J.; Jia, Y.; Dou, Y.; Li, Z.; Dong, B.; Guo, T.; Cheng, X.; Li, X.; Du, H.; et al. Effect of neoadjuvant chemotherapy on the immune microenvironment in gastric cancer as determined by multiplex immunofluorescence and T cell receptor repertoire analysis. J. Immunother. Cancer 2022, 10, e003984. [Google Scholar] [CrossRef]
- Janjigian, Y.; Al-Batran, S.-E.; Wainberg, Z.; Van Cutsem, E.; Molena, D.; Muro, K.; Hyung, W.; Wyrwicz, L.; Oh, D.-Y.; Omori, T.; et al. LBA73 Pathological complete response (pCR) to durvalumab plus 5-fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT) in resectable gastric and gastroesophageal junction cancer (GC/GEJC): Interim results of the global, phase III MATTERHORN study. Ann. Oncol. 2023, 34, S1315–S1316. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Van Cutsem, E.; Muro, K.; Wainberg, Z.; Al-Batran, S.-E.; Hyung, W.J.; Molena, D.; Marcovitz, M.; Ruscica, D.; Robbins, S.H.; et al. MATTERHORN: Phase III study of durvalumab plus FLOT chemotherapy in resectable gastric/gastroesophageal junction cancer. Futur. Oncol. 2022, 18, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Lorenzen, S.; Thuss-Patience, P.C.; Homann, N.; Schenk, M.; Lindig, U.; Heuer, V.; Kretzschmar, A.; Goekkurt, E.; Haag, G.M.; et al. Surgical and pathological outcome, and pathological regression, in patients receiving perioperative atezolizumab in combination with FLOT chemotherapy versus FLOT alone for resectable esophagogastric adenocarcinoma: Interim results from DANTE, a randomized, multicenter, phase IIb trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK. J. Clin. Oncol. 2022, 40, 4003. [Google Scholar]
- Al-Batran, S.-E.; Lorenzen, S.; Thuss-Patience, P.C.; Homann, N.; Schenk, M.; Lindig, U.; Heuer, V.; Kretzschmar, A.; Goekkurt, E.; Haag, G.M.; et al. A randomized, open-label, phase II/III efficacy and safety study of atezolizumab in combination with FLOT versus FLOT alone in patients with gastric cancer and adenocarcinoma of the oesophagogastric junction and high immune responsiveness: The IKF-S633/DANTE trial, a trial of AIO in collaboration with SAKK. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS4177. [Google Scholar]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Piha-Paul, S.A.; Jalal, S.I.; Saraf, S.; Lunceford, J.; Koshiji, M.; Bennouna, J. Safety and Antitumor Activity of the Anti–Programmed Death-1 Antibody Pembrolizumab in Patients with Advanced Esophageal Carcinoma. J. Clin. Oncol. 2018, 36, 61–67. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients with Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Metges, J.-P.; Kato, K.; Sun, J.-M.; Shah, M.A.; Enzinger, P.C.; Adenis, A.; Doi, T.; Kojima, T.; Li, Z.; Kim, S.-B.; et al. First-line pembrolizumab plus chemotherapy versus chemotherapy in advanced esophageal cancer: Longer-term efficacy, safety, and quality-of-life results from the phase 3 KEYNOTE-590 study. J. Clin. Oncol. 2022, 40 (Suppl. S4), 241. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Lebbé, C.; Meyer, N.; Mortier, L.; Marquez-Rodas, I.; Robert, C.; Rutkowski, P.; Menzies, A.M.; Eigentler, T.; Ascierto, P.A.; Smylie, M.; et al. Evaluation of Two Dosing Regimens for Nivolumab in Combination with Ipilimumab in Patients with Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial. J. Clin. Oncol. 2019, 37, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.; Wyrwicz, L.; Weber, P.Y.; Bai, Y.; Ryu, M.; Lee, J.; Rivera, F.; Alves, G.; Garrido, M.; Shiu, K.-K.; et al. VP1-2023: Pembrolizumab (pembro) plus chemotherapy (chemo) as first-line therapy for advanced HER2-negative gastric or gastroesophageal junction (G/GEJ) cancer: Phase III KEYNOTE-859 study. Ann. Oncol. 2023, 34, 319–320. [Google Scholar] [CrossRef]
- Xu, J.; Kato, K.; Raymond, E.; A Hubner, R.; Shu, Y.; Pan, Y.; Park, S.R.; Ping, L.; Jiang, Y.; Zhang, J.; et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): A global, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2023, 24, 483–495. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.P.; Yanez, P.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.; et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: Interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Tabernero, J.; Shen, L.; Elimova, E.; Ku, G.; Liu, T.; Shitara, K.; Lin, X.; Boyken, L.; Li, H.; Grim, J.; et al. HERIZON-GEA-01: Zanidatamab + chemo ± tislelizumab for 1L treatment of HER2-positive gastroesophageal adenocarcinoma. Futur. Oncol. 2022, 18, 3255–3266. [Google Scholar] [CrossRef]
- Yanez, P.E.; Ben-Aharon, I.; Rojas, C.; Eyzaguirre, D.A.; Hubert, A.; Araya, H.; Cohen, D.J.; Bai, L.-Y.; Ghiringhelli, F.; Wyrwicz, L.; et al. First-line lenvatinib plus pembrolizumab plus chemotherapy versus chemotherapy in advanced/metastatic gastroesophageal adenocarcinoma (LEAP-015): Safety run-in results. J. Clin. Oncol. 2023, 41, 411. [Google Scholar] [CrossRef]
- Klempner, S.J.; Shitara, K.; Sison, A.; Scott, J.; Wishengrad, D.; Ronayne, J.; Rhee, J.; Mitra, S.; Nuyten, D.S.A.; Janjigian, Y.Y.; et al. STAR-221: A randomized, open-label, multicenter, phase 3 trial of domvanalimab, zimberelimab, and chemotherapy versus nivolumab and chemotherapy in previously untreated, locally advanced, unresectable or metastatic gastric, gastroesophageal junction, and esophageal adenocarcinoma. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS4206. [Google Scholar]
- Feeney, K.; Kelly, R.; Lipton, L.R.; Chao, J.; Acosta-Rivera, M.; Earle, D.; Lei, M.; Kollia, G.; Tebbutt, N.C. CA224-060: A randomized, open label, phase II trial of relatlimab (anti-LAG-3) and nivolumab with chemotherapy versus nivolumab with chemotherapy as first-line treatment in patients with gastric or gastroesophageal junction adenocarcinoma. J. Clin. Oncol. 2019, 37 (Suppl. S15), TPS4143. [Google Scholar] [CrossRef]
- Shah, M.A.; Kojima, T.; Hochhauser, D.; Enzinger, P.; Raimbourg, J.; Hollebecque, A.; Lordick, F.; Kim, S.B.; Tajika, M.; Kim, H.T.; et al. Efficacy and Safety of Pembrolizumab for Heavily Pretreated Patients with Advanced, Metastatic Adenocarcinoma or Squamous Cell Carcinoma of the Esophagus: The Phase 2 KEYNOTE-180 Study. JAMA Oncol. 2019, 5, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Shen, L.; Kato, K.; Kim, S.-B.; Ajani, J.A.; Zhao, K.; He, Z.; Yu, X.; Shu, Y.; Luo, Q.; Wang, J.; et al. Tislelizumab Versus Chemotherapy as Second-Line Treatment for Advanced or Metastatic Esophageal Squamous Cell Carcinoma (RATIONALE-302): A Randomized Phase III Study. J. Clin. Oncol. 2022, 40, 3065–3076. [Google Scholar] [CrossRef]
- Plum, P.S.; Gebauer, F.; Krämer, M.; Alakus, H.; Berlth, F.; Chon, S.-H.; Schiffmann, L.; Zander, T.; Büttner, R.; Hölscher, A.H.; et al. HER2/neu (ERBB2) expression and gene amplification correlates with better survival in esophageal adenocarcinoma. BMC Cancer 2019, 19, 38. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Aisa, A.; Weng, S.; Li, X.; Zhang, D.; Yuan, Y. Immune checkpoint inhibitors combined with HER-2 targeted therapy in HER-2 positive gastroesophageal cancer. Crit. Rev. Oncol. 2022, 180, 103864. [Google Scholar] [CrossRef]
- Lee, K.-W.; Bai, L.-Y.; Jyu, M. (Eds.) Zanidatamab, a HER2-Targeted Bispecific Antibody, in Combination with Tislelizumab and Chemotherapy as First-Line Therapy for Patients with Advanced HER2-Positive Gastric/Gastroesophageal Junction Adenocarcinoma: Preliminary Results from a Phase 1b/2 Study. In Proceedings of the American Society of Clinical Oncology (ASCO) Annual Meeting, Online, 3–7 July 2022. [Google Scholar]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef]
- Nishio, M.; Peled, N.; Zer, A.; Houghton, B.; Bar, J.; Drew, D.; Herbst, R.; Rodriguez-Abreu, D.; Talpur, R.; Golden, L.; et al. 1313P Phase III LEAP-006 safety run-in (Part 1): 1L pembrolizumab (Pembro) + chemotherapy (Chemo) with lenvatinib (Len) for metastatic NSCLC. Ann. Oncol. 2020, 31, S848–S849. [Google Scholar] [CrossRef]
- Taylor, M.H.; Schmidt, E.V.; Dutcus, C.; Pinheiro, E.M.; Funahashi, Y.; Lubiniecki, G.; Rasco, D. The LEAP program: Lenvatinib plus pembrolizumab for the treatment of advanced solid tumors. Futur. Oncol. 2021, 17, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.J.; Tabernero, J.; Van Cutsem, E.; Janjigian, Y.Y.; Bang, Y.-J.; Qin, S.; Wainberg, Z.A.; Wang, A.; Hawk, N.N.; Shih, C.-S.; et al. A randomized phase 3 study evaluating the efficacy and safety of first-line pembrolizumab plus lenvatinib plus chemotherapy versus chemotherapy in patients with advanced/metastatic gastroesophageal adenocarcinoma: LEAP-015. J. Clin. Oncol. 2022, 40 (Suppl. S4), TPS369. [Google Scholar] [CrossRef]
- Chauvin, J.-M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, H.; Han, F.; Chen, X.; Lin, R.; Wang, W.; Qiu, H.; Zhuang, Z.; Liao, Q.; Zhang, W.; et al. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res. 2017, 77, 6375–6388. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, E.; Zhu, C.; Zhao, W.; Wang, C.; Zhang, Z.; Zhao, G. TIGIT and PD-1 may serve as potential prognostic biomarkers for gastric cancer. Immunobiology 2020, 225, 151915. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Fox, W.; Lee, J.-G.; Lee, K.H.; Ahn, H.K.; Kim, Y.-H.; Lee, K.-Y.; Lee, J.-S.; He, X.; Park, C.; et al. ARC-7: Randomized phase 2 study of domvanalimab + zimberelimab ± etrumadenant versus zimberelimab in first-line, metastatic, PD-L1-high non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40 (Suppl. S36), 397600. [Google Scholar] [CrossRef]
- Ulase, D.; Behrens, H.-M.; Krüger, S.; Heckl, S.M.; Ebert, U.; Becker, T.; Röcken, C. LAG3 in gastric cancer: It’s complicated. J. Cancer Res. Clin. Oncol. 2023, 149, 10797–10811. [Google Scholar] [CrossRef]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Feng, Q.; Sun, B.; Xue, T.; Li, R.; Lin, C.; Gao, Y.; Sun, L.; Zhuo, Y.; Wang, D. Advances in CAR T-cell therapy in bile duct, pancreatic, and gastric cancers. Front. Immunol. 2022, 13, 1025608. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Lordick, F.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; A Shah, M.; Van Cutsem, E.; Xu, R.-H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
Histology/Setting | Phase/ Region | Arms | Results | Approval | |
---|---|---|---|---|---|
Checkmate 577 [22] | Resected esophageal or GEJ cancer post neoadjuvant chemoradiotherapy with residual pathological disease 71% adenocarcinoma 29% SCC | Phase III Global | Randomized 2:1 A. Nivolumab 240 mg q2/52 for 16/52 then 480 mg q4/52 for max 1 year B. Placebo | Primary Endpoint DFS– mDFS (median disease-free survival): A.22.4 months B.11 months (HR, 0.69; 96.4% CI, 0.56 to 0.86; p < 0.001 | EMA FDA |
EORTC 1707 Vestige [23] | Gastroesophageal adenocarcinoma with lymph node positive or R1 resection post neoadjuvant chemotherapy | Open label randomized Phase II Europe | 1:1 A. Chemotherapy as per pre-op regimen B. Nivolumab 3 mg/kg q2/52 + Ipilimumab 1 mg/kg q6/52 × 1 year | mDFS: A. 23.3 months (95% CI 11.8–not reached) B. 11.9 months [8.4–16.8; HR 1.80 (95% CI 1.09–2.98) p = 0.02] mOS (median overall survival): A. Not reached B. 25.1 months [95% CI 18.6—not reached (NR); HR 1.79, 95% CI 0.89–3.59; p = 0.1.] | N/A (not applicable) |
GERCOR NEONIPIGA [5] | Locally advanced resectable dMMR/MSI-H gastric/GEJ Adenocarcinoma T2–T4/N0 or N+/M0 | Phase II France | All received neoadjuvant nivolumab 240 mg q2/52 × 6 doses and ipilimumab 1 mg/kg q6/52 × 2 doses then 9 cycles adjuvant nivolumab 480 mg q4/52 | N = 32 N = 1—M1 disease at inclusion so not surgical candidate 2× declined surgery All 3 had complete radiological and endoscopic response N = 29 proceeded to surgery Of these— pCR—58.6% | N/A |
KEYNOTE-585 [26,27] | Previously untreated, localized, resectable gastric/GEJ andeocarcinoma | Phase III Global multicenter | 1:1 A. Neoadjuvant pembrolizumab 200 mg q3/52 with chemotherapy (FP, XP or FLOT) × 3 cycles then adjuvantly × 3 cycles followed by 11 cycles maintenance pembrolizumab B. Placebo + chemotherapy neoadjuvantly then adjuvantly before maintenance placebo | A. pCR 12.9% [95% CI, 9.8–16.6]) B. pCR 2% [95% CI, 0.9–3.9]); Δ (10.9% [95% CI, 7.5–14.8]; p < 0.00001) A. median EFS 44.4 months B. 25.3 months (HR 0.81; 95% CI, 0.67–0.99; p = 0.0198)
| N/A |
MATTERHORN [30,31] | (>T2 N0-3 M0/T0-4 N1-3 M0Resectable Gastric/GEJ adenocarcinoma | Phase III Global | 1:1 A. Durvalumab 1500 mg q4/52 with FLOT q2/52 days 1 and 15 for 4 cycles then adjuvant durvalumab B. Placebo + FLOT neoadjuvant and adjuvant placebo | A. pCR 19% B. pCR 7% (12% difference; odds ratio [OR], 3.08; p < 0.00001). A. Combined pCR/near-pCRrate 27% B. 14% A. Downstaging to pT0—21% B. Downstaging to pT0 10% A. Downstaging to pN0—47% B. Downstaging to pN0 33%. | N/A |
DANTE [32,33] | Resectable gastric or GEJ adenocarcinoma | Phase IIb Germany/Switzerland | A. FLOT + Atezolizumab 840 mg q2/52 × 4 cycles neoadjuvantly and 4 cycles adjuvant then atezolizumab maintenance × 8 cycles q3/52 B. FLOT + placebo | pT0 result: A. 23% B. 15% pN0 result: A. 68% B. 54% Regression—central assessment with PDL1 CPS ≥ 10: Tumor Regression Grade (TRG) 1a A. 46% B. 24% TRG1a/b- 71% vs. 47% | N/A |
Histology/Setting | Phase/ Region | Arms | Results | Approval | |
---|---|---|---|---|---|
KEYNOTE-590 [39,40] | Advanced esophageal and Siewert type 1 gastroesophageal junction cancer regardless of PD-L1 status | Global Phase III | Randomized 1:1 A. Pembrolizumab 200 mg q3/52 + chemotherapy (FP) B. Placebo + chemotherapy | ESCC + PD-LS ≥ 10: A. mOS 13.9 months B. 8.8 months [HR 0.57 (95% CI 0.43–0.75); p < 0.0001]. ESCC: A. 12.6 months B. 9.8 months [HR 0.72 (0.60–0.88); p = 0.0006] PD-LS ≥ 10: A. 13.5 months B. 9.4 months [HR 0.62 [0.49–0.78); p < 0.0001]. All-comers: A. 12.4 months B. 9.8 months [HR 0.73 (0.62–0.86); p < 0.0001]. | FDA approval for ESCC, EAC + Siewert Class 1 GEJC. EMA approval for ESCC, EAC + Siewert Class 1 GEJC with PD-L1 CPS ≥ 10 |
CHECKMATE 649 [41,43] | Gastric, GEJ and esophageal adnocarcinoma (Enrollment regardless of PD-L1 expression, but during enrollment primary population amended to those with PD-L1 CPS ≥ 5) | Global Phase III | 1:1:1 A. Nivolumab (360 mg q3/52 or 240 mg q4/52) + chemotherapy (XELOX q3/52 or FOLFOX q2/52) B. Ipilimumab and nivolumab C. Chemotherapy alone (later randomized 1:1 after arm B closed) | All-comers: A. mOS 13.8 months C. 11.6 months [HR 0.80 (99.3% CI 0.68–0.94); p < 0.0001]. mOS PD-L1 CPS ≥ 1: A. mOS 14 months C. 11.3 months [HR 0.77 (99.3% CI 0.64–0.92); p < 0.0001] PD-L1 CPS ≥ 5: A. mOS 14.4 months C. 11.1 months [HR 0.71 (98.4% CI 0.59–0.86); p < 0.0001]. All-comers: B. mOS 11.7 months C. 11.8 months [HR 0.91 (96.5% CI 0.77–1.07); p value not tested] PD-L1 CPS ≥ 5: B. mOS 11.2 months C. 11.6 months [HR 0.89 (96.5% CI 0.71–1.10), p = 0.2302] | FDA approval for nivolumab + chemotherapy regardless of PD-L1 expression EMA for nivolumab + chemotherapy if PD-L1 CPS ≥ 5. |
CHECKMATE 648 [44] | Advanced esophageal SCC regardless of PD-L1 expression | Global Open-label Phase III | 1:1:1 A. Nivolumab 240 mg q2/52 + FP B. Nivolumab 3 mg/kg q2/52 + ipilimumab 1 mg/kg q6/52 C. Chemotherapy alone | PD-L1 ≥ 1%: A. mOS 15.4 months C. 9.1 months [HR 0.54 (99.5% CI 0.37 to 0.80); p < 0.001] B. mOS 13.7 months C. 9.1 months [HR 0.64 (98.6% CI, 0.46 to 0.90); p = 0.001] Overall population: A. mOS 13.2 months C. 10.7 months [HR 0.74 (99.1% CI, 0.58 to 0.96) p = 0.002]. B. mOS 12.7 months C. 10.7 months [HR 0.78 (98.2% CI, 0.62 to 0.98); p = 0.01]. | FDA: Nivolumab + 5-Fu and platinum containing chemotherapy and nivolumab + ipilimumab 1st line ESCC regardless of PD-L1 status EMA: Nivolumab + 5-Fu and platinum containing chemotherapy and Nivolumab + ipilimumab 1st line ESCC with PD-L1 ≥ 1% |
KEYNOTE-859 [45] | Advanced Gastric/GEJ Adenocarcinoma | Global Phase III | 1:1 A. Pembrolizumab 200 mg q3.52 + chemotherapy (FP or CAPOX) B. Placebo + chemotherapy | All-comers: A. mOS 12.9 months B. 11.5 months [HR 0.78, (95% CI 0.70–0.87) p < 0.0001] PD-L1 CPS ≥ 1: A. mOS 13 months B. 11.4 months [HR 0.74 (95% CI 0.65–0.84) p < 0.0001] PD-L1 CPS ≥ 10: A. mOS 15.7 months B. 11.8 months [HR 0.65 (95% CI 0.53–0.79) p < 0.0001) | FDA approved regardless of PD-L1 status EMA approval for PD-L1 CPS ≥ 1. |
RATIONALE 306 [46] | Advanced ESCC regardless of PD-L1 expression First-Line | Global Phase III | 1:1 A. Tislelizumab + chemotherapy (cisplatin or oxaliplatin + capecitabine or fluoropyrimidine or paclitaxel) B. Chemotherapy alone | mOS: A. 17.2 months (95% CI 15.8–20.1) B. 10.6 months [HR 0.66 (95% CI 0.54–0.80); p < 0.0001] | FDA: under review EMA: Not approved (tislelizumab approved in 2nd line setting as single agent) |
KEYNOTE-811 [47,48] | HER-2 positive (IHC 2+ and 3) gastric and GEJ adenocarcinoma | Global Phase III | 1:1 A. Pembrolizumab + Trastuzumab + chemotherapy (FP or CAPOX) B. Placebo + Trastuzumab + chemotherapy | (At 2nd interim analysis) A. mPFS 10 months (95% CI 8.6–11.7) B. mPFS 8.1 months [HR 0.72 (95% CI 0.60–0.87); p = 0.0002] A. mOS 20 months B. mOS 16.9 months [HR 0.87 (0.72–1.06); p = 0.084] | FDA approved all-comers EMA approved PD-L1 CPS ≥ 1 |
HERIZON-GEA-01 [49] | Advanced HER2+-positive gastric/GEJ and esophageal adenocarcinoma (IHC3+ or IHC2+/ISH+) | Global Phase III | 1:1:1 A. Trastuzumab + chemotherapy (CAPOX or FP) B. Zanidatamab (novel bispecific anti-Her2 antibody) + chemotherapy C. Zanidatamab + chemotherapy + tislelizumab | - | Recruiting |
LEAP-015 [50] | Advanced gastroesophageal adenocarcinoma (first line) | Global Phase III | 1:1 A. Pembrolizumab 400 mg q6/52 + Lenvatinib 8 mg QDS + chemotherapy (CAPOX or mFOLFOX6) then consolidation pembrolizumab 400 mg q6/52 with lenvatinib 20 mg QDS B. Chemotherapy alone | Part 1 reported: Safety run in: non-randomized. All patients received pembrolizumab + Lenvatinib + chemotherapy. N = 15 patients ORR 73% (95% CI; 45–92) DCR 93% (95% CI; 68–100) | Randomized part 2 ongoing |
STAR-221 [51] | Advanced gastric, GEJ and esophageal adenocarcinoma | Global Phase III | 1:1 A. Domvanalimab + Zimberelimab + chemotherapy (FOLFOX or CAPOX) B. Nivolumab + chemotherapy | - | Recruiting |
CA224-060 [52] | Gastric/GEJ Adenocarcinoma | Global Phase II | A. Relatlimab + nivolumab + chemotherapy (oxaliplatin based) B. Nivolumab + chemotherapy | - | Active, not recruiting |
Histology | Phase/Region | Arms | Results | Approval | |
---|---|---|---|---|---|
KEYNOTE-059 [36] | Advanced gastric/GEJ adenocarcinoma | Phase II Global Open-label Non-randomized | Pembrolizumab 200 mg q3/52 up to 35 cycles | PD-L1 ≥ 1: ORR 15.5% (95% CI; 10.1%–22.4%; 23 of 148 patients) CR 2% (95% CI, 0.4%–5.8%) PD-L1 < 1 ORR 6.4% (95% CI; 2.6%–12.8%) CR 2.8% (95% CI; 0.6%–7.8%). | Accelerated FDA approval in 2017, approval withdrawn in 2021 |
KEYNOTE-181 [54] | Advanced ESCC and esophageal adenocarcinoma | Global Phase III | A. Pembrolizumab 200 mg q3/52 B. Chemotherapy (paclitaxel, docetaxe, irinotecan) | CPS ≥ 10: A. mOS 9.3 months 6.7 months [HR 0.69 (95% CI, 0.52 to 0.930; p = 0.0074]. ESCC: A. mOS 8.2 months B. 7.1 months [HR 0.78 (95% CI, 0.63 to 0.96); p = 0.0095] All patients A. 7.1 months B. 7.1 months [HR 0.89 (95% CI, 0.75 to 1.05); p = 0.0560]. | FDA approved for ICI naïve advanced ESCC with PD-L1 CPS ≥ 10. EMA not approved |
ATTRACTION-3 [55] | Advanced ESCC | Global Phase III | A. Nivolumab 240 mg q2/52 B. Chemotherapy (paclitaxel or docetaxel) | A. mOS 10.9 months (95% CI 9.2–13.3) B. 8.4 months [HR 0.77, (95% CI 0.62–0.96) p = 0.019] | FDA and EMA approved |
RATIONALE-302 [56] | Advanced ESCC post first-line chemotherapy | Global Phase III | A. Tislelizumab B. Chemotherapy alone (docetaxel, paclitaxel or irinotecan) | All-comers: A. mOS 8.6 months B. 6.3 months [HR 0.70 (95% CI, 0.57–0.85); p = 0.0001) PD-L1 TAP ≥ 10%: A. mOS 10.3 months B. 6.8 months [HR 0.54 (95% CI 0.36–0.79]; p = 0.0006). | Not FDA approved. EMA Approval regardless of PD-L1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynch, E.; Duffy, A.G.; Kelly, R.J. Role of Immunotherapy in Gastroesophageal Cancers—Advances, Challenges and Future Strategies. Cancers 2023, 15, 5401. https://doi.org/10.3390/cancers15225401
Lynch E, Duffy AG, Kelly RJ. Role of Immunotherapy in Gastroesophageal Cancers—Advances, Challenges and Future Strategies. Cancers. 2023; 15(22):5401. https://doi.org/10.3390/cancers15225401
Chicago/Turabian StyleLynch, Emer, Austin G. Duffy, and Ronan J. Kelly. 2023. "Role of Immunotherapy in Gastroesophageal Cancers—Advances, Challenges and Future Strategies" Cancers 15, no. 22: 5401. https://doi.org/10.3390/cancers15225401
APA StyleLynch, E., Duffy, A. G., & Kelly, R. J. (2023). Role of Immunotherapy in Gastroesophageal Cancers—Advances, Challenges and Future Strategies. Cancers, 15(22), 5401. https://doi.org/10.3390/cancers15225401