Prognostic Impact of Copy Number Alterations’ Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Characteristics, Treatment, Material Collection, and Detection of Fusion Genes and Mutations by Molecular Analysis
2.2. Treatment Protocols
2.3. Gene Expression Analysis of Mutator Enzymes by Quantitative Real-Time PCR
2.4. CNA Detection: Multiplex Ligation-Dependent Probe Amplification (MLPA) and RT-PCR
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics; Frequency and Clinical Correlates of Primary Chromosomal Abnormalities
3.2. Clinical and Biological Characteristics of RAG2 and AID Mutator Enzymes’ Expression—In Correlation with Primary Genetic Subgroups
3.3. Clinical and Biological Characteristics of Secondary CNA Aberrations—In Correlation with Primary Genetic Subgroups
3.4. Correlation of Secondary CNA Aberrations with RAG2/AID Signatures
3.5. The Outcome of Intensively Treated B-ALL Patients in Relation to Established Primary Aberrations
3.6. Prognostic Relevance of Secondary CNA Mutations in BCR::ABL1pos and NEG ALL
3.7. Combined Genetic Risk Classification by Revised Coding of Primary and Secondary Aberrations in Adult B-ALL
3.8. Prognostic Relevance of RAG2 and AID Expression in CNAneg and CNApos B-ALL Population
4. Discussion
4.1. Revised Risk Index Based on Primary Aberrations Characterized the Prognosis of 30% of ALL Patients; Rationale for Further Stratification of NEG and BCR::ABL1pos Subgroups
4.2. RAG Is Associated with High CNA Mutation Burden, While AID Is Frequently Observed in CNAlow Patients
4.3. Prognostic Impact of CNAs Aberrations in Correlation with Data from Other Studies
4.4. Prognostic Impact of CNAs Aberrations in Particular Context of BCR::ABL1pos Subgroup
4.5. Prognostic Impact of AID and RAG Expression in CNAneg vs. CNApos Subgroups
4.6. Combined Revised Risk Classification of Adult ALL: CNA Data with Primary Aberrations Reclassify Prognostic Index of Adult ALL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, K.G.; Mullighan, C.G. Genomics in Acute Lymphoblastic Leukaemia: Insights and Treatment Implications. Nat. Rev. Clin. Oncol. 2015, 12, 344–357. [Google Scholar] [CrossRef]
- Moorman, A.V.; Barretta, E.; Butler, E.R.; Ward, E.J.; Twentyman, K.; Kirkwood, A.A.; Enshaei, A.; Schwab, C.; Creasey, T.; Leongamornlert, D.; et al. Prognostic Impact of Chromosomal Abnormalities and Copy Number Alterations in Adult B-Cell Precursor Acute Lymphoblastic Leukaemia: A UKALL14 Study. Leukemia 2022, 36, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Boer, J.M.; van der Veer, A.; Rizopoulos, D.; Fiocco, M.; Sonneveld, E.; de Groot-Kruseman, H.A.; Kuiper, R.P.; Hoogerbrugge, P.; Horstmann, M.; Zaliova, M.; et al. Prognostic Value of Rare IKZF1 Deletion in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia: An International Collaborative Study. Leukemia 2016, 30, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Beldjord, K.; Chevret, S.; Asnafi, V.; Huguet, F.; Boulland, M.L.; Leguay, T.; Thomas, X.; Cayuela, J.M.; Grardel, N.; Chalandon, Y.; et al. Oncogenetics and Minimal Residual Disease Are Independent Outcome Predictors in Adult Patients with Acute Lymphoblastic Leukemia. Blood 2014, 123, 3739–3749. [Google Scholar] [CrossRef]
- Moorman, A.V.; Enshaei, A.; Schwab, C.; Wade, R.; Chilton, L.; Elliott, A.; Richardson, S.; Hancock, J.; Kinsey, S.E.; Mitchell, C.D.; et al. A Novel Integrated Cytogenetic and Genomic Classification Refines Risk Stratification in Pediatric Acute Lymphoblastic Leukemia. Blood 2014, 124, 1434–1444. [Google Scholar] [CrossRef]
- Iacobucci, I.; Mullighan, C.G. Genetic Basis of Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2017, 35, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Creasey, T.; Barretta, E.; Ryan, S.L.; Butler, E.; Kirkwood, A.A.; Leongamornlert, D.; Papaemmanuil, E.; Patrick, P.; Clifton-Hadley, L.; Patel, B.; et al. Genetic and Genomic Analysis of Acute Lymphoblastic Leukemia in Older Adults Reveals a Distinct Profile of Abnormalities: Analysis of 210 Patients from the UKALL14 and UKALL60+ Clinical Trials. Haematologica 2022, 107, 2051–2063. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.J.; Faderl, S.; Kantarjian, H.M. Adult Acute Lymphoblastic Leukemia. In Mayo Clinic Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; Volume 80, pp. 1517–1527. [Google Scholar]
- Larson, S.; Stock, W. Progress in the Treatment of Adults with Acute Lymphoblastic Leukemia. Curr. Opin. Hematol. 2008, 15, 400–407. [Google Scholar] [CrossRef]
- Roberts, K.G. Genetics and Prognosis of ALL in Children vs. Adults. Hematol. Am. Soc. Hematol. Educ. Program 2018, 201, 137–145. [Google Scholar] [CrossRef]
- Jabbour, E.; Short, N.J.; Jain, N.; Haddad, F.G.; Welch, M.A.; Ravandi, F.; Kantarjian, H. The Evolution of Acute Lymphoblastic Leukemia Research and Therapy at MD Anderson over Four Decades. J. Hematol. Oncol. 2023, 16, 22. [Google Scholar] [CrossRef]
- Sun, C.; Chang, L.; Zhu, X. Pathogenesis of ETV6/RUNX1-Positive Childhood Acute Lymphoblastic Leukemia and Mechanisms Underlying Its Relapse. Oncotarget 2017, 8, 35445–35459. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Klemm, L.; Park, E.; Papaemmanuil, E.; Ford, A.; Kweon, S.M.; Trageser, D.; Hasselfeld, B.; Henke, N.; Mooster, J.; et al. Mechanisms of Clonal Evolution in Childhood Acute Lymphoblastic Leukemia. Nat. Immunol. 2015, 16, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Notta, F.; Mullighan, C.G.; Wang, J.C.Y.; Poeppl, A.; Doulatov, S.; Phillips, L.A.; Ma, J.; Minden, M.D.; Downing, J.R.; Dick, J.E. Evolution of Human BCR-ABL1 Lymphoblastic Leukaemia-Initiating Cells. Nature 2011, 469, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Moorman, A.V. New and Emerging Prognostic and Predictive Genetic Biomarkers in B-Cell Precursor Acute Lymphoblastic Leukemia. Haematologica 2016, 101, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Goorha, S.; Radtke, I.; Miller, C.B.; Coustan-Smith, E.; Dalton, J.D.; Girtman, K.; Mathew, S.; Ma, J.; Pounds, S.B.; et al. Genome-Wide Analysis of Genetic Alterations in Acute Lymphoblastic Leukaemia. Nature 2007, 446, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.; Storlazzi, C.T.; Cilloni, D.; Lonetti, A.; Ottaviani, E.; Soverini, S.; Astolfi, A.; Chiaretti, S.; Vitale, A.; Messa, F.; et al. Identification and Molecular Characterization of Recurrent Genomic Deletions on 7p12 in the IKZF1 Gene in a Large Cohort of BCR-ABL1-Positive Acute Lymphoblastic Leukemia Patients: On Behalf of Gruppo Italiano Malattie Ematologiche Dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009, 114, 2159–2167. [Google Scholar] [CrossRef]
- Anderson, K.; Lutz, C.; Van Delft, F.W.; Bateman, C.M.; Guo, Y.; Colman, S.M.; Kempski, H.; Moorman, A.V.; Titley, I.; Swansbury, J.; et al. Genetic Variegation of Clonal Architecture and Propagating Cells in Leukaemia. Nature 2011, 469, 356–361. [Google Scholar] [CrossRef]
- Patel, S.; Mason, C.C.; Glenn, M.J.; Paxton, C.N.; South, S.T.; Cessna, M.H.; Asch, J.; Cobain, E.F.; Bixby, D.L.; Smith, L.B.; et al. Genomic Analysis of Adult B-ALL Identifies Potential Markers of Shorter Survival. Leuk. Res. 2017, 56, 44–51. [Google Scholar] [CrossRef]
- Levy, G.; Kicinski, M.; Van der Straeten, J.; Uyttebroeck, A.; Ferster, A.; De Moerloose, B.; Dresse, M.F.; Chantrain, C.; Brichard, B.; Bakkus, M. Immunoglobulin Heavy Chain High-Throughput Sequencing in Pediatric B-Precursor Acute Lymphoblastic Leukemia: Is the Clonality of the Disease at Diagnosis Related to Its Prognosis? Front. Pediatr. 2022, 10, 874771. [Google Scholar] [CrossRef]
- Yang, J.J.; Bhojwani, D.; Yang, W.; Cai, X.; Stocco, G.; Crews, K.; Wang, J.; Morrison, D.; Devidas, M.; Hunger, S.P.; et al. Genome-Wide Copy Number Profiling Reveals Molecular Evolution from Diagnosis to Relapse in Childhood Acute Lymphoblastic Leukemia. Blood 2008, 112, 4178–4183. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Rapado, I.; Li, Y.; Potter, N.E.; Wedge, D.C.; Tubio, J.; Alexandrov, L.B.; Van Loo, P.; Cooke, S.L.; Marshall, J.; et al. RAG-Mediated Recombination Is the Predominant Driver of Oncogenic Rearrangement in ETV6-RUNX1 Acute Lymphoblastic Leukemia. Nat. Genet. 2014, 46, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, M.; Sankaranand, V.S.; Anant, S.; Sugai, M.; Kinoshita, K.; Davidson, N.O.; Honjo, T. Specific Expression of Activation-Induced Cytidine Deaminase (AID), a Novel Member of the RNA-Editing Deaminase Family in Germinal Center B Cells. J. Biol. Chem. 1999, 274, 18470–18476. [Google Scholar] [CrossRef] [PubMed]
- Maul, R.W.; Gearhart, P.J. AID and Somatic Hypermutation. Adv. Immunol. 2010, 105, 159–191. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.A.; Chang, M.S.; Sposto, R.; Müschen, M. Activation-Induced Cytidine Deaminase Accelerates Clonal Evolution in BCR-ABL1-Driven B-Cell Lineage Acute Lymphoblastic Leukemia. Cancer Res. 2010, 70, 7411–7420. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.G.; Lu, H.; Raghavan, S.C.; Muschen, M.; Hsieh, C.L.; Lieber, M.R. Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for Their Lineage and Stage Specificity. Cell 2008, 135, 1130–1142. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, M.; Wang, Y.; Chen, X.; Miao, Y.; Yuan, M.; Zhou, W.; Li, D.; Wang, D.; Wang, M.; et al. Inflammation Accelerates BCR-ABL11 B-ALL Development through Upregulation of AID. Blood Adv. 2022, 6, 4060–4072. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, F.; Wu, C.; Li, S.; Zhao, X.; Zhang, P.; Jiao, J.; Yu, X.; Ji, Y.; Zhang, M. Illegitimate RAG-Mediated Recombination Events Are Involved in IKZF1 Delta 3–6 Deletion in BCR-ABL1 Lymphoblastic Leukaemia. Clin. Exp. Immunol. 2016, 185, 320–331. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Miller, C.B.; Radtke, I.; Phillips, L.A.; Dalton, J.; Ma, J.; White, D.; Hughes, T.P.; Le Beau, M.M.; Pui, C.H.; et al. BCR-ABL1 Lymphoblastic Leukaemia Is Characterized by the Deletion of Ikaros. Nature 2008, 453, 110–114. [Google Scholar] [CrossRef]
- Sanders, M.A.; Szabó, A.; Exalto, C.; Hoogenboezem, R.; Zeilemaker, A.; Koenders, J.E.; van Geel, P.; Schelen, A.; Beverloo, H.B.; Cornelissen, J.J.; et al. Extensive RAG-Mediated Rearrangements and Mutations in BCR-ABL1 and BCR-ABL1-like Adult Acute Lymphoblastic Leukemia. Blood 2016, 128, 4067. [Google Scholar] [CrossRef]
- Kim, J.C.; Chan-Seng-Yue, M.; Ge, S.; Zeng, A.G.X.; Ng, K.; Gan, O.I.; Garcia-Prat, L.; Flores-Figueroa, E.; Woo, T.; Zhang, A.X.W.; et al. Transcriptomic Classes of BCR-ABL1 Lymphoblastic Leukemia. Nat. Genet. 2023, 55, 1186–1197. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2009, 360, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Ribera, J.; Morgades, M.; Zamora, L.; Montesinos, P.; Gõmez-Seguí, I.; Pratcorona, M.; Sarrà, J.; Guàrdia, R.; Nomdedeu, J.; Tormo, M.; et al. Prognostic Significance of Copy Number Alterations in Adolescent and Adult Patients with Precursor B Acute Lymphoblastic Leukemia Enrolled in PETHEMA Protocols. Cancer 2015, 121, 3809–3817. [Google Scholar] [CrossRef]
- Giebel, S.; Labopin, M.; Socié, G.; Beauvais, D.; Klein, S.; Wagner-Drouet, E.M.; Blaise, D.; Nguyen-Quoc, S.; Bourhis, J.H.; Thiebaut, A.; et al. Allogeneic HCT for Adults with B-Cell Precursor Acute Lymphoblastic Leukemia Harboring IKZF1 Gene Mutations. A Study by the Acute Leukemia Working Party of the EBMT. Bone Marrow Transpl. 2021, 56, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Paietta, E.; Roberts, K.G.; Wang, V.; Gu, Z.; Buck, G.A.N.; Pei, D.; Cheng, C.; Levine, R.L.; Abdel-Wahab, O.; Cheng, Z.; et al. Molecular Classification Improves Risk Assessment in Adult BCR-ABL1– Negative B-ALL. Blood 2021, 138, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Chiaretti, S.; Fedullo, A.L.; Piciocchi, A.; Puzzolo, M.C.; Lauretti, A.; Gianfelici, V.; Apicella, V.; Fazi, P.; Te Kronnie, G.; et al. Clinical Significance of Recurrent Copy Number Aberrations in B-Lineage Acute Lymphoblastic Leukaemia without Recurrent Fusion Genes across Age Cohorts. Br. J. Haematol. 2017, 178, 583–587. [Google Scholar] [CrossRef]
- Duffield, A.S.; Mullighan, C.G.; Borowitz, M.J. International Consensus Classification of Acute Lymphoblastic Leukemia/Lymphoma. Virchows Arch. 2023, 482, 11–26. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; de Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Stanulla, M.; Dagdan, E.; Zaliova, M.; Möricke, A.; Palmi, C.; Cazzaniga, G.; Eckert, C.; Te Kronnie, G.; Bourquin, J.-P.; Koehler, R.; et al. IKZF1 plus Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018, 36, 1240–1249. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, M.; Chandrashekar, P.H.; Bakhshi, S.; Trehan, A.; Gupta, R.; Thakur, R.; Gajendra, S.; Sharma, P.; Sreedharanunni, S.; et al. Clinical and Prognostic Impact of Copy Number Alterations and Associated Risk Profiles in a Cohort of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia Cases Treated under ICiCLe Protocol. Hemasphere 2022, 6, E782. [Google Scholar] [CrossRef]
- van Dongen, J.; Macintyre, E.; Gabert, J.; Delabesse, E.; Rossi, V.; Saglio, G.; Gottardi, E.; Rambaldi, A.; Dotti, G.; Griesinger, F.; et al. Standardized RT-PCR Analysis of Fusion Gene Transcripts from Chromosome Aberrations in Acute Leukemia for Detection of Minimal Residual Disease Report of the BIOMED-1 Concerted Action: Investigation of Minimal Residual Disease in Acute Leukemia. Leukemia 1999, 13, 1901–1928. [Google Scholar] [CrossRef]
- Soszynska, K.; Mucha, B.; Debski, R.; Skonieczka, K.; Duszenko, E.; Koltan, A.; Wysocki, M.; Haus, O. The Application of Conventional Cytogenetics, FISH, and RT-PCR to Detect Genetic Changes in 70 Children with ALL. Ann. Hematol. 2008, 87, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Oettinger, M.A.; Schatz, D.G.; Gorka, C.; Baltimore, D. RAG-1 and RAG-2, Adjacent Genes That Synergistically Activate V(D)J Recombination. Science 1990, 248, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.; Lonetti, A.; Messa, F.; Cilloni, D.; Arruga, F.; Ottaviani, E.; Paolini, S.; Papayannidis, C.; Piccaluga, P.P.; Giannoulia, P.; et al. Expression of Spliced Oncogenic Ikaros Isoforms in Philadelphia-Positive Acute Lymphoblastic Leukemia Patients Treated with Tyrosine Kinase Inhibitors: Implications for a New Mechanism of Resistance. Blood 2008, 112, 3847–3855. [Google Scholar] [CrossRef] [PubMed]
- Huguet, F.; Chevret, S.; Leguay, T.; Thomas, X.; Boissel, N.; Escoffre-Barbe, M.; Chevallier, P.; Hunault, M.; Vey, N.; Bonmati, C.; et al. Intensified Therapy of Acute Lymphoblastic Leukemia in Adults: Report of the Randomized GRAALL-2005 Clinical Trial. J. Clin. Oncol. 2018, 36, 2514–2523. [Google Scholar] [CrossRef] [PubMed]
- Boer, J.M.; Koenders, J.E.; Van Der Holt, B.; Exalto, C.; Sanders, M.A.; Cornelissen, J.J.; Valk, P.J.M.; Den Boer, M.L.; Rijneveld, A.W. Expression Profiling of Adult Acute Lymphoblastic Leukemia Identifies a BCR-ABL1-like Subgroup Characterized by High Non-Response and Relapse Rates. Haematologica 2015, 100, 261–264. [Google Scholar] [CrossRef]
- Pfeifer, H.; Raum, K.; Markovic, S.; Nowak, V.; Fey, S.; Obländer, J.; Pressler, J.; Böhm, V.; Brüggemann, M.; Wunderle, L.; et al. Genomic CDKN2A/2B Deletions in Adult Ph1 All Are Adverse despite Allogeneic Stem Cell Transplantation. Blood 2018, 131, 1464–1475. [Google Scholar] [CrossRef]
- Zhang, W.; Kuang, P.; Liu, T. Prognostic Significance of CDKN2A/B Deletions in Acute Lymphoblastic Leukaemia: A Meta-Analysis. Ann. Med. 2019, 51, 28–40. [Google Scholar] [CrossRef]
- Jabbour, E.; Short, N.J.; Ravandi, F.; Huang, X.; Daver, N.; DiNardo, C.D.; Konopleva, M.; Pemmaraju, N.; Wierda, W.; Garcia-Manero, G.; et al. Combination of Hyper-CVAD with Ponatinib as First-Line Therapy for Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukaemia: Long-Term Follow-up of a Single-Centre, Phase 2 Study. Lancet Haematol. 2018, 5, 618–627. [Google Scholar] [CrossRef]
- Ravandi, F.; O’Brien, S.M.; Cortes, J.E.; Thomas, D.M.; Garris, R.; Faderl, S.; Burger, J.A.; Rytting, M.E.; Ferrajoli, A.; Wierda, W.G.; et al. Long-Term Follow-up of a Phase 2 Study of Chemotherapy plus Dasatinib for the Initial Treatment of Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Cancer 2015, 121, 4158–4164. [Google Scholar] [CrossRef]
- Bassan, R.; Rossi, G.; Pogliani, E.M.; Di Bona, E.; Angelucci, E.; Cavattoni, I.; Lambertenghi-Deliliers, G.; Mannelli, F.; Levis, A.; Ciceri, F.; et al. Chemotherapy-Phased Imatinib Pulses Improve Long-Term Outcome of Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Northern Italy Leukemia Group Protocol 09/00. J. Clin. Oncol. 2010, 28, 3644–3652. [Google Scholar] [CrossRef]
- Daver, N.; Thomas, D.; Ravandi, F.; Cortes, J.; Garris, R.; Jabbour, E.; Garcia-Manero, G.; Borthakur, G.; Kadia, T.; Rytting, M.; et al. Final Report of a Phase II Study of Imatinib Mesylate with Hyper-CVAD for the Front-Line Treatment of Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Haematologica 2015, 100, 653–661. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ravandi, F.; Huang, X.; Daver, N.G.; DiNardo, C.D.; Konopleva, M.Y.; Pemmaraju, N.; Wierda, W.G.; Garcia-Manero, G.; et al. Long-Term Safety and Efficacy of Hyper-CVAD Plus Ponatinib As Frontline Therapy for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2019, 134, 283. [Google Scholar] [CrossRef]
- Holowiecki, J.; Krawczyk-Kulis, M.; Giebel, S.; Jagoda, K.; Stella-Holowiecka, B.; Piatkowska-Jakubas, B.; Paluszewska, M.; Seferynska, I.; Lewandowski, K.; Kielbinski, M.; et al. Status of Minimal Residual Disease after Induction Predicts Outcome in Both Standard and High-Risk Ph-Negative Adult Acute Lymphoblastic Leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br. J. Haematol. 2008, 142, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Zaliova, M.; Stuchly, J.; Winkowska, L.; Musilova, A.; Fiser, K.; Slamova, M.; Starkova, J.; Vaskova, M.; Hrusak, O.; Sramkova, L.; et al. Genomic Landscape of Pediatric B-Other Acute Lymphoblastic Leukemia in a Consecutive European Cohort. Haematologica 2019, 104, 1396–1406. [Google Scholar] [CrossRef]
- Han, Q.; Ma, J.; Gu, Y.; Song, H.; Kapadia, M.; Kawasawa, Y.I.; Dovat, S.; Song, C.; Ge, Z. RAG1 High Expression Associated with IKZF1 Dysfunction in Adult B-Cell Acute Lymphoblastic Leukemia. J. Cancer 2019, 10, 3842–3850. [Google Scholar] [CrossRef] [PubMed]
- Heinä niemi, M.; Vuorenmaa, T.; Teppo, S.; Kaikkonen, M.U.; Bouvy-Liivrand, M.; Mehtonen, J.; Niskanen, H.; Zachariadis, V.; Laukkanen, S.; Liuksiala, T.; et al. Transcription-Coupled Genetic Instability Marks Acute Lymphoblastic Leukemia Structural Variation Hotspots. eLife 2016, 6, e13087. [Google Scholar] [CrossRef]
- Peppas, I.; Ford, A.M.; Furness, C.L.; Greaves, M.F. Gut Microbiome Immaturity and Childhood Acute Lymphoblastic Leukaemia. Nat. Rev. Cancer 2023, 23, 565–576. [Google Scholar] [CrossRef]
- Vicente-Dueñas, C.; Janssen, S.; Oldenburg, M.; Auer, F.; González-Herrero, I.; Casado-García, A.; Isidro-Hernández, M.; Raboso-Gallego, J.; Westhoff, P.; Pandyra, A.A.; et al. An Intact Gut Microbiome Protects Genetically Predisposed Mice against Leukemia. Blood 2020, 136, 2003–2017. [Google Scholar] [CrossRef]
- Greaves, M. A Causal Mechanism for Childhood Acute Lymphoblastic Leukaemia. Nat. Rev. Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef]
- Çakan, E.; Gunaydin, G. Activation Induced Cytidine Deaminase: An Old Friend with New Faces. Front. Immunol. 2022, 13, 965312. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Marusawa, H.; Endo, Y.; Chiba, T. Inflammation-Mediated Genomic Instability: Roles of Activation-Induced Cytidine Deaminase in Carcinogenesis. Cancer Sci. 2012, 103, 1201–1206. [Google Scholar] [CrossRef]
- Kou, T.; Marusawa, H.; Kinoshita, K.; Endo, Y.; Okazaki, I.M.; Ueda, Y.; Kodama, Y.; Haga, H.; Ikai, I.; Chiba, T. Expression of Activation-Induced Cytidine Deaminase in Human Hepatocytes during Hepatocarcinogenesis. Int. J. Cancer 2007, 120, 469–476. [Google Scholar] [CrossRef]
- Fang, Q.; Song, Y.; Gong, X.; Wang, J.; Li, Q.; Liu, K.; Feng, Y.; Hao, Q.; Li, Y.; Wei, H.; et al. Gene Deletions and Prognostic Values in B-Linage Acute Lymphoblastic Leukemia. Front. Oncol. 2021, 11, 677034. [Google Scholar] [CrossRef]
- Churchman, M.L.; Low, J.; Qu, C.; Paietta, E.M.; Kasper, L.H.; Chang, Y.; Payne-Turner, D.; Althoff, M.J.; Song, G.; Chen, S.C.; et al. Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell 2015, 28, 343–356. [Google Scholar] [CrossRef]
- Koptyra, M.; Falinski, R.; Nowicki, M.O.; Stoklosa, T.; Majsterek, I.; Nieborowska-Skorska, M.; Blasiak, J.; Skorski, T. BCR/ABL Kinase Induces Self-Mutagenesis via Reactive Oxygen Species to Encode Imatinib Resistance. Blood 2006, 108, 319–327. [Google Scholar] [CrossRef]
- Shochat, C.; Tal, N.; Bandapalli, O.R.; Palmi, C.; Ganmore, I.; te Kronnie, G.; Cario, G.; Cazzaniga, G.; Kulozik, A.E.; Stanulla, M.; et al. Gain-of-Function Mutations in Interleukin-7 Receptor-α (IL7R) in Childhood Acute Lymphoblastic Leukemias. J. Exp. Med. 2011, 208, 901–908. [Google Scholar] [CrossRef]
- Holmfeldt, L.; Wei, L.; Diaz-Flores, E.; Walsh, M.; Zhang, J.; Ding, L.; Payne-Turner, D.; Churchman, M.; Andersson, A.; Chen, S.C.; et al. The Genomic Landscape of Hypodiploid Acute Lymphoblastic Leukemia. Nat. Genet. 2013, 45, 242–252. [Google Scholar] [CrossRef]
- Iacobucci, I.; Iraci, N.; Messina, M.; Lonetti, A.; Chiaretti, S.; Valli, E.; Ferrari, A.; Papayannidis, C.; Paoloni, F.; Vitale, A.; et al. IKAROS Deletions Dictate a Unique Gene Expression Signature in Patients with Adult B-Cell Acute Lymphoblastic Leukemia. PLoS ONE 2012, 7, e40934. [Google Scholar] [CrossRef]
- Hertzberg, L.; Vendramini, E.; Ganmore, I.; Cazzaniga, G.; Schmitz, M.; Chalker, J.; Shiloh, R.; Iacobucci, I.; Shochat, C.; Zeligson, S.; et al. Down Syndrome Acute Lymphoblastic Leukemia, a Highly Heterogeneous Disease in Which Aberrant Expression of CRLF2 Is Associated with Mutated JAK2: A Report from the International BFM Study Group. Blood 2010, 115, 1006–1017. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An Improvement of the 2ˆ(−Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Kwon, M.; Martínez-Laperche, C.; Infante, M.; Carretero, F.; Balsalobre, P.; Serrano, D.; Gayoso, J.; Pérez-Corral, A.; Anguita, J.; Díez-Martín, J.L.; et al. Evaluation of Minimal Residual Disease by Real-Time Quantitative PCR of Wilms’ Tumor 1 Expression in Patients with Acute Myelogenous Leukemia after Allogeneic Stem Cell Transplantation: Correlation with Flow Cytometry and Chimerism. Biol. Blood Marrow Transplant. 2012, 18, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
(A) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | NEG | BCR::ABL1 | “Bad Primary” | E2A::PBX | |||||||||
BCR::ABL1-like | MLL::AF4 | Complex | Hyperdiploid | All “Bad Primary” ‡ | |||||||||
n = 166 | n = 63 (38%) | n = 55 (33%) | n = 16 (10%) | n = 5 (3%) | n = 15 (9%) | n = 6 (4%) | n = 44 (27%) | n = 4 (2%) | |||||
Age | |||||||||||||
≤37 years (%) | 83 (50%) | 33 (52%) | 24 (44%) | 6 (38%) | 5 (100%) | 8 (53%) | 3 (50%) | 23 (52%) | 3 (75%) | ||||
>37 years (%) | 83 (50%) | 30 (48%) | 31 (56%) | 10 (62%) | 0 (0%) | 7 (47%) | 3 (50%) | 21 (48%) | 1 (25%) | ||||
Gender | |||||||||||||
Female (%) | 57 (34%) | 15 (24%) | 24 (44%) | 7 (44%) | 0 (0%) | 5 (33%) | 3 (50%) | 16 (36%) | 2 (50%) | ||||
Male (%) | 109 (66%) | 48 (76%) | 31 (56%) | 9 (56%) | 5 (100%) | 10 (67%) | 3 (50%) | 28 (64%) | 2 (50%) | ||||
Immunological subtype | |||||||||||||
prepreB (%) | 22 (13%) | 11 (17%) | 3 (5%) | 1 (6%) | 3 (60%) | 3 (21%) | 1 (17%) | 8 (19%) | 0 (0%) | ||||
preB (%) | 42 (25%) | 17 (27%) | 13 (24%) | 4 (25%) | 2 (40%) | 4 (29%) | 1 (17%) | 11 (26%) | 1 (25%) | ||||
common (%) | 101 (62%) | 35 (56%) | 39 (71%) | 11 (69%) | 0 (0%) | 7 (50%) | 4 (67%) | 24 (56%) | 3 (75%) | ||||
Median of WBC, ×109/L | 17.0 | 13.5 | 26.0 | 28.7 | 127.9 # | 9.2 | 4.6 | 10.9 | 24.3 | ||||
Rate of CD20 positive, % | 18.0 | 14.0 | 28.0 | 31.0 | 0.5 | 35.0 | 25.0 | 25.0 | 9.5 | ||||
Rate of CD52 positive, % | 18.0 | 18.0 | 22.0 | 43.0 | 8.7 | 12.0 | 5.5 | 14.7 | 62.0 | ||||
Risk group according to PALG | |||||||||||||
very high risk (%) | 55 (33%) | 0 (0%) | 55 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||||
high risk (%) | 94 (57%) | 54 (86%) | 0 (0%) | 16 (100%) | 5 (100%) | 13 (87%) | 3 (50%) | 38 (86%) | 2 (50%) | ||||
standard risk (%) | 17 (10%) | 9 (14%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (13%) | 3 (50%) | 6 (14%) | 2 (50%) | ||||
MRD status after first induction | |||||||||||||
positive (%) | 45 (38%) | 13 (30%) | 19 (53%) | 5 (56%) | 0 (0%) | 6 (43%) | 1 (20%) | 13 (37%) | 0 (0%) | ||||
negative (%) | 73 (62%) | 31 (70%) | 17 (47%) | 4 (44%) | 5 (100%) | 8 (57%) | 4 (80%) | 22 (63%) | 3 (100%) | ||||
Induction regimen | |||||||||||||
PALG5 (%) | 15 (9%) | 4 (6%) | 6 (11%) | 0 (0%) | 0 (0%) | 2 (13%) | 1 (17%) | 3 (7%) | 2 (50%) | ||||
PALG6 (%) | 145 (88%) | 58 (92%) | 46 (84%) | 15 (100%) | 5 (100%) | 13 (87%) | 5 (83%) | 40 (93%) | 1 (25%) | ||||
PALG modified (%) | 5 (3%) | 1 (2%) | 3 (5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (25%) | ||||
AlloHSCT in first complete response | |||||||||||||
yes (%) | 77 (47%) | 27 (44%) | 29 (53%) | 7 (44%) | 5 (100%) | 6 (40%) | 1 (17%) | 19 (43%) | 2 (50%) | ||||
no (%) | 88 (53%) | 35 (56%) | 26 (47%) | 9 (56%) | 0 (0%) | 9 (60%) | 5 (83%) | 25 (57%) | 2 (50%) | ||||
(B) | |||||||||||||
Total | RAG2 Expression | AID Expression | |||||||||||
Low | High | p | Low | High | p | ||||||||
n = 166 | n = 83 | n = 78 | n = 78 | n = 79 | |||||||||
Median age, years | 37.5 | 40.0 | 37.0 | 0.4817 * | 35.5 | 41.0 | 0.2802 * | ||||||
Gender | 0.5191 † | 0.1440 † | |||||||||||
Female (%) | 57 | 28 (34%) | 27 (35%) | 31 (40%) | 24 (30%) | ||||||||
Male (%) | 109 | 55 (66%) | 51 (65%) | 47 (60%) | 55 (70%) | ||||||||
Primary aberration | |||||||||||||
NEG | 63 | 37 (62%) | 23 (38%) | 0.0478 a | 22 (38%) | 36 (62%) | 0.0242 a | ||||||
BCR::ABL1 | 55 | 21 (39%) | 33 (61%) | 0.0224 b | 30 (57%) | 23 (43%) | 0.2156 b | ||||||
BCR::ABL1-like | 16 | 8 (53%) | 7 (47%) | 7 (50%) | 7 (50%) | ||||||||
MLL::AF4 | 5 | 2 (40%) | 3 (60%) | 5 (100%) | 0 (0%) | ||||||||
Complex | 15 | 8 (53%) | 7 (47%) | 7 (47%) | 8 (53%) | ||||||||
Hyperdiploid | 8 | 5 (83%) | 1 (17%) | 3 (50%) | 3 (50%) | ||||||||
E2A::PBX | 4 | 1 (25%) | 3 (75%) | 3 (75%) | 1 (25%) | ||||||||
Immunological subtype | 0.4641 c | 0.0420 c | |||||||||||
prepreB (%) | 22 | 13 (59%) | 9 (41%) | 14 (67%) | 7 (33%) | ||||||||
preB (%) | 42 | 18 (46%) | 21(54%) | 14 (36%) | 25 (64%) | ||||||||
common (%) | 101 | 51 (52%) | 48 (48%) | 50 (52%) | 46 (48%) | ||||||||
Median of WBC, ×109/L | 17.0 | 10.2 | 23.0 | 0.0559 * | 21.0 | 12.9 | 0.0589 * | ||||||
Rate of CD20 positive, % | 18.0 | 22.0 | 20.0 | 0.5278 * | 11.0 | 30.0 | 0.3524 * | ||||||
Rate of CD52 positive, % | 18.0 | 22.5 | 17.5 | 0.5950 * | 22.5 | 17.0 | 0.1320 * | ||||||
Risk group according to PALG | 0.0681 † | 0.1691 † | |||||||||||
very high risk (%) | 55 | 21 (39%) | 33 (61%) | 30 (57%) | 23 (43%) | ||||||||
high risk (%) | 94 | 52 (57%) | 39 (43%) | 38 (43%) | 50 (57%) | ||||||||
standard risk (%) | 17 | 10 (63%) | 6 (37%) | 10 (63%) | 6 (37%) | ||||||||
MRD status after first induction | 0.4792 † | 0.1463 † | |||||||||||
positive (%) | 45 | 24 (55%) | 20 (45%) | 18 (43%) | 24 (57%) | ||||||||
negative (%) | 73 | 36 (52%) | 33 (48%) | 38 (55%) | 31 (45%) | ||||||||
Induction regimen | |||||||||||||
PALG5 (%) | 15 | 8 (57%) | 6 (43%) | 4 (29%) | 10 (71%) | ||||||||
PALG6 (%) | 145 | 73 (52%) | 68 (48%) | 71 (52%) | 66 (48%) | ||||||||
PALG modified (%) | 5 | 1 (20%) | 4 (80%) | 3 (60%) | 2 (40%) | ||||||||
AlloHSCT in first complete response | |||||||||||||
yes (%) | 77 | 36 (49%) | 38(51%) | 34 (47%) | 38 (53%) | ||||||||
no (%) | 88 | 47 (54%) | 40 (46%) | 44 (52%) | 41 (48%) | ||||||||
(C) | |||||||||||||
Total | CNA Presence | CNA Mutation Burden | IKZF1 Mutation Status | IKZF1pos Patients Only d | |||||||||
CNAneg | CNApos | p | CNAlow (0–1 CNA) | CNAhigh (≥2 CNAs) | p | IKZFneg | IKZFpos e | p | 1 CNA | CNAhigh | p | ||
n = 94 | n = 28 (30%) | n = 66 (70%) | n = 53 (56%) | n = 41 (44%) | n = 53 (52%) | n = 49 (48%) | n = 12 (29%) | n = 29 (71%) | |||||
Median age, years | 37.0 | 33.0 | 39.5 | 0.0227 * | 36.0 | 39.0 | 0.1128 * | 35.0 | 41.0 | 0.0152 * | 41.0 | 45.0 | 0.6466 * |
Gender | 0.5383 † | 0.3658 † | 0.3789 † | 0.5365 † | |||||||||
Female (%) | 36 | 11 (31%) | 25 (69%) | 19 (53%) | 17 (47%) | 21 (58%) | 17 (42%) | 4 (27%) | 11 (73%) | ||||
Male (%) | 58 | 17 (29%) | 41 (71%) | 34 (59%) | 24 (41%) | 32 (50%) | 32 (50%) | 8 (31%) | 18 (69%) | ||||
Primary aberration | |||||||||||||
NEG | 35 (37%) | 11 (31%) | 24 (69%) | 0.7887 a | 20 (57%) | 15 (43%) | 0.9089 a | 21 (60%) | 14 (40%) | 0.2402 a | 4 (29%) | 10 (71%) | 0.9437 a |
BCR::ABL1 | 30 (32%) | 6 (20%) | 24 (80%) | 0.1554 b | 14 (47%) | 16 (53%) | 0.1934 b | 10 (27%) | 27 (73%) | 0.0001 b | 6 (30%) | 14 (70%) | 0.9200 b |
BCR::ABL1-like | 12 (13%) | 2 (17%) | 10 (83%) | 5 (42%) | 7 (58%) | 6 (50%) | 6 (50%) | 2 (33%) | 4 (67%) | ||||
MLL::AF4 | 3 (3%) | 2 (67%) | 1 (33%) | 3 (100%) | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | ||||
Complex | 6 (6%) | 2 (33%) | 4 (67%) | 3 (50%) | 3 (50%) | 5 (71%) | 2 (29%) | 0 (0%) | 1 (100%) | ||||
Hyperdiploid | 6 (6%) | 3 (50%) | 3 (50%) | 6 (100%) | 0 (0%) | 6 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | ||||
E2A::PBX | 2 (2%) | 2 (100%) | 0 (0%) | 2 (100%) | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | ||||
Immunological subtype | 0.2555 c | 0.2765 c | 0.8579 c | 0.9534 c | |||||||||
prepreB (%) | 11 | 5 (45%) | 6 (55%) | 7 (64%) | 4 (46%) | 9 (82%) | 2 (18%) | 0 (0%) | 2 (100%) | ||||
preB (%) | 26 | 10 (38%) | 16 (62%) | 17 (65%) | 9 (35%) | 16 (53%) | 14 (47%) | 3 (30%) | 7 (70%) | ||||
common (%) | 57 | 13 (23%) | 44 (77%) | 29 (51%) | 28 (49%) | 28 (46%) | 33 (54%) | 9 (31%) | 20 (69%) | ||||
Median of WBC, ×109/L | 15.5 | 13.7 | 17.9 | 0.8178 * | 13.6 | 23.6 | 0.0939 * | 13.8 | 19.0 | 0.3394 * | 7.2 | 24.4 | 0.1188 * |
Rate of CD20 positive, % | 18.0 | 11.0 | 18.0 | 0.7008 * | 10.0 | 20.0 | 0.2409 * | 18.0 | 20.0 | 0.9968 * | 6.2 | 19.0 | 0.1939 * |
Rate of CD52 positive, % | 22.5 | 15.0 | 26.2 | 0.2507 * | 26.0 | 21.5 | 0.4730 * | 22.0 | 18.0 | 0.6487 * | 82.0 | 18.0 | 0.0502 * |
Risk group acc. to PALG | 0.0567 † | 0.0561 † | 0.0005 † | 0.7786 † | |||||||||
very high risk (%) | 30 | 6 (20%) | 24 (80%) | 14 (47%) | 16 (53%) | 10 (27%) | 27 (73%) | 6 (30%) | 14 (70%) | ||||
high risk (%) | 54 | 16 (30%) | 38 (70%) | 30 (56%) | 24 (44%) | 35 (64%) | 20 (36%) | 5 (26%) | 14 (74%) | ||||
standard risk (%) | 10 | 6 (60%) | 4 (40%) | 9 (90%) | 1 (10%) | 8 (80%) | 2 (20%) | 1 (50%) | 1 (50%) | ||||
MRD after 1st induction | 0.0486 † | 0.0003 † | 0.0019 † | 0.0149 † | |||||||||
positive (%) | 25 | 5 (20%) | 20 (80%) | 9 (36%) | 16 (64%) | 9 (31%) | 20 (69%) | 2 (13%) | 14 (87%) | ||||
negative (%) | 42 | 18 (43%) | 24 (57%) | 34 (81%) | 8 (19%) | 30 (68%) | 14 (32%) | 7 (58%) | 5 (42%) | ||||
Induction regimen | |||||||||||||
PALG5 (%) | 8 | 2 (25%) | 6 (75%) | 6 (75%) | 2 (25%) | 3 (38%) | 5 (63%) | 3 (60%) | 2 (40%) | ||||
PALG6 (%) | 83 | 25 (30%) | 58 (70%) | 46 (55%) | 37 (45%) | 49 (54%) | 42 (46%) | 9 (26%) | 25 (74%) | ||||
PALG modified (%) | 2 | 0 (0%) | 2 (100%) | 0 (0%) | 2 (100%) | 0 (0%) | 2 (100%) | 0 (0%) | 2 (100%) | ||||
AlloHSCT in first CR | |||||||||||||
yes (%) | 40 | 14 (35%) | 26 (65%) | 29 (73%) | 11 (27%) | 25 (56%) | 20 (44%) | 8 (53%) | 7 (47%) | ||||
no (%) | 54 | 14 (26%) | 40 (74%) | 24 (44%) | 30 (56%) | 28 (49%) | 29 (51%) | 4 (15%) | 22 (85%) |
Total B-ALL | |||||
---|---|---|---|---|---|
RAG2 Expression | AID Expression | p † | |||
Low n = 43 | High n = 48 | Low n = 54 | High n = 36 | ||
CNA | |||||
CNAneg | 18 (67%) | 9 (33%) | 15 (54%) | 13 (46%) | |
CNApos | 25 (39%) | 39 (61%) | 36 (61%) | 23 (39%) | RAG2: CNAneg vs. CNApos: 0.0160 |
1 CNA | 9 (39%) | 14 (61%) | 11 (50%) | 11 (50%) | |
CNAhigh | 16 (39%) | 25 (61%) | 25 (68%) | 12 (32%) | RAG2: CNAneg vs. CNAhigh: 0.0257 |
IKZF1 deletion | |||||
IKZF1neg | 31 (60%) | 21 (40%) | 24 (46%) | 28 (54%) | RAG2: 0.0109 |
IKZF1pos | 16 (34%) | 31 (66%) | 31 (72%) | 12 (28%) | AID: 0.0108 |
CDKN2A/B deletion | RAG2: 0.0013 | ||||
CDKN2A/Bneg | 33 (56%) | 26 (44%) | 36 (63%) | 21 (37%) | |
CDKN2A/Bpos | 10 (31%) | 22 (69%) | 15 (50%) | 15 (50%) | |
PAX5 deletion | NS | ||||
PAX5neg | 36 (47%) | 40 (53%) | 41 (55%) | 33 (45%) | |
PAX5pos | 7 (47%) | 8 (53%) | 10 (77%) | 3 (23%) | |
NEG B-ALL | |||||
RAG2 Expression | AID Expression | p † | |||
Low n = 22 | High n = 12 | Low n = 12 | High n = 21 | ||
CNA | RAG2: CNAneg vs. CNApos: 0.0464 | ||||
CNAneg | 9 (90%) | 1 (10%) | 3 (27%) | 8 (73%) | |
CNApos | 13 (54%) | 11 (46%) | 9 (41%) | 13 (59%) | |
1 CNA | 4 (44%) | 5 (56%) | 2 (25%) | 6 (75%) | |
CNAhigh | 9 (60%) | 6 (40%) | 7 (50%) | 7 (50%) | |
IKZF1 deletion | |||||
IKZF1neg | 16 (80%) | 4 (20%) | 3 (15%) | 17 (85%) | RAG2: 0.0257 |
IKZF1pos | 6 (43%) | 8 (57%) | 8 (67%) | 4 (33%) | AID: 0.0029 |
BCR::ABL1pos B-ALL | |||||
RAG2 Expression | AID Expression | p † | |||
Low n = 8 | High n = 21 | Low n = 22 | High n = 6 | ||
CNA | NS | ||||
CNAneg | 3 (50%) | 3 (50%) | 4 (67%) | 2 (33%) | |
CNApos | 5 (22%) | 18 (78%) | 18 (82%) | 4 (18%) | |
1 CNA | 1 (14%) | 6 (86%) | 5 (71%) | 2 (29%) | |
CNAhigh | 4 (25%) | 12 (75%) | 13 (87%) | 2 (13%) | |
IKZF1 deletion | NS | ||||
IKZF1neg | 4 (40%) | 6 (60%) | 6 (60%) | 4 (40%) | |
IKZF1pos | 7 (27%) | 19 (73%) | 20 (80%) | 5 (20%) |
(A) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
End Point and Variables | Total n = 161 | NEG | BCR::ABL1 n = 54 | “Bad Primary” | E2A::PBX n = 3 | p | |||||
Total NEG * n = 61 | NK Only n = 41 | BCR::ABL1-like n = 15 | MLL::AF4 n = 5 | Complex n = 15 | Hyperdiploid n = 6 | All “Bad Primary” ‡ n = 43 | |||||
CR | NEG vs. BCR::ABL1: 0.5454 † | ||||||||||
No. of patients | 131/152 | 49/57 | 34/41 | 47/54 | 10/12 | 5/5 | 11/14 | 4/5 | 32/38 | 3/3 | NEG vs. BCR::ABL1-like: 0.5555 † |
(%) | (86%) | (86%) | (83%) | (87%) | (83%) | (100%) | (79%) | (80%) | (78%) | (100%) | NEG vs. “Bad”: 0.5177 † |
OS | NEG vs. BCR::ABL1:0.0895 # | ||||||||||
No. of patients | 161 | 61 | 41 | 54 | 15 | 5 | 15 | 6 | 43 | 3 | NEG vs. BCR::ABL1-like: 0.1080 # |
4-year rate ± SE | 34 ± 4% | 32 ± 8% | 25 ± 8% | 54 ± 8% | 10 ± 9% | 53 ± 25% | 20 ± 10% | 0% | 16 ± 7% | 100% | NEG vs. “Bad”: 0.0192 # |
RFS | NEG vs. BCR::ABL1: 0.0356 # | ||||||||||
No. of patients | 129 | 49 | 34 | 46 | 10 | 5 | 10 | 6 | 31 | 3 | NEG vs. BCR::ABL1-like: 0.3400 # |
4-year rate ± SE | 42 ± 6% | 28 ± 9% | 19 ± 9% | 66 ± 8% | 18 ± 16% | 20 ± 18% | 24 ± 15% | 60 ± 22% | 22 ± 10% | 100% | NEG vs. “Bad”: 0.0365 # |
DFS | NEG vs. BCR::ABL1:0.0978 # NEG vs. BCR::ABL1-like: 0.5055 # NEG vs. “Bad”: 0.0319 # | ||||||||||
No. of patients | 126 | 46 | 32 | 46 | 10 | 5 | 11 | 5 | 31 | 3 | |
4-year rate ± SE | 37 ± 5% | 25 ± 8% | 18 ± 9% | 58 ± 8% | 16 ± 15% | 20 ± 18% | 22 ± 13% | 40 ± 22% | 17 ± 8% | 100% | |
(B) | |||||||||||
Primary Aberration | |||||||||||
End Point and Variables | Age | WBC | NEG n = 61 | BCR::ABL1 n = 54 | All “Bad Primary” n = 43 | BCR::ABL1-like n = 15 | MLL::AF4 n = 5 | Complex n = 15 | Hyperdiploid n = 6 | E2A::PBX n = 3 | |
CR | |||||||||||
OR (95% CI) | 0.83 (0.70–0.98) | 1.08 (0.91–1.29) | 1.00 | 0.99 (0.71–1.39) | 0.90 (0.66–1.21) | 0.92 (0.64–1.31) | 1.07 (0.67–1.71) | 0.86 (0.61–1.21) | 0.86 (0.55–1.35) | 1.11 (0.65–1.92) | |
p * | 0.0294 | 0.3593 | (reference) | 0.9726 | 0.4782 | 0.6280 | 0.7738 | 0.3726 | 0.5156 | 0.6936 | |
OS | |||||||||||
HR (95% CI) | 1.04 (1.03–1.06) | 1.00 (1.00–1.00) | 1.00 | 0.55 (0.32–0.96) | 1.67 (1.03–2.73) | 1.39 (0.70–2.75) | 1.10 (0.24–4.99) | 1.62 (0.83–3.14) | 3.91 (1.49–10.31) | 2.62 (0.61–11.18) | |
p # | <0.0001 | 0.8974 | (reference) | 0.0338 | 0.0261 | 0.3434 | 0.8984 | 0.1549 | 0.0058 | 0.1929 | |
RFS | - | ||||||||||
HR (95% CI) | 1.05 (1.03–1.07) | 1.00 (1.00–1.01) | 1.00 | 0.34 (0.16–0.72) | 1.81 (0.98–3.37) | 1.21 (0.49–3.02) | 4.40 (1.37–14.13) | 1.72 (0.71–4.14) | 3.61 (0.81–16.18) | ||
p # | <0.0001 | 0.0929 | (reference) | 0.0049 | 0.0597 | 0.6782 | 0.0129 | 0.2259 | 0.0934 |
(A) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
End Point and Variables | Total | CNA Presence | CNA Mutation Burden | IKZF1 Mutation Status | Bad CNA (CNAhigh/IKZFpos) | Good CNA (CNApos Other than Bad CNA) | ||||||||||||||
CNAneg | CNApos | p | CNAlow | CNAhigh | p | IKZFneg | IKZFpos | p | CNAhigh IKZFpos | All Other Patients | p | Good CNA | All Other Patients | p | ||||||
TOTAL B-ALL | ||||||||||||||||||||
CR | 0.5283 † | 0.0422 † | 0.3746 † | 0.0514 † | 0.0880 † | |||||||||||||||
No. of patients | 73/88 | 22/26 | 51/62 | 45/50 | 28/38 | 41/48 | 38/47 | 20/28 | 53/60 | 31/34 | 42/54 | |||||||||
(%) | 83% | 85% | 82% | 90% | 74% | 85% | 85% | 71% | 88% | 91% | 78% | |||||||||
OS | 0.4921 # | 0.0179 # | 0.2734 # | 0.0045 # | 0.0427 # | |||||||||||||||
No. of patients | 92 | 27 | 65 | 52 | 40 | 52 | 47 | 28 | 64 | 37 | 55 | |||||||||
4-year rate ± SE | 36 ± 6% | 43 ± 10% | 28 ± 6% | 42 ± 8% | 20 ± 7% | 41 ± 8% | 26 ± 7% | 9 ± 6% | 42 ± 7% | 43 ± 9% | 25 ± 6% | |||||||||
RFS | 0.1460 # | 0.0412 # | 0.0320 # | 0.0035 # | 0.2096 # | |||||||||||||||
No. of patients | 73 | 22 | 49 | 44 | 27 | 40 | 37 | 19 | 52 | 30 | 41 | |||||||||
4-year rate ± SE | 41 ± 7% | 43 ± 10% | 34 ± 8% | 53 ± 9% | 20 ± 10% | 48 ± 10% | 31 ± 9% | 14 ± 9% | 49 ± 8% | 45 ± 10% | 40 ± 9% | |||||||||
NEG B-ALL | ||||||||||||||||||||
CR | 0.6317 † | 0.1710 † | 0.5419 † | 0.3105 † | 0.4581 † | |||||||||||||||
No. of patients | 28/32 | 9/10 | 19/22 | 18/19 | 10/13 | 17/19 | 11/13 | 7/9 | 21/23 | 12/13 | 16/19 | |||||||||
(%) | 88% | 90% | 86% | 95% | 77% | 89% | 85% | 78% | 91% | 92% | 84% | |||||||||
OS | 0.2117 # | 0.0016 # | 0.0055 # | 0.0051 # | 0.1513 # | |||||||||||||||
No. of patients | 34 | 10 | 24 | 19 | 15 | 20 | 14 | 10 | 24 | 14 | 20 | |||||||||
4-year rate ± SE | 28 ± 9% | 53 ± 17% | 22 ± 9% | 45 ± 15% | 7 ± 6% | 46 ± 13% | 7 ± 7% | 0% | 40 ± 12% | 28 ± 13% | 25 ± 10% | |||||||||
RFS | 0.3322 # | 0.0171 # | 0.0118 # | 0.0037 # | 0.1042 # | |||||||||||||||
No. of patients | 28 | 9 | 19 | 18 | 10 | 17 | 11 | 7 | 21 | 12 | 16 | |||||||||
4-year rate ± SE | 25 ± 10% | 42 ± 20% | 19 ± 11% | 43 ± 14% | 0% | 36 ± 15% | 10 ± 10% | 0% | 34 ± 14% | 31 ± 17% | 22 ± 12% | |||||||||
BCR::ABL1pos B-ALL | ||||||||||||||||||||
CR | 0.3438 † | 0.3954 † | 0.5441 † | 0.2613 † | 0.0653 † | |||||||||||||||
No. of patients | 24/30 | 4/6 | 20/24 | 12/14 | 12/16 | 8/10 | 22/26 | 10/14 | 14/16 | 10/10 | 14/20 | |||||||||
(%) | 80% | 67% | 83% | 86% | 75% | 80% | 85% | 71% | 88% | 100% | 70% | |||||||||
OS | 0.3019 # | 0.2129 # | 0.6468 # | 0.0406 # | 0.0025 # | |||||||||||||||
No. of patients | 29 | 6 | 23 | 14 | 15 | 10 | 25 | 13 | 16 | 10 | 19 | |||||||||
4-year rate ± SE | 47 ± 10% | 33 ± 19% | 51 ± 11% | 62 ± 13% | 33 ± 13% | 60 ± 15% | 45 ± 11% | 20 ± 12% | 67 ± 12% | 89 ± 10% | 25 ± 11% | |||||||||
RFS | 0.8073 # | 0.1157 # | 0.0875 # | 0.0231 # | 0.0404 # | |||||||||||||||
No. of patients | 23 | 4 | 19 | 12 | 11 | 8 | 21 | 9 | 14 | 10 | 13 | |||||||||
4-year rate ± SE | 65 ± 11% | 75 ± 22% | 63 ± 12% | 82 ± 12% | 44 ± 17% | 88 ± 12% | 48 ± 12% | 29 ± 17% | 85 ± 10% | 89 ± 10% | 44 ± 15% | |||||||||
(B) | ||||||||||||||||||||
End Point and Variables | CNAhigh | IKZFpos | Bad CNA (CNAhigh/IKZFpos) | Good CNA (CNApos Other than Bad CNA) | ||||||||||||||||
TOTAL B-ALL | ||||||||||||||||||||
CR | ||||||||||||||||||||
OR (95% CI) | 0.83 (0.67–1.02) | 0.97 (0.78–1.21) | 0.83 (0.67–1.04) | 1.20 (0.97–1.48) | ||||||||||||||||
p * | 0.0791 | 0.8156 | 0.1054 | 0.0952 | ||||||||||||||||
OS | ||||||||||||||||||||
HR (95% CI) | 1.81 (1.04–3.17) | 0.91 (0.51–1.61) | 1.92 (1.06–3.48) | 0.56 (0.31–1.01) | ||||||||||||||||
p ‡ | 0.0374 | 0.7393 | 0.0318 | 0.0521 | ||||||||||||||||
RFS | ||||||||||||||||||||
HR (95% CI) | 1.97 (0.99–3.92) | 1.48 (0.74–2.97) | 2.89 (1.37–6.10) | 0.57 (0.28–1.16) | ||||||||||||||||
p ‡ | 0.0538 | 0.2695 | 0.0054 | 0.1189 | ||||||||||||||||
NEG B-ALL | ||||||||||||||||||||
CR | ||||||||||||||||||||
OR (95% CI) | 0.68 (0.47–0.98) | 0.87 (0.58–1.31) | 0.74 (0.50–1.10) | 1.15 (0.77–1.71) | ||||||||||||||||
p * | 0.0397 | 0.4921 | 0.1305 | 0.4897 | ||||||||||||||||
OS | ||||||||||||||||||||
HR (95% CI) | 4.95 (1.70–14.39) | 4.12 (1.37–12.33) | 4.85 (1.56–15.09) | 0.42 (0.14–1.20) | ||||||||||||||||
p ‡ | 0.0033 | 0.0114 | 0.0065 | 0.1050 | ||||||||||||||||
RFS | ||||||||||||||||||||
HR (95% CI) | 4.11 (1.30–12.99) | 4.59 (1.32–15.97) | 9.80 (2.32–41.35) | 0.32 (0.09–1.08) | ||||||||||||||||
p ‡ | 0.0160 | 0.0165 | 0.0019 | 0.0660 | ||||||||||||||||
BCR:ABL1pos B-ALL | ||||||||||||||||||||
CR | ||||||||||||||||||||
OR (95% CI) | 0.97 (0.68–1.40) | 1.16 (0.84–1.62) | 0.94 (0.65–1.38) | 1.28 (0.88–1.87) | ||||||||||||||||
p * | 0.8860 | 0.3595 | 0.7485 | 0.1871 | ||||||||||||||||
OS | ||||||||||||||||||||
HR (95% CI) | 1.84 (0.60–5.63) | 0.88 (0.27–2.91) | 2.36 (0.76–7.27) | 0.11 (0.01–0.90) | ||||||||||||||||
p ‡ | 0.2860 | 0.8326 | 0.1359 | 0.0399 | ||||||||||||||||
RFS | ||||||||||||||||||||
HR (95% CI) | 6.29 (0.89–44.47) | 3.52 (0.40–31.35) | 7.65 (1.21–48.31) | 0.14 (0.02–1.22) | ||||||||||||||||
p ‡ | 0.0654 | 0.2564 | 0.0304 | 0.0756 |
End Point and Variables | Intermediate Risk | Low Risk | High Risk | Total |
---|---|---|---|---|
CR | ||||
No. of patients | 24/28 | 13/13 | 44/55 | 81/96 |
(%) | 86% | 100% | 80% | 85% |
p * | (reference) | 0.1514 | 0.5224 | |
OS | ||||
No. of patients | 29 | 13 | 58 | 100 |
4-year rate ± SE | 41 ± 10% | 75 ± 13% | 13 ± 5% | 30 ± 5% |
p ‡ | (reference) | 0.0148 | 0.0011 | |
RFS | ||||
No. of patients | 26 | 13 | 42 | 81 |
4-year rate ± SE | 39 ± 12% | 90 ± 9% | 23 ± 7% | 38 ± 7% |
p ‡ | (reference) | 0.0254 | 0.0037 | |
DFS | ||||
No. of patients | 24 | 13 | 43 | 80 |
4-year rate ± SE | 36 ± 11% | 90 ± 9% | 17 ± 6% | 34 ± 6% |
p ‡ | (reference) | 0.0183 | 0.0010 | |
Multivariate analysis adjusted for age and WBC | ||||
CR | ||||
OR (95% CI) | 1.00 | 0.92 (0.73–1.16) | 1.12 (0.89–1.40) | |
p † | (reference) | 0.3259 | 0.4713 | |
OS | ||||
HR (95% CI) | 1.00 | 0.13 (0.02–0.99) | 2.12 (1.14–3.93) | |
p # | (reference) | 0.0484 | 0.0176 | |
RFS | ||||
HR (95% CI) | 1.00 | 0.16 (0.02–1.23) | 2.59 (1.25–5.33) | |
p # | (reference) | 0.0787 | 0.0100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libura, M.; Karabin, K.; Tyrna, P.; Czyż, A.; Makuch-Łasica, H.; Jaźwiec, B.; Paluszewska, M.; Piątkowska-Jakubas, B.; Zawada, M.; Gniot, M.; et al. Prognostic Impact of Copy Number Alterations’ Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy. Cancers 2023, 15, 5431. https://doi.org/10.3390/cancers15225431
Libura M, Karabin K, Tyrna P, Czyż A, Makuch-Łasica H, Jaźwiec B, Paluszewska M, Piątkowska-Jakubas B, Zawada M, Gniot M, et al. Prognostic Impact of Copy Number Alterations’ Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy. Cancers. 2023; 15(22):5431. https://doi.org/10.3390/cancers15225431
Chicago/Turabian StyleLibura, Marta, Karolina Karabin, Paweł Tyrna, Anna Czyż, Hanna Makuch-Łasica, Bożena Jaźwiec, Monika Paluszewska, Beata Piątkowska-Jakubas, Magdalena Zawada, Michał Gniot, and et al. 2023. "Prognostic Impact of Copy Number Alterations’ Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy" Cancers 15, no. 22: 5431. https://doi.org/10.3390/cancers15225431
APA StyleLibura, M., Karabin, K., Tyrna, P., Czyż, A., Makuch-Łasica, H., Jaźwiec, B., Paluszewska, M., Piątkowska-Jakubas, B., Zawada, M., Gniot, M., Trubicka, J., Szymańska, M., Borg, K., Więsik, M., Czekalska, S., Florek, I., Król, M., Paszkowska-Kowalewska, M., Gil, L., ... Jędrzejczak, W. W. (2023). Prognostic Impact of Copy Number Alterations’ Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy. Cancers, 15(22), 5431. https://doi.org/10.3390/cancers15225431