CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset
Abstract
:Simple Summary
Abstract
1. Introduction
- A specially tailored deep learning framework that combined residual U-Net with a hierarchical training strategy was constructed and optimized to synthesize high-quality pseudo-CT images with accurate HU values and enhanced clarity from original CBCT images.
- A combination of weighted MAE, multi-scale structural similarity index (MS-SSIM) loss, and gradient difference loss was utilized to constrain the training process to effectively preserve the edges of tissues.
- A hybrid dataset collected from different brands of linear accelerators was used to construct a more robust model and demonstrate its generalizability.
2. Materials and Methods
2.1. Data Collection and Image Pre-Processing
2.1.1. Data Collection
2.1.2. Image Pre-Processing
2.2. Network Architecture
2.3. Hierarchical Training Strategy
2.4. Loss Function
2.5. Evaluation Metrics
2.6. Experiments
3. Results
3.1. Qualitative Results
3.2. Quantitative Results
3.3. Ablation Experiment Results
3.4. Comparison among Different Datasets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Faye, M.D.; Alfieri, J. Advances in Radiation Oncology for the Treatment of Cervical Cancer. Curr. Oncol. 2022, 29, 928–944. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, L.; Islam, M.T.; Qin, W.; Zhang, Z.; Liang, X.; Zhang, G.; Xu, S.; Li, X. Artificial intelligence in image-guided radiotherapy: A review of treatment target localization. Quant. Imaging Med. Surg. 2021, 11, 4881–4894. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Thorndyke, B.; Schreibmann, E.; Yang, Y.; Li, T.F.; Kim, G.Y.; Luxton, G.; Koong, A. Overview of image-guided radiation therapy. Med. Dosim. 2006, 31, 91–112. [Google Scholar] [CrossRef]
- Dawson, L.A.; Sharpe, M.B. Image-guided radiotherapy: Rationale, benefits, and limitations. Lancet Oncol. 2006, 7, 848–858. [Google Scholar] [CrossRef]
- Jaffray, D.A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Dinniwell, R.; Haider, M.A.; Cho, Y.B.; Jaffray, D.; Lockwood, G.; Levin, W.; Manchul, L.; Fyles, A.; Milosevic, M. Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: A cinematic-MRI point-of-interest study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Mahantshetty, U.; Naga, P.; Nachankar, A.; Ghadi, Y.; Dheera, A.; Scaria, L.; Epili, D.; Chopra, S.; Lavanya, G.; Shrivastava, S. Set-Up Errors, Organ Motion, Tumour Regression and its Implications on Internal Target Volume-Planning Target Volume during Cervical Cancer Radiotherapy: Results from a Prospective Study. Clin. Oncol. 2022, 34, 189–197. [Google Scholar] [CrossRef]
- Schulze, R.; Heil, U.; Groβ, D.; Bruellmann, D.D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A review. Dentomaxillofacial Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef]
- Abe, T.; Tateoka, K.; Saito, Y.; Nakazawa, T.; Yano, M.; Nakata, K.; Someya, M.; Hori, M.; Sakata, K. Method for Converting Cone-Beam CT Values into Hounsfield Units for Radiation Treatment Planning. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 2017, 6, 361–375. [Google Scholar] [CrossRef]
- Siewerdsen, J.H.; Moseley, D.J.; Bakhtiar, B.; Richard, S.; Jaffray, D.A. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med. Phys. 2004, 31, 3506–3520. [Google Scholar] [CrossRef] [PubMed]
- Gereon, V.; Ralf, D.; Klaus Juergen, E.; Randy, L.; Rod, M.; Brian, H.; Michael, A.; Bill, R.; Jill, K. Two-dimensional anti-scatter grids for computed tomography detectors. In Proceedings of the Medical Imaging 2008: Physics of Medical Imaging, SPIE, San Diego, CA, USA, 16–21 February 2008; p. 691359. [Google Scholar]
- Rührnschopf, E.P.; Klingenbeck, K. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches. Med. Phys. 2011, 38, 4296–4311. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, P.; Youssefian, S.; Ghazi, T. A novel hardware duo of beam modulation and shielding to reduce scatter acquisition and dose in cone-beam breast CT. Med. Phys. 2022, 49, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose. Med. Phys. 2012, 39, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, U.; van Herk, M.; Ploeger, L.S.; Sonke, J.J. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid. Med. Phys. 2014, 41, 61910. [Google Scholar] [CrossRef] [PubMed]
- Veiga, C.; Janssens, G.; Teng, C.L.; Baudier, T.; Hotoiu, L.; McClelland, J.R.; Royle, G.; Lin, L.; Yin, L.; Metz, J.; et al. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 549–559. [Google Scholar] [CrossRef]
- Chevillard, C.; Dumas, J.L.; Mazal, A.; Husson, F. 42. Computation of the RT dose of the day from mapping CBCT information to the planning CT using an optimized elastic registration method. Phys. Medica 2017, 44, 20–21. [Google Scholar] [CrossRef]
- Derksen, A.; König, L.; Meine, H.; Heldmann, S. SU-F-J-97: A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy. Med. Phys. 2016, 43, 3429. [Google Scholar] [CrossRef]
- van Zijtveld, M.; Dirkx, M.; Heijmen, B. Correction of conebeam CT values using a planning CT for derivation of the “dose of the day”. Radiother. Oncol. 2007, 85, 195–200. [Google Scholar] [CrossRef]
- Onozato, Y.; Kadoya, N.; Fujita, Y.; Arai, K.; Dobashi, S.; Takeda, K.; Kishi, K.; Umezawa, R.; Matsushita, H.; Jingu, K. Evaluation of on-board kV cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 416–423. [Google Scholar] [CrossRef]
- Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.; Moseley, D.J.; Richard, S.; Keller, H.; Jaffray, D.A. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med. Phys. 2006, 33, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, Y.; Riedel, T.; Kalender, W.A. Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys. Med. Biol. 2006, 51, 4567–4586. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Deng, S.; Wang, X. An efficient quasi-Monte Carlo method with forced fixed detection for photon scatter simulation in CT. PLoS ONE 2023, 18, e0290266. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Kadoya, N.; Kato, T.; Endo, H.; Komori, S.; Abe, Y.; Nakamura, T.; Wada, H.; Kikuchi, Y.; Takai, Y.; et al. Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy. Phys. Med. 2017, 33, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, B.; Hassan, G.M.; Reynolds, M.; Sabet, M.; Kendrick, J.; Rowshanfarzad, P.; Ebert, M. Deep learning methods for enhancing cone-beam CT image quality toward adaptive radiation therapy: A systematic review. Med. Phys. 2022, 49, 6019–6054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yue, N.; Su, M.Y.; Liu, B.; Ding, Y.; Zhou, Y.; Wang, H.; Kuang, Y.; Nie, K. Improving CBCT quality to CT level using deep learning with generative adversarial network. Med. Phys. 2021, 48, 2816–2826. [Google Scholar] [CrossRef]
- Yoo, S.K.; Kim, H.; Choi, B.S.; Park, I.; Kim, J.S. Generation and Evaluation of Synthetic Computed Tomography (CT) from Cone-Beam CT (CBCT) by Incorporating Feature-Driven Loss into Intensity-Based Loss Functions in Deep Convolutional Neural Network. Cancers 2022, 14, 4534. [Google Scholar] [CrossRef]
- Suwanraksa, C.; Bridhikitti, J.; Liamsuwan, T.; Chaichulee, S. CBCT-to-CT Translation Using Registration-Based Generative Adversarial Networks in Patients with Head and Neck Cancer. Cancers 2023, 15, 2017. [Google Scholar] [CrossRef]
- Rossi, M.; Cerveri, P. Comparison of Supervised and Unsupervised Approaches for the Generation of Synthetic CT from Cone-Beam CT. Diagnostics 2021, 11, 1435. [Google Scholar] [CrossRef]
- Harms, J.; Lei, Y.; Wang, T.; Zhang, R.; Zhou, J.; Tang, X.; Curran, W.J.; Liu, T.; Yang, X. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Med. Phys. 2019, 46, 3998–4009. [Google Scholar] [CrossRef]
- Nomura, Y.; Xu, Q.; Shirato, H.; Shimizu, S.; Xing, L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med. Phys. 2019, 46, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, B.; Ebert, M.A.; Mukwada, G.; Hassan, G.M.; Sabet, M. A convolutional neural network for estimating cone-beam CT intensity deviations from virtual CT projections. Phys. Med. Biol. 2021, 66, 215007. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, A.; Winey, B.; Verburg, J.; Paganetti, H.; Sharp, G.C. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy. Phys. Med. Biol. 2020, 65, 245022. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.C.; Landry, G.; Kamp, F.; Li, M.; Belka, C.; Parodi, K.; Kurz, C. ScatterNet: A convolutional neural network for cone-beam CT intensity correction. Med. Phys. 2018, 45, 4916–4926. [Google Scholar] [CrossRef]
- Landry, G.; Hansen, D.; Kamp, F.; Li, M.; Hoyle, B.; Weller, J.; Parodi, K.; Belka, C.; Kurz, C. Comparing Unet training with three different datasets to correct CBCT images for prostate radiotherapy dose calculations. Phys. Med. Biol. 2019, 64, 35011. [Google Scholar] [CrossRef]
- Qiu, R.L.J.; Lei, Y.; Shelton, J.; Higgins, K.; Bradley, J.D.; Curran, W.J.; Liu, T.; Kesarwala, A.H.; Yang, X. Deep learning-based thoracic CBCT correction with histogram matching. Biomed. Phys. Eng. Express 2021, 7, 65040. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Zhu, J.; Dai, J.; Men, K. Deep learning framework to improve the quality of cone-beam computed tomography for radiotherapy scenarios. Med. Phys. 2023. [Google Scholar] [CrossRef]
- Tien, H.J.; Yang, H.C.; Shueng, P.W.; Chen, J.C. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Sci. Rep. 2021, 11, 1133. [Google Scholar] [CrossRef]
- Lemus, O.M.D.; Wang, Y.F.; Li, F.; Jambawalikar, S.; Horowitz, D.P.; Xu, Y.; Wuu, C.S. Dosimetric assessment of patient dose calculation on a deep learning-based synthesized computed tomography image for adaptive radiotherapy. J. Appl. Clin. Med. Phys. 2022, 23, e13595. [Google Scholar] [CrossRef]
- Xue, X.; Ding, Y.; Shi, J.; Hao, X.; Li, X.; Li, D.; Wu, Y.; An, H.; Jiang, M.; Wei, W.; et al. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Technol. Cancer Res. Treat. 2021, 20, 15330338211062415. [Google Scholar] [CrossRef]
- Kida, S.; Nakamoto, T.; Nakano, M.; Nawa, K.; Haga, A.; Kotoku, J.; Yamashita, H.; Nakagawa, K. Cone Beam Computed Tomography Image Quality Improvement Using a Deep Convolutional Neural Network. Cureus 2018, 10, e2548. [Google Scholar] [CrossRef] [PubMed]
- Kida, S.; Kaji, S.; Nawa, K.; Imae, T.; Nakamoto, T.; Ozaki, S.; Ohta, T.; Nozawa, Y.; Nakagawa, K. Visual enhancement of Cone-beam CT by use of CycleGAN. Med. Phys. 2020, 47, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Fan, R.; Li, C.; Lu, Z.; Xie, K.; Ni, X.; Yang, J. Imaging Study of Pseudo-CT Synthesized from Cone-Beam CT Based on 3D CycleGAN in Radiotherapy. Front. Oncol. 2021, 11, 603844. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qu, J.; Cai, J.; Yang, R. Multiresolution residual deep neural network for improving pelvic CBCT image quality. Med. Phys. 2022, 49, 1522–1534. [Google Scholar] [CrossRef]
- Juneja, P.; Kneebone, A.; Booth, J.T.; Thwaites, D.I.; Kaur, R.; Colvill, E.; Ng, J.A.; Keall, P.J.; Eade, T. Prostate motion during radiotherapy of prostate cancer patients with and without application of a hydrogel spacer: A comparative study. Radiat. Oncol. 2015, 10, 215. [Google Scholar] [CrossRef]
- Eminowicz, G.; Motlib, J.; Khan, S.; Perna, C.; McCormack, M. Pelvic Organ Motion during Radiotherapy for Cervical Cancer: Understanding Patterns and Recommended Patient Preparation. Clin. Oncol. 2016, 28, e85–e91. [Google Scholar] [CrossRef]
- Collen, C.; Engels, B.; Duchateau, M.; Tournel, K.; De Ridder, M.; Bral, S.; Verellen, D.; Storme, G. Volumetric Imaging by Megavoltage Computed Tomography for Assessment of Internal Organ Motion during Radiotherapy for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1590–1595. [Google Scholar] [CrossRef]
- Haripotepornkul, N.H.; Nath, S.K.; Scanderbeg, D.; Saenz, C.; Yashar, C.M. Evaluation of intra- and inter-fraction movement of the cervix during intensity modulated radiation therapy. Radiother. Oncol. 2011, 98, 347–351. [Google Scholar] [CrossRef]
- Gibson, J.; Oh, H. Mutual Information Loss in Pyramidal Image Processing. Information 2020, 11, 322. [Google Scholar] [CrossRef]
- Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Rossi, M.; Belotti, G.; Paganelli, C.; Pella, A.; Barcellini, A.; Cerveri, P.; Baroni, G. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning. Med. Phys. 2021, 48, 7112–7126. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, Y.; Dong, G.; Lambo, R.; Qin, W.; Wang, Y.; Zhang, G.; Liu, J.; Xie, Y. Artificial intelligence-based bone-enhanced magnetic resonance image-a computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy. Quant. Imaging Med. Surg. 2021, 11, 4709–4720. [Google Scholar] [CrossRef]
- Chen, L.; Liang, X.; Shen, C.; Jiang, S.; Wang, J. Synthetic CT generation from CBCT images via deep learning. Med. Phys. 2020, 47, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Kachelrie, B.M.; Pan, F.; Mou, X. CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement. IEEE Trans. Med. Imaging 2021, 40, 3054–3064. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lee, M.-C.; Wang, S.-Y.; Pan, C.-T.; Chien, M.-Y.; Li, W.-M.; Xu, J.-H.; Luo, C.-H.; Shiue, Y.-L. Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation. Cancers 2023, 15, 1343. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Fan, L.; Li, C.; Shi, M. Hierarchy Training Strategy in Image Classification. In Proceedings of the 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August 2018; pp. 293–297. [Google Scholar]
- Seyedhosseini, M.; Tasdizen, T. Semantic Image Segmentation with Contextual Hierarchical Models. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 951–964. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.W.; Yang, R.; Geng, L.S. Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy. Front. Oncol. 2021, 11, 717039. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, J.; Li, T.; Xiao, H.; Cheung, L.Y.; Ho, W.Y.; Qin, J.; Cai, J. Deep Learning-Based Computed Tomography Perfusion Mapping (DL-CTPM) for Pulmonary CT-to-Perfusion Translation. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1508–1518. [Google Scholar] [CrossRef]
- Li, W.; Xiao, H.; Li, T.; Ren, G.; Lam, S.; Teng, X.; Liu, C.; Zhang, J.; Kar-Ho Lee, F.; Au, K.H.; et al. Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients with Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Z.; Wang, J.; Xia, F.; Peng, J.; Hu, Y.; Hu, W.; Zhang, Z. MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy. Front. Oncol. 2021, 11, 655325. [Google Scholar] [CrossRef] [PubMed]
- Branco, D.; Mayadev, J.; Moore, K.; Ray, X. Dosimetric and feasibility evaluation of a CBCT-based daily adaptive radiotherapy protocol for locally advanced cervical cancer. J. Appl. Clin. Med. Phys. 2023, 24, e13783. [Google Scholar] [CrossRef] [PubMed]
CBCT | Our Model | RCNN | |||
---|---|---|---|---|---|
Value | Value | Improvement | Value | Improvement | |
MAE (HU) | 50.02 | 10.93 | 64.21% | 19.28 | 61.45% |
SSIM | 0.77 | 0.90 | 19.27% | 0.82 | 7.029% |
PSNR (dB) | 27.79 | 33.91 | 26.95% | 32.03 | 15.25% |
MAE (HU) | SSIM | PSNR (dB) | |
---|---|---|---|
Weighted MAE only | 13.77 ± 15.60 | 0.90 ± 0.0011 | 33.72 ± 6.71 |
Weighted MAE with GDL | 12.92 ± 18.76 | 0.89 ± 0.0013 | 33.64 ± 6.92 |
Weighted MAE with MS-SSIM Loss | 11.38 ± 16.67 | 0.90 ± 0.0010 | 33.89 ± 6.37 |
Our Model | 10.93 ± 16.76 | 0.90 ± 0.0010 | 33.91 ± 6.88 |
MAE (HU) | SSIM | PSNR (dB) | |
---|---|---|---|
Single-Stage Training | 13.57 ± 14.44 | 0.90 ± 0.0008 | 32.74 ± 3.36 |
Hierarchical Training | 10.93 ± 16.76 | 0.90 ± 0.0010 | 33.91 ± 6.88 |
Training Dataset | Test Dataset | MAE (HU) | SSIM | PSNR (dB) | |||
---|---|---|---|---|---|---|---|
CBCT | sCT | CBCT | sCT | CBCT | sCT | ||
Varian Dataset Only | Varian Dataset | 19.71 | 8.77 | 0.83 | 0.93 | 31.58 | 38.20 |
Elekta Dataset Only | Elekta Dataset | 120.41 | 21.08 | 0.63 | 0.81 | 19.23 | 30.40 |
Hybrid Dataset | Varian Dataset | 19.71 | 8.81 | 0.83 | 0.92 | 31.58 | 35.08 |
Elekta Dataset | 120.41 | 15.86 | 0.63 | 0.87 | 19.23 | 31.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yang, R.; Xiong, T.; Yang, X.; Li, W.; Song, L.; Zhu, J.; Wang, M.; Cai, J.; Geng, L. CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset. Cancers 2023, 15, 5479. https://doi.org/10.3390/cancers15225479
Liu X, Yang R, Xiong T, Yang X, Li W, Song L, Zhu J, Wang M, Cai J, Geng L. CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset. Cancers. 2023; 15(22):5479. https://doi.org/10.3390/cancers15225479
Chicago/Turabian StyleLiu, Xi, Ruijie Yang, Tianyu Xiong, Xueying Yang, Wen Li, Liming Song, Jiarui Zhu, Mingqing Wang, Jing Cai, and Lisheng Geng. 2023. "CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset" Cancers 15, no. 22: 5479. https://doi.org/10.3390/cancers15225479
APA StyleLiu, X., Yang, R., Xiong, T., Yang, X., Li, W., Song, L., Zhu, J., Wang, M., Cai, J., & Geng, L. (2023). CBCT-to-CT Synthesis for Cervical Cancer Adaptive Radiotherapy via U-Net-Based Model Hierarchically Trained with Hybrid Dataset. Cancers, 15(22), 5479. https://doi.org/10.3390/cancers15225479