Longitudinal Study of Advanced Non-Small Cell Lung Cancer with Initial Durable Clinical Benefit to Immunotherapy: Strategies for Anti-PD-1/PD-L1 Continuation beyond Progression
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Epidemiology of Non-Small Cell Lung Cancer
1.2. Current Immunotherapies: Indications of Anti-PD-1/PD-L1 Monotherapy
1.3. Definitions for Resistance to Anti-PD-1/PD-L1
- –
- Primary resistance, if tumor progression per RECIST 1.1 occurs < 6 months after anti-PD-1/PD-L1 initiation;
- –
- Secondary resistance, if tumor progression occurs under anti-PD-1/PD-L1 treatment and after ≥6 months of clinical benefit from the start of the therapy;
- –
- Late progression, if tumor progression occurs after anti-PD-1/PD-L1 discontinuation and after ≥6 months of clinical benefit from the start of the therapy.
1.4. Need to Characterize Progression after Durable Clinical Benefit (PD after DCB)
2. Materials and Methods
2.1. Cohort Selection, Exclusion Criteria, Radiological Definitions
- –
- Anti-PD-1/PD-L1 “primary resistance” if PD occurred less than <6 months after anti-PD-1/PD-L1 initiation;
- –
- “Progression after DCB” if PD occurred at least ≥6 months after anti-PD-1/PD-L1 initiation.
2.2. Clinical, Pathological and Radiological Data
2.3. Tumor Kinetics Evaluation by Tumor Growth Rate (TGR)
2.4. Statistical Analyses
3. Results
3.1. Patients Characteristics
3.2. Comparative Analysis of PPS in “PD after DCB” and “Primary Resistance” Groups
3.3. OPD Prevalence in PD after DCB and Association with PPS
3.4. TGR Evaluation in the “PD after DCB” Group
3.5. Sites of Progression in the “PD after DCB” Group
3.6. Disease Spreading after OPD
4. Discussion
4.1. Features of Progression
4.2. Treatment beyond Progression
4.2.1. Systemic Treatment
4.2.2. Local Treatment
4.3. Considerations for the Mechanisms of Resistance
4.3.1. Sites of Progression
4.3.2. Lymphatic Progression after Durable Clinical Benefit Is a Distinct Entity
4.3.3. PD after DCB Is a Localized Phenomenon Arising in Preexisting Lesions
4.4. Other Considerations about Strengths and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. The Global Cancer Observatory Cancer Fact Sheet—All Cancers; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- American Cancer Society Non-Small Cell Lung Cancer Staging|Stages of Lung Cancer. Available online: https://www.cancer.org/cancer/types/lung-cancer/detection-diagnosis-staging/staging-nsclc.html (accessed on 25 October 2023).
- Sacher, A.G.; Le, L.W.; Lau, A.; Earle, C.C.; Leighl, N.B. Real-World Chemotherapy Treatment Patterns in Metastatic Non-Small Cell Lung Cancer: Are Patients Undertreated? Cancer 2015, 121, 2562–2569. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. Available online: https://www.nejm.org/doi/10.1056/NEJMoa1606774?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dwww.ncbi.nlm.nih.gov (accessed on 18 December 2019).
- Center for Drug Evaluation and Research. Approved Drugs—Nivolumab (Opdivo). Available online: http://wayback.archive-it.org/7993/20170111231639/http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm436566.htm (accessed on 6 July 2021).
- Center for Drug Evaluation and Research. Approved Drugs—Pembrolizumab Injection. Available online: http://wayback.archive-it.org/7993/20170111231626/http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm465650.htm (accessed on 6 July 2021).
- Center for Drug Evaluation and Research. Approved Drugs—Atezolizumab (TECENTRIQ). Available online: http://wayback.archive-it.org/7993/20170111231550/http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm525780.htm (accessed on 7 July 2021).
- Hirsch, L.; Zitvogel, L.; Eggermont, A.; Marabelle, A. PD-Loma: A Cancer Entity with a Shared Sensitivity to the PD-1/PD-L1 Pathway Blockade. Br. J. Cancer 2019, 120, 3–5. [Google Scholar] [CrossRef]
- Jin, Y.; An, X.; Mao, B.; Sun, R.; Kumari, R.; Chen, X.; Shan, Y.; Zang, M.; Xu, L.; Muntel, J.; et al. Different Syngeneic Tumors Show Distinctive Intrinsic Tumor-Immunity and Mechanisms of Actions (MOA) of Anti-PD-1 Treatment. Sci. Rep. 2022, 12, 3278. [Google Scholar] [CrossRef] [PubMed]
- Kluger, H.M.; Tawbi, H.A.; Ascierto, M.L.; Bowden, M.; Callahan, M.K.; Cha, E.; Chen, H.X.; Drake, C.G.; Feltquate, D.M.; Ferris, R.L.; et al. Defining Tumor Resistance to PD-1 Pathway Blockade: Recommendations from the First Meeting of the SITC Immunotherapy Resistance Taskforce. J. Immunother. Cancer 2020, 8, e000398. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef]
- Pathak, R.; Pharaon, R.R.; Mohanty, A.; Villaflor, V.M.; Salgia, R.; Massarelli, E. Acquired Resistance to PD-1/PD-L1 Blockade in Lung Cancer: Mechanisms and Patterns of Failure. Cancers 2020, 12, 3851. [Google Scholar] [CrossRef]
- Tian, T.; Yu, M.; Yu, Y.; Wang, K.; Tian, P.; Luo, Z.; Ding, Z.; Wang, Y.; Gong, Y.; Zhu, J.; et al. Immune Checkpoint Inhibitor (ICI)-Based Treatment beyond Progression with Prior Immunotherapy in Patients with Stage IV Non-Small Cell Lung Cancer: A Retrospective Study. Transl. Lung Cancer Res. 2022, 11, 1027–1037. [Google Scholar] [CrossRef]
- Spagnolo, F.; Boutros, A.; Cecchi, F.; Croce, E.; Tanda, E.T.; Queirolo, P. Treatment beyond Progression with Anti-PD-1/PD-L1 Based Regimens in Advanced Solid Tumors: A Systematic Review. BMC Cancer 2021, 21, 425. [Google Scholar] [CrossRef]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.-C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef]
- Berge, D.M.H.J.T.; Hurkmans, D.P.; Besten, I.D.; Kloover, J.S.; Mathijssen, R.H.J.; Debets, R.; Smit, E.F.; Aerts, J.G.J.V. Tumour Growth Rate as a Tool for Response Evaluation during PD-1 Treatment for Non-Small Cell Lung Cancer: A Retrospective Analysis. ERJ Open Res. 2019, 5. [Google Scholar] [CrossRef]
- Tumati, V.; Iyengar, P. The Current State of Oligometastatic and Oligoprogressive Non-Small Cell Lung Cancer. J. Thorac. Dis. 2018, 10, S2537–S2544. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Hoang, C.D.; Kesarwala, A.H.; Schrump, D.S.; Guha, U.; Rajan, A. Role of Local Ablative Therapy in Patients with Oligometastatic and Oligoprogressive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 179–193. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Heo, J.Y.; Yoo, S.H.; Suh, K.J.; Kim, S.H.; Kim, Y.J.; Ock, C.-Y.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.-W.; et al. Clinical Pattern of Failure after a Durable Response to Immune Check Inhibitors in Non-Small Cell Lung Cancer Patients. Sci. Rep. 2021, 11, 2514. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Rizvi, H.A.; Memon, D.; Shaverdian, N.; Bott, M.J.; Sauter, J.L.; Tsai, C.J.; Lihm, J.; Hoyos, D.; Plodkowski, A.J.; et al. Systemic and Oligo-Acquired Resistance to PD-(L)1 Blockade in Lung Cancer. Clin. Cancer Res. 2022, 28, 3797–3803. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Wurtz, A.; Goldberg, S.B.; Rimm, D.; Schalper, K.; Kaech, S.; Kavathas, P.; Chiang, A.; Lilenbaum, R.; Zelterman, D.; et al. Clinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 831–839. [Google Scholar] [CrossRef]
- Hosoya, K.; Fujimoto, D.; Morimoto, T.; Kumagai, T.; Tamiya, A.; Taniguchi, Y.; Yokoyama, T.; Ishida, T.; Matsumoto, H.; Hirano, K.; et al. Clinical Factors Associated with Shorter Durable Response, and Patterns of Acquired Resistance to First-Line Pembrolizumab Monotherapy in PD-L1-Positive Non-Small-Cell Lung Cancer Patients: A Retrospective Multicenter Study. BMC Cancer 2021, 21, 346. [Google Scholar] [CrossRef]
- Kagawa, Y.; Furuta, H.; Uemura, T.; Watanabe, N.; Shimizu, J.; Horio, Y.; Kuroda, H.; Inaba, Y.; Kodaira, T.; Masago, K.; et al. Efficacy of Local Therapy for Oligoprogressive Disease after Programmed Cell Death 1 Blockade in Advanced Non-small Cell Lung Cancer. Cancer Sci. 2020, 111, 4442–4452. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.-M.C.; Hendriks, L.E.L.; Berghmans, T.; Levy, A.; Hasan, B.; Faivre-Finn, C.; Giaj-Levra, M.; Giaj-Levra, N.; Girard, N.; Greillier, L.; et al. Definition of Synchronous Oligometastatic Non-Small Cell Lung Cancer-A Consensus Report. J Thorac. Oncol. 2019, 14, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.A.; Banerji, S.; Blais, N.; Brule, S.; Cheema, P.K.; Cheung, P.; Daaboul, N.; Hao, D.; Hirsh, V.; Juergens, R.; et al. Canadian Consensus: Oligoprogressive, Pseudoprogressive, and Oligometastatic Non-Small-Cell Lung Cancer. Curr. Oncol. 2019, 26, e81–e93. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non–Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef]
- Ho, C.-B.; Tsai, J.-T.; Chen, C.-Y.; Shiah, H.-S.; Chen, H.-Y.; Ting, L.-L.; Kuo, C.-C.; Lai, I.-C.; Lai, H.-Y.; Chung, C.-L.; et al. Effectiveness of Stereotactic Ablative Radiotherapy for Systemic Therapy Respondents with Inoperable Pulmonary Oligometastases and Oligoprogression. Diagnostics 2023, 13, 1597. [Google Scholar] [CrossRef] [PubMed]
- Prelaj, A.; Pircher, C.C.; Massa, G.; Martelli, V.; Corrao, G.; Lo Russo, G.; Proto, C.; Ferrara, R.; Galli, G.; De Toma, A.; et al. Beyond First-Line Immunotherapy: Potential Therapeutic Strategies Based on Different Pattern Progressions: Oligo and Systemic Progression. Cancers 2021, 13, 1300. [Google Scholar] [CrossRef]
- Lahmar, J.; Facchinetti, F.; Koscielny, S.; Ferte, C.; Mezquita, L.; Bluthgen, M.V.; Lindsay, C.R.; Adam, J.; Planchard, D.; Soria, J.-C.; et al. Effect of Tumor Growth Rate (TGR) on Response Patterns of Checkpoint Inhibitors in Non-Small Cell Lung Cancer (NSCLC). JCO 2016, 34, 9034. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Li, H.; Chen, T.; Chen, C.; Zhou, Y.; Lin, Z.; Du, W.; Fang, W.; Yang, Y.; et al. Pre-Treatment Tumor Growth Rate Predicts Clinical Outcomes of Patients With Advanced Non-Small Cell Lung Cancer Undergoing Anti-PD-1/PD-L1 Therapy. Front. Oncol. 2021, 10, 621329. [Google Scholar] [CrossRef]
- Wei, S.C.; Levine, J.H.; Cogdill, A.P.; Zhao, Y.; Anang, N.-A.A.S.; Andrews, M.C.; Sharma, P.; Wang, J.; Wargo, J.A.; Pe’er, D.; et al. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell 2017, 170, 1120–1133.e17. [Google Scholar] [CrossRef]
- Ardin, C.; Humez, S.; Leroy, V.; Ampere, A.; Bordier, S.; Escande, F.; Turlotte, A.; Stoven, L.; Nunes, D.; Cortot, A.; et al. Pursuit or Discontinuation of Anti-PD1 after 2 Years of Treatment in Long-Term Responder Patients with Non-Small Cell Lung Cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231195600. [Google Scholar] [CrossRef]
- Hu, X.; Li, H.; Kang, X.; Wang, X.; Pang, H.; Liu, C.; Zhang, J.; Wang, Y. First-Line Tyrosine Kinase Inhibitors Combined With Local Consolidative Radiation Therapy for Elderly Patients With Oligometastatic Non-Small Cell Lung Cancer Harboring EGFR Activating Mutations. Front. Oncol. 2022, 12, 766066. [Google Scholar] [CrossRef]
- ESMO Lung and Chest Tumours|ESMO. Available online: https://www.esmo.org/guidelines/guidelines-by-topic/esmo-clinical-practice-guidelines-lung-and-chest-tumours/clinical-practice-guideline-non-oncogene-addicted-metastatic-non-small-cell-lung-cancer (accessed on 25 October 2023).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology—Non-Small Cell Lung Cancer; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Zou, R.; Wang, Y.; Ye, F.; Zhang, X.; Wang, M.; Cui, S. Mechanisms of Primary and Acquired Resistance to PD-1/PD-L1 Blockade and the Emerging Role of Gut Microbiome. Clin. Transl. Oncol. 2021, 23, 2237–2252. [Google Scholar] [CrossRef]
- Weiss, S.A.; Sznol, M. Resistance Mechanisms to Checkpoint Inhibitors. Curr. Opin. Immunol. 2021, 69, 47–55. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Han, Y.; Zhang, Q.; Jiang, Z.; Zhang, X.; Huang, B.; Xu, X.; Zheng, J.; Cao, X. Tumor Exosomal RNAs Promote Lung Pre-Metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer Cell. 2016, 30, 243–256. [Google Scholar] [CrossRef]
- Engblom, C.; Pfirschke, C.; Zilionis, R.; Da Silva Martins, J.; Bos, S.A.; Courties, G.; Rickelt, S.; Severe, N.; Baryawno, N.; Faget, J.; et al. Osteoblasts Remotely Supply Lung Tumors with Cancer-Promoting SiglecFhigh Neutrophils. Science 2017, 358, eaal5081. [Google Scholar] [CrossRef]
- Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The Lung Microenvironment: An Important Regulator of Tumour Growth and Metastasis. Nat. Rev. Cancer 2019, 19, 9–31. [Google Scholar] [CrossRef]
- Shah, S.; Wood, K.; Labadie, B.; Won, B.; Brisson, R.; Karrison, T.; Hensing, T.; Kozloff, M.; Bao, R.; Patel, J.D.; et al. Clinical and Molecular Features of Innate and Acquired Resistance to Anti-PD-1/PD-L1 Therapy in Lung Cancer. Oncotarget 2018, 9, 4375–4384. [Google Scholar] [CrossRef]
- Ferrara, R.; Caramella, C.; Besse, B.; Champiat, S. Pseudoprogression in Non–Small Cell Lung Cancer upon Immunotherapy: Few Drops in the Ocean? J. Thorac. Oncol. 2019, 14, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Antonia, S.J.; Awad, M.M.; Felip, E.; Gainor, J.; Gettinger, S.N.; Hodi, F.S.; Johnson, M.L.; Leighl, N.B.; Lovly, C.M.; et al. Clinical Definition of Acquired Resistance to Immunotherapy in Patients with Metastatic Non-Small-Cell Lung Cancer. Ann. Oncol. 2021, 32, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Ferté, C.; Fernandez, M.; Hollebecque, A.; Koscielny, S.; Levy, A.; Massard, C.; Balheda, R.; Bot, B.; Gomez-Roca, C.; Dromain, C.; et al. Tumor Growth Rate Is an Early Indicator of Antitumor Drug Activity in Phase I Clinical Trials. Clin. Cancer Res. 2014, 20, 246–252. [Google Scholar] [CrossRef] [PubMed]
Primary Resistance (n = 105) | PD After DCB (n = 43) | Overall (n = 148) | p-Value | |
---|---|---|---|---|
Age at PD (years) | ||||
Median (IQR) | 70 (±14) | 67 (±12) | 69 (±14) | 0.999 |
Sex (n (%)) | ||||
Female | 39 (37%) | 16 (37%) | 55 (37%) | 1 |
Male | 66 (63%) | 27 (63%) | 93 (63%) | |
Smoking (n (%)) | 95 (90%) | 40 (93%) | 135 (91%) | |
Histology (n (%)) | ||||
Squamous | 25 (24%) | 8 (19%) | 33 (22%) | 0.827 |
Non-squamous | 80 (76%) | 35 (81%) | 115 (78%) | |
Prior surgery (n (%)) | ||||
Yes | 18 | 9 | 27 | 0.864 |
No | 87 | 34 | 121 | |
Disease stage at PD (n (%)) | ||||
Localized non resectable (II, III) | 8 (8%) | 6 (14%) | 14 (9%) | 0.465 |
Metastatic (IV) | 97 (92%) | 37 (86%) | 134 (91%) | |
ICI therapeutic line (n (%)) | ||||
1st line | 14 (13%) | 9 (21%) | 23 (16%) | 0.778 |
2nd line | 69 (66%) | 24 (56%) | 93 (63%) | |
≥3rd line | 22 (21%) | 10 (23%) | 32 (22%) | |
Immune checkpoint inhibitor (ICI) (n (%)) | ||||
Atezolizumab | 5 (5%) | 1 (2%) | 6 (4%) | 0.864 |
Nivolumab | 81 (77%) | 31 (72%) | 112 (76%) | |
Pembrolizumab | 19 (18%) | 11 (26%) | 30 (20%) | |
Prior ICI TPS value (%) (n (%)) | ||||
0 | 18 (17%) | 6 (14%) | 24 (16%) | 0.718 |
[1–50] | 18 (17%) | 8 (19%) | 26 (18%) | |
≥50 | 20 (19%) | 15 (35%) | 35 (24%) | |
Missing | 49 (46.7%) | 14 (32.6%) | 63 (42.6%) | |
Disease sites at ICI start (n (%)) | ||||
Adrenal | 30 (29%) | 7 (16%) | 37 (25%) | |
Pleura | 39 (37%) | 20 (47%) | 59 (40%) | |
Liver | 26 (25%) | 8 (19%) | 34 (23%) | |
Bone | 52 (50%) | 15 (35%) | 67 (45%) | |
Lymph nodes | 86 (82%) | 36 (84%) | 122 (82%) | |
Other | 12 (11%) | 2 (5%) | 14 (9%) | |
ECOG-PS at ICI start (n (%)) | ||||
0–1 | 76 (72%) | 32 (74%) | 108 (73%) | 0.984 |
≥2 | 29 (28%) | 11 (26%) | 40 (27%) | |
ECOG-PS at PD (n (%)) | ||||
0–1 | 57 (54%) | 36 (84%) | 93 (63%) | 0.003 |
≥2 | 48 (46%) | 7 (16%) | 55 (37%) |
Primary Resistance (n = 105) | PD after DCB (n = 43) | |
---|---|---|
Disease spreading at new sites (n(%)) | ||
Liver | 8 (7.6) | 1 (2.3) |
Nodes | 4 (3.8) | 1 (2.3) |
Pleura | 10 (9.5) | 0 (0) |
Adrenal | 5 (4.8) | 1 (2.3) |
Bones | 6 (5.7) | 0 (0) |
Brain | 7 (6.7) | 1 (2.3) |
Any cancer treatment after PD (n(%)) | ||
67 (63.8) | 37 (86.0) | |
Median PPS (months (95%CI)) | ||
5.2 (2.6–6.5) | 21.3 (18.5–36.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourmir, I.; Elaidi, R.; Maaradji, Z.; De Saint Basile, H.; Ung, M.; Ismaili, M.; Fournier, L.; Rance, B.; Gibault, L.; Ben Dhiab, R.; et al. Longitudinal Study of Advanced Non-Small Cell Lung Cancer with Initial Durable Clinical Benefit to Immunotherapy: Strategies for Anti-PD-1/PD-L1 Continuation beyond Progression. Cancers 2023, 15, 5587. https://doi.org/10.3390/cancers15235587
Pourmir I, Elaidi R, Maaradji Z, De Saint Basile H, Ung M, Ismaili M, Fournier L, Rance B, Gibault L, Ben Dhiab R, et al. Longitudinal Study of Advanced Non-Small Cell Lung Cancer with Initial Durable Clinical Benefit to Immunotherapy: Strategies for Anti-PD-1/PD-L1 Continuation beyond Progression. Cancers. 2023; 15(23):5587. https://doi.org/10.3390/cancers15235587
Chicago/Turabian StylePourmir, Ivan, Reza Elaidi, Zineb Maaradji, Hortense De Saint Basile, Monivann Ung, Mohammed Ismaili, Laure Fournier, Bastien Rance, Laure Gibault, Rym Ben Dhiab, and et al. 2023. "Longitudinal Study of Advanced Non-Small Cell Lung Cancer with Initial Durable Clinical Benefit to Immunotherapy: Strategies for Anti-PD-1/PD-L1 Continuation beyond Progression" Cancers 15, no. 23: 5587. https://doi.org/10.3390/cancers15235587
APA StylePourmir, I., Elaidi, R., Maaradji, Z., De Saint Basile, H., Ung, M., Ismaili, M., Fournier, L., Rance, B., Gibault, L., Ben Dhiab, R., Gazeau, B., & Fabre, E. (2023). Longitudinal Study of Advanced Non-Small Cell Lung Cancer with Initial Durable Clinical Benefit to Immunotherapy: Strategies for Anti-PD-1/PD-L1 Continuation beyond Progression. Cancers, 15(23), 5587. https://doi.org/10.3390/cancers15235587